Chapter 03_Stochastic Regression Model tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả cá...
Advanced Econometrics Chapter 3: Stochastic Regression Model Chapter STOCHASTIC REGRESSION MODEL I CONSISTENCY: Definition: • Let θˆn be a random variable If for any ∀ε > we have lim{θˆn − θ > 0} = then θ is probability limit of θˆn • If θˆn is an estimator for θ , then θˆn is said a consistent estimator of θ p lim θˆn = θ notation: n→∞ f (θˆ100 ) f (θˆn ) f (θˆ50 ) f (θˆ10 ) θ Note: A sufficient condition for this to hold is if Bias ( θˆn ) → θ and Var( θˆn ) → θ when n → ∞ Cramer Theorem: (ii ) lim Var (θˆn ) = 0 n→∞ (i ) lim E (θˆn ) = θ If: n→∞ Nam T Hoang University of New England - Australia then p lim θˆn = θ n→∞ University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model xi ~ N ( µ , σ ) i = 1,2,3, n sample size Example: σ2 n Var ( X ) = Get X = ∑ xi → n n i =1 E ( X ) = µ lim Var ( X ) = n → ∞ So then X is a consistent estimator of µ: p lim ( X ) = µ n→∞ E( X ) = nlim Note: If an estimator is "inconsistent", then it is a useless estimator (unreliable) • There are many situations where OLS estimator is inconsistent Need to be clear with this Slutsky Theorem: Let F() be a continuous function, then: p lim F (θˆ1,n , θˆ2,n , , θˆk ,n ) = F [ p lim (θˆ1,n ), p lim (θˆ2,n ), , p lim (θˆk ,n )] n→∞ EX: if p lim(θˆn ) = C n→∞ → n→∞ n→∞ p lim[F (θˆn )] = F (C ) p lim[1 / θˆn ] = / C p lim[θˆn ] = C p lim[exp(θˆn ) = e C p lim(θˆ1,n θˆ1,n ) = p lim(θˆ1,n ) p lim(θˆ2,n ) A and B are stochastic matrices: p lim( AB ) = p lim( A) p lim( B ) also p lim( A−1 ) = ( p lim A) −1 if A is non-singular Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model II CLASSICAL STOCHASTIC REGRESSION MODEL: Now, consider the LS model, first under our standard assumption However, we will relax some of them • Don't need normality • X can be random, just assume that {xi, εi} is a random & independent sequence Model: (1) Y = X β + ε n ×k (2) X and ε are generated independently of each other and Rank ( X ) = k (3) E(ε|X) = (4) E(εε'|X) = σ2I (5) X consists of stationary random variables with: E X i X i′ = Σ XX n ×k 1×k and 1 n p lim( XX ′ ) = p lim ∑ X i X i′ = E ( X i X i′) = Σ XX n n i =1 (Because X now is random) 1 x i2 Stationary random variable: Xi = xi xik First and second moments are constants: E X i = µ x X i k ×1 k ×1 k ×1 : the ith row of X k ×1 = ith observation on all k variables Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model 1 x i2 VarCov( X i ) = VarCov xi = E [( X i − µ X )( X i − µ X )'] = matrix of constants k ×1 1× k xik Σ XX = population 2nd moment matrix X ' X = sample 2nd moment matrix n Recall: ∑X ∑X n ∑ X i2 X'X = ∑ X ik → ∑X ∑X ∑X i2 2i i2 ∑X ∑X ik ∑X ∑X ∑X i3 i3 ik i2 i2 ∑X ∑X ik i3 ∑X ik ik n X ' X = ∑ X i X i′ i =1 Unbiasedness of βˆOLS : ′X ) −1 X ′ε βˆ = β + ( X ( βˆ = ( X ′X ) −1 X ′Y ) random → ˆ / X )] E ( βˆ ) = E X [ E ( β (law of iterated expectation) ↓ expectation of βˆ conditional on X E X : Expectation over value of X Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model E ( βˆ X = X ) E ( βˆ X = X ) → E ( βˆ ) E ( βˆ X = X ) E ( βˆ ) = E X [ E{β + ( X ′X ) −1 X ′ε X }] = E X [ β + E{( X ′X ) −1 X ′ε X }] = E X [ β + E{( X ′X ) −1 X ′ X }.E (ε X )] (by assumption 2: X & ε are independent) = E X [ β + ( X ′X ) −1 X ′.0] = β + E X (0)] = β VarCov of βˆOLS : ′ VarCov ( βˆ ) = E[( βˆ − E ( βˆ ))( βˆ − E ( βˆ )) ] β β = E[( X ′X ) −1 X ′εε ′X ( X ′X ) −1 ] = E X [ E{( X ′X ) −1 X ′εε ′X ( X ′X ) −1 X }] = E X [ E{( X ′X ) −1 X ′ X }E (εε ′ X }E{ X ( X ′X ) −1 X }] = E X [( X ′X ) −1 X ′σ ε2 I X ' ( X ′X ) −1 ] = E X ( X ′X ) −1 σ ε2 I Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model Consistency of βˆOLS : X ' X −1 X ' ε ˆ p lim β = β + p lim n n X'X Note: βˆ = β + ( X ′X ) −1 X ′ε = β + n −1 X 'ε n −1 1 X 'ε p lim βˆ = β + p lim X ' X p lim (by Slutsky theorem: plimf(x) = f(plimx)) n n X 'ε p lim βˆ = β + Σ −XX1 p lim n 1 X'X Note: E ( X i X i′) = Σ XX = p lim X i X i′ = p lim n n Apply the Cramer theorem to (i) X 'ε n 1 lim E X ' ε = n n→∞ 1 1 Because: E X ' ε = E X E X ' ε X n n 1 = E X E X ' X E (ε X ) n 1 = E X X '.0 = k ×1 n 1 (ii) lim CovVar X ' ε n→∞ n 1 1 = lim E X ' εε ' X n→∞ n n 1 = lim E X E (X ' εε ' X X ) n→∞ n 1 = lim E X (X ' σ ε2 IX ) n→∞ n Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model σ2 = lim E X ( X ' X ) ε2 n→∞ n X ' X σ ε2 = lim E X × n→∞ n n 1 n n 1 ′ ′ E X ( X i X i ) = n.Σ XX = Σ XX Note: E XX ' = E X ∑ X i X i = ∑ n n n i =1 n i =1 Σ XX X ' X σ ε2 Then: lim E X × = lim σ Σ XX = n → ∞ n→∞ n n n We have: 1 E X 'ε = nlim →∞ n lim VarCov X ' ε = n → ∞ n 1 → p lim X ' ε = (Cramer's Theorem) n X 'ε → p lim βˆ = β + Σ −XX1 p lim n = β + Σ −XX1 = β → βˆ is a consistent estimator of III LIMITING DISTRIBUTIONS AND ASYMPTOTIC DISTRIBUTIONS: Definition: Let zn be a random variable with probability distribution F(zn) and let z be another random variable with probability distribution F(z) If Fn(zn) converges to F(z) then F(z) is the limiting distribution of Fn(zn) Converges means: lim Fn ( z n ) − F ( z ) = n→∞ Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model d → F ( z) Notation Fn ( z ) d d zn → z or equivalently write: z n → F (z ) d Example: t[ r ] → N (0,1) Central limit theorem: If X1, X2, Xn is a random sample from some distribution with mean µ, variance σ2 Then: d n ( X − µ) → N (0, σ ) Proposition: Let wn be a random variable with plimwn = w and zn has limiting distribution of F(z) Then the limiting distribution of wnzn is equal to w.F(z) = plimwn.F(z) The asymptotic distribution of X is defined in terms of the limiting distribution of a related random variable n ( X − µ ) , which has a non-degenerate limiting distribution d n ( X − µ) → N (0, σ ) σ2 is the asymptotic distribution of ( X − µ ) → N 0, ( X − µ) n d a σ2 → X ~ N µ , n IV ASYMPTOTIC DISTRIBUTION OF βˆ Recall: βˆ = β + ( X ′X ) −1 X ′ε E ( βˆ ) = β p lim(βˆ ) = β → consistency VarCov ( βˆ ) = σ ε2 E X ( X ' X ) −1 E( X 'ε ) = Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model VarCov ( βˆ ) = σ ε2 E X ( X ' X ) −1 1 E X ' εε ' X = σ ε2 Σ XX n Recall: d n ( X − µ) → N (0, σ ) a σ2 → X ~ N µ , n d n (θˆn − θ ) → N( , Q ) a → θˆn ~ N θ , Q where Q : asyVarCov θˆn n n k ×1 k × k ( ) For βˆ : −1 1 1 n ( βˆ − β ) = X ' X X ' ε n = n n p lim Σ −XX Because: E X ' ε = (E(X'ε) = n 1 2 E X ' εε ' X = σ ε IE X ' X = σ ε Σ XX n n n Then by the central limit theorem: 1 n X ' ε ~ N ( , σ ε2 Σ XX ) k ×1 k ×k n n → X ' ε is a random sample from some distribution with mean & variance σ ε2 Σ XX k ×k n i =1 n Consider: X ' ε = ∑ wi → i =1 X 2i wi = Xiεi = X 3i ε i X ki → E ( wi ) = E ( X i ε i ) = E X ( X i ) E (ε i X i ) = µX Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model VarCov( wi ) = E ( X i ε i ε i X i′) = σ ε2 E ( X ' X ) = σ ε2 Σ XX Then by the central limit theorem: 1 n n ∑ wi − ~ N ( , σ ε2 Σ XX ) k × k ×1 k ×k n i =1 1 n X 'ε = n −1 1 1 n ( βˆ − β ) = X ' X X ' ε n n n Then: d → Σ −XX1 N ( , σ ε2 Σ XX ) k ×1 k ×k d N ( , Σ −XX1 Σ XX Σ −XX1 ' σ ε2 ) → k ×1 ( Σ XX symmetric) I Note: Z ~ N (0, Σ XX ) W = cZ → w ~ N (0, cΣ XX c' ) Σ XX symmetric µγ → ( β + µ X γ ) d N (0, Σ −XX1 σ ε2 ) n ( βˆ − β ) → So: a βˆ ~ N ( β , Σ −XX1 σ ε2 n ) asyVarCov ( βˆ ) Σ −1 XX −1 1 σε = p lim X ' X n n n σ ε2 = n p lim( X ' X ) −1 σ ε2 = E ( X ' X ) σ ε2 n Note: Σ XX = E X ( X i X i′) n n n E ( X ' X ) = E ∑ X i X i′ = ∑ E ( X i X i′) = ∑ Σ XX = n Σ XX k ×k i =1 i =1 i =1 VarCov( wi ) = E ( X ' X ) −1 σ ε2 = σ ε2 [nΣ XX ]−1 = Σ −XX1 Nam T Hoang University of New England - Australia 10 σ ε2 n University of Economics - HCMC - Vietnam Advanced Econometrics Remember: Σ XX = E ( X i X i′) = E ( X ' X ) Chapter 3: Stochastic Regression Model n → E ( X ' X ) = nΣ XX → The more observations we have, the smaller variance of βˆ are Nam T Hoang University of New England - Australia 11 University of Economics - HCMC - Vietnam ... Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model II CLASSICAL STOCHASTIC REGRESSION MODEL: Now, consider the LS model, first under our standard assumption However,...Advanced Econometrics Chapter 3: Stochastic Regression Model xi ~ N ( µ , σ ) i = 1,2,3, n sample size Example: σ2 n Var ( X ) = Get... England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model 1 x i2 VarCov( X i ) = VarCov xi = E [( X i − µ X )( X i −