1. Trang chủ
  2. » Thể loại khác

Chapter 03_Stochastic Regression Model

11 56 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 139,68 KB

Nội dung

Chapter 03_Stochastic Regression Model tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả cá...

Advanced Econometrics Chapter 3: Stochastic Regression Model Chapter STOCHASTIC REGRESSION MODEL I CONSISTENCY: Definition: • Let θˆn be a random variable If for any ∀ε > we have lim{θˆn − θ > 0} = then θ is probability limit of θˆn • If θˆn is an estimator for θ , then θˆn is said a consistent estimator of θ p lim θˆn = θ notation: n→∞ f (θˆ100 ) f (θˆn ) f (θˆ50 ) f (θˆ10 ) θ Note: A sufficient condition for this to hold is if Bias ( θˆn ) → θ and Var( θˆn ) → θ when n → ∞ Cramer Theorem:    (ii ) lim Var (θˆn ) = 0 n→∞  (i ) lim E (θˆn ) = θ If: n→∞ Nam T Hoang University of New England - Australia then p lim θˆn = θ n→∞ University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model xi ~ N ( µ , σ ) i = 1,2,3, n sample size Example:  σ2 n Var ( X ) = Get X = ∑ xi →  n n i =1 E ( X ) = µ   lim Var ( X ) = n → ∞ So  then X is a consistent estimator of µ: p lim ( X ) = µ n→∞ E( X ) = nlim Note: If an estimator is "inconsistent", then it is a useless estimator (unreliable) • There are many situations where OLS estimator is inconsistent Need to be clear with this Slutsky Theorem: Let F() be a continuous function, then: p lim F (θˆ1,n , θˆ2,n , , θˆk ,n ) = F [ p lim (θˆ1,n ), p lim (θˆ2,n ), , p lim (θˆk ,n )] n→∞ EX: if p lim(θˆn ) = C n→∞ → n→∞ n→∞ p lim[F (θˆn )] = F (C ) p lim[1 / θˆn ] = / C p lim[θˆn ] = C p lim[exp(θˆn ) = e C p lim(θˆ1,n θˆ1,n ) = p lim(θˆ1,n ) p lim(θˆ2,n ) A and B are stochastic matrices: p lim( AB ) = p lim( A) p lim( B ) also p lim( A−1 ) = ( p lim A) −1 if A is non-singular Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model II CLASSICAL STOCHASTIC REGRESSION MODEL: Now, consider the LS model, first under our standard assumption However, we will relax some of them • Don't need normality • X can be random, just assume that {xi, εi} is a random & independent sequence Model: (1) Y = X β + ε n ×k (2) X and ε are generated independently of each other and Rank ( X ) = k (3) E(ε|X) = (4) E(εε'|X) = σ2I (5) X consists of stationary random variables with: E  X i X i′  = Σ XX  n ×k 1×k  and 1 n p lim( XX ′ ) = p lim ∑ X i X i′ = E ( X i X i′) = Σ XX n n i =1 (Because X now is random) 1  x   i2  Stationary random variable: Xi =  xi       xik  First and second moments are constants: E  X i  = µ x X i  k ×1  k ×1 k ×1 : the ith row of X k ×1 = ith observation on all k variables Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model 1  x   i2  VarCov( X i ) = VarCov  xi  = E [( X i − µ X )( X i − µ X )'] = matrix of constants     k ×1 1× k     xik  Σ XX = population 2nd moment matrix X ' X = sample 2nd moment matrix n Recall: ∑X ∑X  n  ∑ X i2 X'X =      ∑ X ik → ∑X ∑X ∑X i2 2i i2  ∑X ∑X ik ∑X ∑X ∑X i3 i3 ik i2  i2 ∑X ∑X ik  i3 ∑X ik   ik     n X ' X = ∑ X i X i′ i =1 Unbiasedness of βˆOLS : ′X ) −1 X ′ε βˆ = β + ( X  ( βˆ = ( X ′X ) −1 X ′Y ) random → ˆ / X )] E ( βˆ ) = E X [  E ( β   (law of iterated expectation) ↓ expectation of βˆ conditional on X E X : Expectation over value of X Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model E ( βˆ X = X ) E ( βˆ X = X ) → E ( βˆ ) E ( βˆ X = X ) E ( βˆ ) = E X [ E{β + ( X ′X ) −1 X ′ε X }] = E X [ β + E{( X ′X ) −1 X ′ε X }] = E X [ β + E{( X ′X ) −1 X ′ X }.E (ε X )] (by assumption 2: X & ε are independent)  = E X [ β + ( X ′X ) −1 X ′.0] = β + E X (0)] = β VarCov of βˆOLS : ′ VarCov ( βˆ ) = E[( βˆ − E ( βˆ ))( βˆ − E ( βˆ )) ]   β β = E[( X ′X ) −1 X ′εε ′X ( X ′X ) −1 ] = E X [ E{( X ′X ) −1 X ′εε ′X ( X ′X ) −1 X }] = E X [ E{( X ′X ) −1 X ′ X }E (εε ′ X }E{ X ( X ′X ) −1 X }] = E X [( X ′X ) −1 X ′σ ε2 I X ' ( X ′X ) −1 ] = E X ( X ′X ) −1 σ ε2 I Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model Consistency of βˆOLS :   X ' X  −1 X ' ε  ˆ p lim β = β + p lim    n   n   X'X  Note: βˆ = β + ( X ′X ) −1 X ′ε = β +    n  −1 X 'ε n −1 1   X 'ε  p lim βˆ = β + p lim X ' X  p lim  (by Slutsky theorem: plimf(x) = f(plimx)) n   n   X 'ε  p lim βˆ = β + Σ −XX1 p lim   n  1   X'X  Note: E ( X i X i′) = Σ XX = p lim X i X i′  = p lim  n   n  Apply the Cramer theorem to (i) X 'ε n 1  lim E  X ' ε  = n  n→∞  1 1   Because: E  X ' ε  = E X  E  X ' ε X  n    n  1   = E X  E  X ' X  E (ε X )      n   1 = E X  X '.0  =  k ×1 n 1  (ii) lim CovVar  X ' ε  n→∞ n  1 1 = lim E  X ' εε ' X  n→∞ n n 1  = lim E X  E (X ' εε ' X X )  n→∞ n   1  = lim E X (X ' σ ε2 IX )  n→∞ n   Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model  σ2 = lim E X ( X ' X ) ε2  n→∞ n    X ' X σ ε2  = lim E X  ×  n→∞ n   n  1 n   n 1  ′ ′ E X ( X i X i )  = n.Σ XX = Σ XX Note: E  XX '  = E X  ∑ X i X i  = ∑     n  n   n i =1  n  i =1 Σ XX   X ' X σ ε2  Then: lim E X  ×  = lim σ Σ XX = n → ∞ n→∞ n n   n We have:  1  E X 'ε  = nlim  →∞  n    lim VarCov  X ' ε  = n → ∞ n  1  → p lim X ' ε  = (Cramer's Theorem) n   X 'ε  → p lim βˆ = β + Σ −XX1 p lim   n  = β + Σ −XX1 = β → βˆ is a consistent estimator of III LIMITING DISTRIBUTIONS AND ASYMPTOTIC DISTRIBUTIONS: Definition: Let zn be a random variable with probability distribution F(zn) and let z be another random variable with probability distribution F(z) If Fn(zn) converges to F(z) then F(z) is the limiting distribution of Fn(zn) Converges means: lim Fn ( z n ) − F ( z ) = n→∞ Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model d → F ( z) Notation Fn ( z )  d d zn  → z or equivalently write: z n  → F (z ) d Example: t[ r ]  → N (0,1) Central limit theorem: If X1, X2, Xn is a random sample from some distribution with mean µ, variance σ2 Then: d n ( X − µ)  → N (0, σ ) Proposition: Let wn be a random variable with plimwn = w and zn has limiting distribution of F(z) Then the limiting distribution of wnzn is equal to w.F(z) = plimwn.F(z) The asymptotic distribution of X is defined in terms of the limiting distribution of a related random variable n ( X − µ ) , which has a non-degenerate limiting distribution d n ( X − µ)  → N (0, σ )  σ2   is the asymptotic distribution of ( X − µ ) → N  0, ( X − µ)   n  d a  σ2   → X ~ N  µ , n   IV ASYMPTOTIC DISTRIBUTION OF βˆ Recall: βˆ = β + ( X ′X ) −1 X ′ε E ( βˆ ) = β p lim(βˆ ) = β → consistency VarCov ( βˆ ) = σ ε2 E X ( X ' X ) −1 E( X 'ε ) = Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model VarCov ( βˆ ) = σ ε2 E X ( X ' X ) −1 1  E  X ' εε ' X  = σ ε2 Σ XX n  Recall: d n ( X − µ)  → N (0, σ ) a  σ2   → X ~ N  µ , n   d n (θˆn − θ )  → N( , Q ) a   → θˆn ~ N θ , Q  where Q : asyVarCov θˆn n  n  k ×1 k × k ( ) For βˆ : −1 1  1  n ( βˆ − β ) =  X ' X   X ' ε  n = n  n  p lim Σ −XX   Because: E  X ' ε  = (E(X'ε) =  n    1  2 E X ' εε ' X  = σ ε IE  X ' X  = σ ε Σ XX n n   n Then by the central limit theorem: 1  n  X ' ε  ~ N ( , σ ε2 Σ XX ) k ×1 k ×k n  n   →  X ' ε  is a random sample from some distribution with mean & variance σ ε2 Σ XX k ×k  n  i =1 n Consider: X ' ε = ∑ wi → i =1   X   2i  wi = Xiεi =  X 3i ε i       X ki  → E ( wi ) = E ( X i ε i ) = E X ( X i ) E (ε i X i ) =      µX Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model VarCov( wi ) = E ( X i ε i ε i X i′) = σ ε2 E ( X ' X ) = σ ε2 Σ XX Then by the central limit theorem: 1 n  n  ∑ wi −  ~ N ( , σ ε2 Σ XX ) k × k ×1 k ×k  n i =1  1  n  X 'ε  = n  −1 1  1  n ( βˆ − β ) =  X ' X   X ' ε  n n  n  Then: d  → Σ −XX1 N ( , σ ε2 Σ XX ) k ×1 k ×k d N ( , Σ −XX1 Σ XX Σ −XX1 ' σ ε2 )  →   k ×1  ( Σ XX symmetric) I Note: Z ~ N (0, Σ XX ) W = cZ → w ~ N (0, cΣ XX c' ) Σ XX symmetric µγ → ( β + µ X γ ) d N (0, Σ −XX1 σ ε2 ) n ( βˆ − β )  → So: a βˆ ~ N ( β , Σ −XX1 σ ε2 n    ) asyVarCov ( βˆ ) Σ −1 XX −1 1  σε = p lim X ' X  n n  n σ ε2 = n  p lim( X ' X )   −1 σ ε2 = E ( X ' X ) σ ε2 n Note: Σ XX = E X ( X i X i′)  n   n  n E ( X ' X ) = E  ∑ X i X i′  =  ∑ E ( X i X i′)  = ∑ Σ XX = n Σ XX k ×k  i =1   i =1  i =1 VarCov( wi ) = E ( X ' X ) −1 σ ε2 = σ ε2 [nΣ XX ]−1 = Σ −XX1 Nam T Hoang University of New England - Australia 10 σ ε2 n University of Economics - HCMC - Vietnam Advanced Econometrics Remember: Σ XX = E ( X i X i′) = E ( X ' X ) Chapter 3: Stochastic Regression Model n → E ( X ' X ) = nΣ XX → The more observations we have, the smaller variance of βˆ are Nam T Hoang University of New England - Australia 11 University of Economics - HCMC - Vietnam ... Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model II CLASSICAL STOCHASTIC REGRESSION MODEL: Now, consider the LS model, first under our standard assumption However,...Advanced Econometrics Chapter 3: Stochastic Regression Model xi ~ N ( µ , σ ) i = 1,2,3, n sample size Example:  σ2 n Var ( X ) = Get... England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 3: Stochastic Regression Model 1  x   i2  VarCov( X i ) = VarCov  xi  = E [( X i − µ X )( X i −

Ngày đăng: 09/12/2017, 08:37

w