1. Trang chủ
  2. » Giáo án - Bài giảng

Đề ôn thi tuyển sinh lớp 10

5 949 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 115,5 KB

Nội dung

Gọi H là trung điểm đoạn OB, trên đường thẳng d vuông góc với OB tại H, lấy một điểm P ở ngoài đường tròn, PA, PB theo thứ tự cắt đường tròn O tại C và D.. b Chứng minh tứ giác BHQD nội

Trang 1

DẠNG 1: RÚT GỌN

Bài 1: Cho biểu thức

P = 1

1

:

a

a a

  ( a> 0, a ≠ 1) a) Rút gọn P; b) Tính giá trị của P khi a = 1

4 Bài 2: Cho biểu thức

    ( a> 0, a ≠ 1)

a) Rút gọn P; b) Tính giá trị của a để P = -1

2 Bài 3: Cho biểu thức

a

a a a a a

( a> 0, a ≠ 1) a) Rút gọn P; b) Tìm a để P2 = 8

Bài 4: Cho biểu thức

1

a

     ( a> 0, a ≠ 1)

a) Rút gọn P; b) Tính giá trị của P khi a = 1

4 Bài 5: Cho biểu thức

( a> 0, a ≠ 1, a ≠ 4) a) Rút gọn P; b) Tính giá trị của P khi a = 16 Bài 6: Cho biểu thức

a a

( a> 0, a ≠ 4) a) Rút gọn P; b) Tính giá trị của P khi a = 4

Bài 7: Cho biểu thức P = 1

a a

aa

a) Rút gọn P; b) Tính A với a = 1

4 Bài 8: Cho biểu thức

:

1

a

  ( a> 0, a ≠ 1) a) Rút gọn P; b) Tính giá trị của P khi a = 81 Bài 9: Cho biểu thức

1

a

( a> 0, a ≠ 1)

a) Rút gọn P; b) Tính giá trị của P khi a =16

25

1

a

a) Rút gọn A; b) Tính P với a = 25

Trang 2

DẠNG 2: PHƯƠNG TRÌNH BẬC HAI.

Bài 1: Cho phương trình: x2 - 3x + 1 = 0 Gọi x1, x2 là hai nghiệm phân biệt của phương trình đã cho Tính a) x12+ x22 ; b) x1  x2

Bài 2: Cho phương trình bậc hai đối với x: x2 + 2(m – 1)x – 2m = 0 (1) a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m

b) Tìm m để phương trình (1) có tích hai nghiệm bằng 4, từ đó hãy tính tổng hai nghiệm

Bài 3: Cho phương trình bậc hai ẩn số x:

(m – 1)x2 - 2mx + m + 1 = 0 (1), m là tham số và m ≠ 1

a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m ≠ 1

b) Giải phương trình (1) khi m = 2

Bài 4: Cho phương trình bậc hai ẩn số x: x2 – 2(m + 1)x + m - 4 = 0 (1) a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm phân biệt của phương trình (1) Tìm m để 3(x1 + x2) = 5x1x2

Bài 5: Cho phương trình bậc hai ẩn số x: x2 – 2mx + 2m - 1 = 0 (1)

a) Chứng minh rằng phương trình (1) luôn có nghiệm phân biệt với mọi giá trị của

m

b) Giải phương trình (1) khi m = 2

c) Gọi x1, x2 là hai nghiệm phân biệt của phương trình (1) Đặt A = x12+ x22

Chứng minh A = 4m2 - 4m + 2

Bài 6: Cho phương trình bậc hai ẩn số x: x2 + 4x + m - 1 = 0 (1)

a) Giải phương trình (1) khi m = 0

b) Tìm m để phương trình 1 có nghiệm kép

c) Có giá trị nào của m để phương trình (1) có tổng hai nghiệm bằng bình phương tích hai nghiệm không?

Bài 7: Cho phương trình bậc hai ẩn số x: x2 – (2k – 1)x + 2k - 2 = 0 (1) a) Chứng minh rằng phương trình (1) luôn luôn có nghiệm với mọi k

b) Tính tổng hai nghiệm của phương trình

Bài 8: Cho phương trình bậc hai ẩn số x: x2 - 2(m – 1)x + 2m - 3 = 0 (1) a) Chứng minh rằng phương trình (1) luôn luôn có nghiệm với mọi m

b) Tìm các giá trị của m để phương trình trên có hai nghiệm trái dấu

Bài 9: Cho phương trình bậc hai ẩn số x: x2 + 2(m + 1)x + m2 = 0 (1)

a) Giải phương trình (1) với m = 1

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt

Bài 10: Cho phương trình bậc hai ẩn số x: (m + 1)x2 - 2(m - 1)x + m - 3 = 0

(1)

a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m ≠ 1

b) Giải phương trình (1) với m = 4

c) Tìm các giá trị của m để phương trình (1) có hai nghiệm cùng dấu

DẠNG 3: GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PTRÌNH.

Bài 1: Theo kế hoạch mỗi đội xe cần chuyên chở 120 tấn hàng Đến ngày làm việc

có 2 xe bị hỏng nên các xe còn lại, mỗi xe phải chở thêm 16 tấn hàng để chở hết 120

Trang 3

tấn hàng nói trên Hỏi đội xe có bao nhiêu xe? Biết rằng các xe có cùng trọng tải (TN 01-02)

Bài 2: Một canô chạy xuôi dòng từ bến A đến bến B rồi chạy ngược dòng từ bến B

về bến A mất tổng cộng 4 giờ Tính vận tốc thực của canô( vận tốc canô khi nước yên lặng) , biết rằng khúc sông AB dài 30km và vận tốc của dòng nước là 4km/h (TN 03-04)

Bài 3: Cho mảnh đất hình chữ nhật có diện tích 360m2 Nếu tăng chiều rộng 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi Tính chu vi của mảnh đất lúc ban đầu

Bài 4: Hai vòi nước cùng chảy vào một cái bể không có nước trong 4 giờ 48 phút sẽ đầy bể Nếu mở vòi 1 trong 3 giờ và vòi 2 trong 4 giờ thì được 3

4 bể nước Hỏi mỗi vòi chảy một mình thì trong bao lâu mới đầy bể ?

Bài 5: Một nhóm học sinh tham gia lao động chuyển 105 thùng sách về thư viện của trường Đến buổi lao động có hai bạn bị ốm không tham gia được, vì vậy mỗi bạn phải chuyển thêm 6 thùng nữa mới hết số sách cần chuyển Hỏi số học sinh của nhóm đó?

Bài 6: Cho mảnh đất hình chữ nhật có chiều dài bằng 3

2 chiều rộng và có diện tích bằng 1536m2 Tính chu vi của mảnh đất ấy

Bài 7: Hai xe ô tô khởi hành cùng một lúc từ thành phố A để đi đến thành phố B Hai thành phố cách nhau 312km Xe thứ nhất mỗi giờ chạy nhanh hơn xe thứ hai 4km nên đến sớm hơn xe thứ hai 30 phút Tính vận tốc của mỗi xe

Bài 8: Một người đi xe máy từ A đến B với vận tốc trung bình 30km/h Khi đến B, người đó nghỉ 20 phút rồi quay trở về A với vận tốc trung bình 25km/h Tính quãng đường AB, biết rằng thời gian cả đi lẫn về là 5 giờ 50 phút

Bài 9: Một xe lửa đi từ Huế ra Hà Nội Sau đó 1 giờ 40 phút, một xe lửa khác đi từ

Hà Nội vào Huế với vận tốc lớn hơn vận tốc của xe lửa thứ nhất là 5 km/h Hai xe gặp nhau tại một ga cách Hà Nội 300 km Tìm vận tốc của mỗi xe, giả thiết rằng quãng đường sắt Huế - Hà Nội dài 645 km

Bài 10: Một lớp học có 40 học sinh được sắp xếp ngồi đều nhau trên các ghế băng Nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh Tính số ghế băng lúc đầu

DẠNG 4: HỆ PHƯƠNG TRÌNH HÀM SỐ y = ax + b; y = ax 2

Bài 1: Cho hàm số bậc nhất y = ax + 3

a) Xác định hệ số góc a, biết rằng đồ thị của hàm số đi qua điểm A(2; 6)

b) Vẽ đồ thị của hàm số

Bài 2: Xác định hàm số bậc nhất y = ax + b biết a = 3 và đồ thị hàm số đi qua điểm A(2;2)

Bài 3: Cho hàm số y = 4

3

 x – 4 a) Vẽ đồ thị của hàm số trên

b) Tính góc tạo bởi đường thẳng y = 4

3

 x – 4 và trục Ox( làm tròn đến phút) c) Gọi A, B là giao điểm của đồ thị hàm số với các trục tọa độ Tính chu vi, diện tích tam giác OAB ( với O là gốc tọa độ)

Bài 4: Xác định a, b để đồ thị của hàm số y = ax + b đi qua hai điểm A(2;-2) và B(-1;3)

Trang 4

Bài 5: Cho hàm số y = ax + b Tìm a, b biết rằng đồ thị của hàm số đi qua điểm (2; -1) và cắt trục hoành tại điểm có hoành độ là 3

2 ( Đề TS 2006-2007) Bài 6: Cho Parabol (P): y = -x2 và đường thẳng (d): y = 2x – 3

a) Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ

b) Tìm tọa độ giao điểm của (d) và (P)

Bài 7: Cho hàm số y = 3

2x2 a) Vẽ đồ thị (P) hàm số trên

b) Tìm m để đường thẳng có phương trình y = m + x cắt (P) tại hai điểm phân biệt

Bài 8: Cho Parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x - m + 4

a) Tìm m để (P) cắt (d) tại hai điểm phân biệt

b) Tìm tọa độ giao điểm của (d) và (P) khi m = 1

DẠNG 5: HÌNH HỌC

Bài 1: Cho đường tròn tâm O, đường kính AB = 2R Gọi H là trung điểm đoạn OB, trên đường thẳng (d) vuông góc với OB tại H, lấy một điểm P ở ngoài đường tròn, PA, PB theo thứ tự cắt đường tròn (O) tại C và D Gọi Q là giao điểm của AD và BC.

a) Chứng minh Q là trực tâm của tam giác PAB, từ đó suy ra ba điểm P, Q, H thẳng hàng b) Chứng minh tứ giác BHQD nội tiếp được trong một đường tròn.

c) Chứng minh DA là tia phân giác của góc CDH.

d) Tính độ dài HP theo R khi cho biết S ABC = 2S AQB

Bài 2: Cho đường tròn (O; R) đường kính AB Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm M sao cho AM > R Từ điểm M, kẻ tiếp tuyến tiếp xúc với đường tròn (O) tại N a) Chứng minh tứ giác MAON nội tiếp được trong một đường tròn.

b) Chứng minh BN // OM.

c) Đường thẳng vuông góc với AB ở O cắt tia BN tại P Chứng minh tứ giác OBPM là hình bình hành.

d) Biết AP cắt OM tại K; MN cắt OP tại J; MP và ON kéo dài cắt nhau tại I Chứng minh ba điểm I, J, K thẳng hàng.

Bài 3: Cho đường tròn (O; R) và đường thẳng d cắt đường tròn tại hai điểm A, B (d không qua tâm O) Từ một điểm M thuộc đường thẳng d và ở ngoài đường tròn đã cho kẻ các tiếp tuyến MN và MP với đường tròn (N, P là các tiếp điểm).

a) Chứng minh tứ giác ONMP nội tiếp Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.

b) Gọi K là trung điểm của dây AB Chứng minh NIK cân.

Bài 4: Cho tam giác vuông cân ABC vuông tại C có độ dài CA = CB = a, E là một điểm tùy

ý trên cạnh BC( không trùng B, C) Qua B kẻ một tia vuông góc với tia AE tại H và cắt tia

AC tại K.

a) Chứng minh tứ giác BHCA nội tiếp.

b) Xác định tâm đường tròn và tính bán kính đường tròn ngoại tiếp tứ giác BHCA theo a.

c)Chứng minh CKH > CHK.

d) Khi E di chuyển trên BC, chứng minh BE.BC + AE.AH không đổi.

Bài 5: Cho hình vuông ABCD, điểm E thuộc cạnh BC Qua B kẻ đường thẳng vuông góc với DE, đường thẳng này cắt các đường thẳng DE và DC theo thứ tự ở H và K.

a) Chứng minh tứ giác BHCD nội tiếp Xác định tâm I của đường tròn ngoại tiếp tứ giác trên.

b) Tính góc CHK

Trang 5

c) Chứng minh KC.KD = KH.KB

d) Khi điểm E di chuyển trên cạnh BC thì điểm H di chuyển trên đường nào?

Bài 6: Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B Đường tròn đường kính BD cắt BC tại E Các đường thẳng CD, AE lần lượt cắt đường tròn tại các điểm thứ hai F, G Chứng minh:

a) Tam giác ABC đồng dạng với tam giác EBD.

b) Tứ giác ADEC và AFBC nội tiếp được.

c) AC // EF.

d) Các đường thẳng AC, DE, BF đồng quy.

Bài 7: Cho nửa đường tròn tâm O đườn kính AB Từ A và B kẻ hai tiếp tuyến Ax và By Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax và By lần lượt tại E và F.

a) Chứng minh AEMO là tứ giác nội tiếp.

b) AM cắt OE tại P, BM cắt Ò tại Q Tứ giác MPOQ là hình gì? Vì sao?

Bài 8: Cho đường tròn tâm O đường kính AB Trên đường tròn lấy điểm D khác A và B Trên đường kính AB lấy điểm C và kẻ CH  AD tại H Đường phân giác trong của góc DAB cắt đường tròn tại E và cắt CH tại F, đường thẳng DF cắt đường tròn tại N Chứng minh rằng:

a) ANF = ACF.

b) Tứ giác ANCF nội tiếp.

c) Ba điểm C, N, E thẳng hàng.

Ngày đăng: 28/07/2013, 01:26

TỪ KHÓA LIÊN QUAN

w