Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
1,12 MB
Nội dung
Chủ đề 1 : NGUYÊN HÀM Tiết 19 : LUYỆN TẬP NGUYÊN HÀM I. Tìm nguyên hàm bằng định nghĩa và các tính chất 1/ Tìm nguyên hàm của các hàm số. 1. f(x) = 2 4 32 x x + ĐS. F(x) = C x x +− 3 3 2 3 2. f(x) = 2 22 )1( x x − ĐS. F(x) = C x x x ++− 1 2 3 3 3. f(x) = 3 21 xx − ĐS. F(x) = Cxx +− 3 2 32 4. f(x) = 2 sin2 2 x ĐS. F(x) = x – sinx + C 5. f(x) = (tanx – cotx) 2 ĐS. F(x) = tanx - cotx – 4x + C 6. 14. f(x) = xx x 22 cos.sin 2cos ĐS. F(x) = - cotx – tanx + C 16. f(x) = 2sin3xcos2x ĐS. F(x) = Cxx +−− cos5cos 5 1 18. f(x) = e x (2 + ) cos 2 x e x − ĐS. F(x) = 2e x + tanx + C 19. f(x) = 2a x + 3 x ĐS. F(x) = C a a xx ++ 3ln 3 ln 2 2 2 f(x) 1 x = - 14/ 2 5 f(x) x 3x 2 = - + 15/ f(x) sin 7x cos 5x cos x= 16/ 2 17x f(x) 10x 13x 3 = + - 2/ Tìm hàm số f(x) biết rằng 2. f’(x) = 2 – x 2 và f(2) = 7/3 ĐS. f(x) = 1 3 2 3 +− x x 3. f’(x) = 4 xx − và f(4) = 0 ĐS. f(x) = 3 40 23 8 2 −− xxx 5. f’(x) = 4x 3 – 3x 2 + 2 và f(-1) = 3 ĐS. f(x) = x 4 – x 3 + 2x + 3 6. f’(x) = ax + 2)1(,4)1(,0)1(', 2 =−== fff x b ĐS. f(x) = 2 51 2 2 ++ x x 5/ 1x2x 1x3x3x )x(f 2 23 ++ −++ = , 3 1 F(1) = Tiết 20 : LUYỆN TẬP CÁC PP TÍNH NGUYÊN HÀM II. MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM 1.Phương pháp đổi biến số. Tính I = ∫ dxxuxuf )(')].([ bằng cách đặt t = u(x) Đặt t = u(x) dxxudt )(' =⇒ I = ∫ ∫ = dttfdxxuxuf )()(')].([ BÀI TẬP Tìm nguyên hàm của các hàm số sau: 1. ∫ + xdxx 72 )12( 6. ∫ + dxxx 243 )5( 7. xdxx .1 2 ∫ + 8. ∫ + dx x x 5 2 9. ∫ + dx x x 3 2 25 3 10. ∫ + 2 )1( xx dx 11. dx x x ∫ 3 ln 12. ∫ + dxex x 1 2 . 13. ∫ xdxxcossin 4 14. ∫ dx x x 5 cos sin 15. ∫ gxdxcot 16. ∫ x tgxdx 2 cos Trang: 1 17. ∫ x dx sin 18. ∫ x dx cos 20. ∫ dx x e x 21. ∫ − 3 x x e dxe 22. ∫ dx x e tgx 2 cos 29. ∫ xdxx 23 sincos 30. dxxx .1 ∫ − 31. ∫ + 1 x e dx 32. dxxx .1 23 ∫ + Tiết 21 : LUYỆN TẬP CÁC PP TÍNH NGUN HÀM II. MỘT SỐ PHƯƠNG PHÁP TÌM NGUN HÀM 2. Phương pháp lấy ngun hàm từng phần. Nếu u(x) , v(x) là hai hàm số có đạo hàm liên tục trên K thì ∫ ∫ −= dxxuxvxvxudxxvxu )(').()().()(').( Hay ∫ ∫ −= vduuvudv ( với du = u’(x)dx, dv = v’(x)dx) Tìm ngun hàm của các hàm số sau: 1. 3. ∫ + xdxx sin)5( 2 4 ∫ ++ xdxxx cos)32( 2 5. ∫ xdxx 2sin 6. ∫ xdxx 2cos 7. ∫ dxex x . 8. ∫ xdxln 9. ∫ xdxxln 10. dxx ∫ 2 ln 11. ∫ x xdxln 12. 13. ∫ dx x x 2 cos 14. 15. ∫ dxxsin 16. ∫ + dxx )1ln( 2 17. ∫ xdxe x cos. 18. ∫ dxex x 2 3 19. ∫ + dxxx )1ln( 2 20. ∫ xdx x 2 21. ∫ xdxx lg 22. ∫ + dxxx )1ln(2 23. ∫ + dx x x 2 )1ln( 24. ∫ xdxx 2cos 2 CHỦ ĐỀ 2 : TÍCH PHÂN VÀ ÚNG DỤNG. Tiết 22 : LUYỆN TẬP CÁC PP TÍNH TÍCH PHÂN DẠNG 1 : Tính tích phân bằng đònh nghóa PP : Biến đổi hàm số dưới dấu tích phân về dạng tổng hiếu các hàm số có nguyên hàm Bài 1 : Tính các tích phân : 1/ dxxx )1( 2 1 0 + ∫ 2/ dxxxx )1( 2 16 1 − ∫ 3/ dx x xx ∫ +− 8 1 3 2 35 4/ dx xx x ∫ − 4 1 3 )1( Bài 2 : Tính các tích phân : 1/ dx x ∫ − 2 1 35 3 2/ dx x x ∫ − − 2 1 21 12 3/ dx x xx ∫ − +− 5 4 2 3 52 4/ dx xx x ∫ +− − 5 4 2 23 32 5/ dx xx ∫ +− 5 4 2 23 1 6/ dx xx x ∫ +− − 4 3 2 23 3 7/ dx xx ∫ +− 5 4 2 96 3 8/ dx xx x ∫ +− − 5 4 2 96 12 9/ dx x x 2 2 1 3 1 ∫ − + 10/ dx x x ∫ + 1 0 2 3 1 Bài 3 : Tính các tích phân : 1/ ∫ 2 0 cos3cos π xdxx 2/ ∫ 2 0 sin2sin π xdxx 3/ ∫ 2 0 3sincos π xdxx 4/ ∫ 2 0 5cos2sin π xdxx Trang: 2 5/ ∫ 2 0 4 cos π xdx 6/ ∫ 3 6 22 cossin 1 π π dx xx 7/ ∫ 3 6 22 cossin 2cos π π dx xx x 8/ dx x e e x x ) cos 3( 4 0 2 ∫ − + π DẠNG 2 : Phương pháp đổi biến dạng 2 * p dụng cho những tích phân có dạng ∫ b a dxxuxuf )(')].([ ( trong đó u(x) là hàm số biến x) *Phương pháp: + Đặt t = u(x) ⇒ dt = u’(x)dx + Đổi cận : Khi x = a ⇒ t = u(a), khi x = b ⇒ t= u(b) + Thay thế : Khi đó ∫ b a dxxuxuf )(')].([ = ∫ )( )( )( bu au dttf *Chú ý : Thường đặt u là căn, mũ, mẫu, mập. Bài 1 :Tính các tích phân : 1/ ∫ + 8 3 1 dx x x 2/ ∫ + 1 0 815 1 dxxx 3/ ∫ + 1 0 1 dx x x 4/ ∫ − 2ln 0 1dxe x 5/ ∫ + 2 1 2 1 xx dx 6/ ∫ − 2 3 21 2 1 xx dx Bài 2 : Tính các tích phân : 1/ xdxe x ∫ +− 1 0 2 2 2/ xdxe x cos 2 0 sin21 ∫ + π 3/ dxee xe x ∫ 1 0 4/ ∫ e x x dxe 1 ln 5/ dx x e tgx ∫ 2 0 2 cos π 6/ dx x e tgx ∫ 2 0 2 cos π Bài 3 :Tính các tích phân : 1/ dx x x ∫ + 2 0 cos21 sin π 2/ dx xx e e ∫ 2 ln 1 3/ ∫ 1 0 sin dxee xx 4/ ∫ − + 1 0 dx ee e xx x 5/ ∫ + 27 1 3 )1( dx xx dx 6/ ∫ π 0 4 cos xdx 7/ ∫ − −− 1 1 2 )1112( dxxx 8/ ∫ 2 6 3 sin cos π x dx x x 9/ ∫ − 2ln2 2ln 1 x e dx 10/ ∫ + 2 0 33 3 cossin sin π dx xx x 11/ ∫ + dx xx x 33 3 cossin cos 12/ ∫ − + 2ln 0 xx ee dx Tiết 23 : LUYỆN TẬP CÁC PP TÍNH TÍCH PHÂN DẠNG 3 : Phương pháp tích phân từng phần * p dụng cho những tích phân có dạng ∫ b a dxxvxu )(').( ( trong đó u(x), v’(x) là những hàm số biến x) *Phương pháp: + Đặt = = dxxvdv xuu )(' )( ta có = = )( )(' xvv dxxudu Trang: 3 Khi đó ∫ b a dxxvxu )(').( = b a xvxu )()( - ∫ b a dxxvxu )().(' *Chú ý : - Đặt u theo thứ tự ưu tiên : Logarit(lôcNêpe), đa thức, … . - Sau khi đặt u, toàn bộ phần còn lại là dv Bài tập : Tính các tích phân sau : 1/ ∫ 2 0 cos π xdxe x 2/ ∫ 2 4 2 sin π π dx x x 3/ ∫ π 0 2 cos sin dx x xx 4/ ∫ + 1 0 2 )1ln( dxxx 5/ ∫ e dxx 0 2 )(ln 6/ ∫ + + 2 6 cos1 sin π π dx x xx 7/ ∫ 2 0 2 sin π xdxx 8/ ∫ − e dxx 1 2 )ln1( 9/ ∫ e e dxx 1 ln 10/ ∫ 2 0 sin π xdxe x 11/ ∫ + 1 0 )1ln( dxxx 12/ dx x x e e ∫ − 2 ln 1 ln 1 2 DẠNG 3 : Phương pháp đổi biến dạng 1 * p dụng cho những tích phân có chứa các biểu thức 22 xa − , 22 1 xa + mà không thể tính bằng các phương đã học . *Phương pháp: + Đặt biến mới -Dạng chứa 22 xa − : Đặt x = asint, t −∈ 2 ; 2 ππ - Dạng chứa 22 1 xa + : Đặt x = atant, t −∈ 2 ; 2 ππ + Các bước tiếp theo : đổi cận, thay thế tương tự như phương pháp đổi biến dạng 2 Bài tập : Tính các tích phân sau : 1/ ∫ − a dxxax 0 222 ( a > 0 ) 2/ dx x x ∫ − 1 22 2 2 1 3/ ∫ − e xx dx 1 2 ln4 4/ dxxx ∫ ++− 1 0 2 32 5/ ∫ + 3 0 2 9 1 dx x 6/ ∫ − ++ 1 1 2 52 1 dx xx 7/ ∫ − 3 1 22 4 1 dx xx 8/ ∫ − 1 0 22 1 dxxx 9/ ∫ + 2 1 22 4 1 dx xx Tiết 24: LUYỆN TẬP TÍCH PHÂN BÀI TOÁN 1: Cho hàm số ( ) y f x= liên tục trên [ ] ;a b . Khi đó diện tích hình phẳng (D) giới hạn bởi: - Đồ thò hàm số ( ) y f x= - Trục Ox : ( 0y = ) - Hai đường thẳng ;x a x b= = Được xác đònh bởi công thức : ( ) b D a S f x dx= ∫ 1) Tính ? D S = , biết D giới hạn bởi đồ thò: 2 2y x x= − , 1, 2x x= − = và trục Ox . 2) Tính ? D S = , biết { } , 0, 1, 2 x D y xe y x x= = = = − = 3) Tính ? D S = với { } 2 4 , 1, 3D y x x x x= = − − = − = − Trang: 4 4) Tính ? D S = , với , 0, , 0 3 D y tgx x x y π = = = = = 5) Tính ? D S = , 2 ln , 0, 1, 2 x D y y x x x = = = = = 6) Tính ? D S = , ln 1, , 0, 2 x D x x e y y x = = = = = 7) Tính ? D S = 2 3 1 , 0, 1, 0 1 x x D y x x y x + + = = = = = + 8) Tính ? D S = , 2 3 sin cos , 0, 0, 2 D y x x y x x π = = = = = BÀI TOÁN 2 : Diện tích hình phẳng giới hạn bởi : + ( ) ( ) 1 :C y f x= , ( ) ( ) 2 :C y g x= + đường thẳng ,x a x b= = Được xác đònh bởi công thức: ( ) ( ) b a S f x g x dx= − ∫ PP giải: B1: Giải phương trình : ( ) ( ) f x g x= tìm nghiệm ( ) 1 2 , , ., ; n x x x a b∈ ( ) 1 2 . n x x x< < < B2: Tính ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 . , ., n n x x b a x x x b a x S f x g x dx f x g x dx f x g x dx f x g x dx f x g x dx = − + − + + − = − + + − ∫ ∫ ∫ ∫ ∫ 1) Tính ? D S = , ( ) { } 5 1 , , 0, 1 x D y x y e x x= = + = = = 2)Tính ? D S = , 2 2 1 1 , , , sin cos 6 3 D y y x x x x π π = = = = = 3) Tính ? D S = , [ ] { } 2 2 sin , 1 cos , 0;D y x y x x π = = + = + ∈ 4) Tìm b sao cho diện tích hình phẳng giới hạn bởi đồ thò ( ) 2 2 : 1 x C y x = + và các đường thẳng 1, 0,y x x b= = = bằng 4 π BÀI TOÁN 3: Hình phẳng (D) giới hạn bởi đồ thò: ( ) ( ) , ,y f x y g x x a= = = . Khi đó diện tích ( ) ( ) ( ) 0 x a S f x g x dx= − ∫ với 0 x là nghiệm duy nhất của phương trình ( ) ( ) f x g x= . 1) Tính ? H S = , với { } , , 1 x x H y e y e x − = = = = 2) Tính ? H S = , { } 2 1 , , 1H y x x Ox x= = + = 3) Tính ? D S = 3 1 , , 1 x D y Ox Oy x − − = = − 4) Tính diện tích hình phẳng giới hạn bởi : 2 ; 3 ; 0 x y y x x= = − = 5) Tính ? H S = , { } , 2 0, 0H x y x y y= = + − = = BÀI TOÁN 4: Tính diện tích hình phẳng ( ) D giới hạn bởi đồ thò hai hàm số: ( ) ( ) ;y f x y g x= = PP giải: B1 : Giải phương trình ( ) ( ) 0f x g x− = có nghiệm 1 2 . n x x x< < < Trang: 5 B2: Ta có diện tích hình ( ) D : ( ) ( ) 1 n x D x S f x g x dx= − ∫ 1) Tính diện tích hình phẳng giới hạn bởi: 2 2y x x= − ; 2 4y x x= − + 2) Tính diện tích hình phẳng giới hạn bởi: 2 2y x x= − + và 3y x= − 3) Tính diện tích hình phẳng giới hạn bởi: 2 2 0y y x− + = và 0x y+ = 4) Tính diện tích hình phẳng giới hạn bởi: 2 5 0y x+ − = và 3 0x y+ − = 5) Tính diện tích hình phẳng giới hạn bởi: 2 4 3y x x= − + và 3y x= + 6) Tính diện tích hình phẳng giới hạn bởi 2 4 4 x y = − và 2 4 2 x y = Tiết 25 :ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH BÀI TOÁN I: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) y f x= ; 0y = ; ( ) ; ;x a x b a b= = < xung quanh trục Ox ”. PP giải: Ta áp dụng công thức ( ) 2 2 b b Ox a a V y dx f x dx π π = = ∫ ∫ Chú ý: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) x f y= ; 0x = ; ( ) ; ;y a y b a b= = < xung quanh trục Oy ”. PP giải: Ta áp dụng công thức ( ) 2 2 b b Oy a a V x dy f y dy π π = = ∫ ∫ 1) Cho hình phẳng D giới hạn bởi : , 0, 0, 3 D y tgx y x x π = = = = = a) Tính diện tích hình phẳng D b) Tính thể tích vật thể tròn xoay sinh ra khi D quay quanh trục Ox 2) Tính thể tích của vật thể tròn xoay sinh ra bởi phép quay xung quanh Oy của hình giới hạn bởi Parabol ( ) 2 : ; 2; 4 2 x P y y y= = = và trục Oy 3) Cho hình phẳng ( ) D giới hạn bởi ( ) 2 : 8P y x= và đường thẳng 2x = . Tính thể tích khối tròn xoay khi lần lượt quay hình phẳng ( ) D quanh trục Ox và trục Oy . BÀI TOÁN II: “Tính thể tích của vật thể tròn xoay khi quay miền D giới hạn bởi các đường: ( ) y f x= ; ( ) y g x= ; ( ) ; ;x a x b a b= = < xung quanh trục Ox ”. PP giải: Ta áp dụng công thức ( ) ( ) 2 2 b Ox a V f x g x dx π = − ∫ 1) Tính thể tích khối tròn xoay khi quay quanh Ox hình phẳng D giới hạn bởi các đường: 2 1 1; 2; ;x x y y x x = = = = 2) Cho hình phẳng D giới hạn bởi 2 2 4 ; 2y x y x= − = + . Quay D xung quanh Ox ta được một vật thể, tính thể tích của vật thể này. BÀI TẬP 1) Tính Ox V biết: { } ln , 0, 1,D y x x y x x e= = = = = 2) Cho D là miền giới hạn bởi đồ thò 2 ; 0; 0; 4 y tg x y x x π = = = = a) Tính diện tích miền phẳng D b) Cho D quay quanh Ox , tính thể tích vật thể tròn xoay được tạo thành. Trang: 6 3) Tính Ox V biết: 3 2 , 3 x D y y x = = = 4) Tính Ox V biết: 4 4 0; 1 sin cos ; 0, 2 D y y x x x x π = = = + + = = 5) Tính Ox V biết: { } 2 5 0; 3 0D x y x y= + − = + − = 6) Tính Ox V biết: { } 2 2 ; 2 4D y x y x= = = + 7) Tính Ox V biết: { } 2 2 4 6; 2 6D y x x y x x= = − + = − − + 8) Tính Ox V biết: { } 2 ;D y x y x= = = CHỦ ĐỀ 3 : PHƯƠNG TRÌNH MẶT CẦU . Tiết 26 : I/ VECTƠ VÀ TỌA ĐỘ TRONG KHÔNG GIAN. Bài 1: Trong không gian Oxyz, cho 3õ vectơ: (2; 5;3); (0;2; 1); (1;7;2)a b c → → → = − = − = . a/ Tính tọa độ của vectơ : x a b c → → → → = − + 4 1 3 3 . b/ Cho biết M(–1;2;3); hãy tìm tọa độ các điểm A, B, C sao cho: ; ;MA a MB b MC c → → → = = = uuur uuur uuuur Bài 2: Tìm tọa độ của vectơ x biết: a/ 0 (1; 2;1)x b khi b → → → → + = = − b/ 2 (5;4; 1); (2; 5;3)x a b khi a b → → → → → + = = − = − c/ 2 (5;6;0); ( 3;4; 1)x a x b khi a b → → → → → → − = + = = − − Bài 3: Cho điểm M có tọa độ (x; y; z). Gọi M 1 , M 2 , M 3 lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy, Oz. Gọi ' 1 M , ' 1 M , M 3 ’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng Oxy, Oyz, Ozx. Tìm tọa độ của các điểm M 1 ’, M 2 ’, M 3 ’. Áp dụng cho M(–1,2,3). Bài 4: Trong không gian Oxyz, cho 3 điểm: A(0; 2; –1); B(1; 1; 3) và C(–1; 2; –2). a/ Tìm tọa độ trọng tâm G của ∆ABC. b/ Tính diện tích ∆ABC. Bài 5: Cho hình hộp ABCD.A’B’C’D’ biết: A(1; 0; 1); B(2; 1; 2); D(1; –1; 1); C’(4; 5; –5). a/ Tìm tọa độ các đỉnh còn lại của hình hộp. b/ Tìm tọa độ tâm của các mặt ABCD và ABB’A’ của hình hộp đó. Bài 6: Cho hai bộ 3 điểm: A(1; 3; 1); B(0; 1; 2); C(0; 0; 1) và A’(1;1;1); B’(–4; 3; 1); C’(–9; 5; 1). Hỏi bộ nào có 3 điểm thẳng hàng ? Bài 7: Cho ∆ABC với A(1; 0; 0), B(0; 0; 1), C(2; 1; 1). a/ Tính các góc của ∆ABC. b/ Tìm tọa độ trong tâm G của ∆ABC. c/ Tính chu vi và diện tích tam giác đó. Bài 8: Tìm điểm M trên trục Oy, biết M cách đều 2 điểm A(3; 1; 0) và B(–2; 4; 1). Bài 9: Trên mặt phẳng Oxz tìm điểm M cách đều 3 điểm A(1; 1; 1), B(–1; 1; 0) và C(3; 1; –1). Tiết27 : PHƯƠNG TRÌNH MẶT CẦU Bài 1 :Trong khơng gian Oxyz lập phương trình mặt cầu (S) biết 1) (S) đi qua diểm M(4;-3;1) và có tâm I(2 ;3 ;-2). 2) (S) có tâm I(5;-3;7) và có bán kính r = 4 3) (S) có tâm I(2;3;5) và đi qua gốc tọa độ . Trang: 7 4) (S) có đường kính AB với A(2;3;5) và B(-1;-4;3). 5) (S) đi qua 4 điểm A(1;0;0) , B(0;-2;0) ,C(0;0;4) , D(0;0;0) Bài 2 : Trong khơng gian Oxyz lập phương trình mặt cầu (S) biết 1. (S) đi qua 4 điểm A(-1;3;4) , B(3;1;5) ,C(-2;1;-2) , D(0;2;3) 2. (S) có tâm I(4;4;-1) và tiếp xúc với mp(Oxy). 3. (S) có tâm I(3;4;-1) và tiếp xúc với mp(Oxz). 4. (S) có tâm I(5;4;-1) và tiếp xúc với mp(Oyz). 5. (S) có tâm thuộc mp(Oyz) và đí qua ba điểm A(2;-1;5) , B(2;1;1) ,C(-3;0;-2) Tiết 28 : PHƯƠNG TRÌNH MẶT CẦU Bài 1 : Trong khơng gian Oxyz xác định tâm và tính bán kính trình mặt cầu (S) có pt 1) 2 2 2 6 2 16 26 0x y z x y z+ + − + − − = 2) 2 2 2 2 2 2 8 4 12 100 0x y z x y z+ + + + − − = Bài 2 : Cho mặt cẩu (S) : 2 2 2 4 2 4 0x y z x y z+ + − + − = 1) Xác định tâm và tính bán kính trình mặt cầu (S). 2) Tìm tọa độ gioa điểm A,B,C khác O của (S) với các trục tọa độ . Tính thể tích tứ diện OABC. Bài 3 : Cho mặt cẩu (S) : 2 2 2 1 0x y z x y z+ + + − + − = 1) CMR : mp(Oxy) cắt mặt cầu (S) theo một dường tròn (C) . 2) Tìm tâm và bán kính của (C). Bài 4 : Cho mặt cẩu (S) : 2 2 2 1 3 0 2 x y z x y z+ + − − + + = 1) CMR: Mặt cầu (S) tiếp xúc với mp (Oyz) .Tìm tọa độ tiếp điểm A 2) CMR : Mặt cầu (S) tiếp xúc với trục Ox tại B .Tìm tọa độ tiếp điểm B Tiết 29 : PHƯƠNG TRÌNH MẶT CẦU Bài 1 : Trong khơng gian Oxyz lập phương trình mặt cầu (S) biết 1) (S) đi qua 3 điểm A(1;3;5) , B(-2;1;0) ,C(4;2;-1) và có tâm thuộc mp (Oxz) 2) (S) có tâm I(3;4;-1) và tiếp xúc với Ox. 3) (S) có tâm I(-3;4;-1) và tiếp xúc với Oz. 4) (S) có tâm I(5;4;-1) và tiếp xúc với mpOy. Bài 2 : Cho mặt cẩu (S) : 2 2 2 2 4 6 3 0x y z x y z+ + − − + − = 1) Tìm giao điểm của (S) với trục Ox. 2) Xét vị trí tương đối của (S) với mp(Oxy). 3) Xác định hình chiếu tâm I của (S) trên các trục tọa độ và mp tọa độ. Bài 3: Cho năm điểm S(-2;2;-3) , A(-2;2;1) ,C(4,0,1) ,D(0;-2;1) 1) Chứng minh rằng : ABCD là hình vng. 2) CMR : SA là đường cao hình chóp S.ABCD. 3) Viết pt mặt cầu ngoại tiếp hình chóp S.ABCD. CHỦ ĐỀ 4 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG -MẶT PHẲNG . Tiết 30+31 I/ MẶT PHẲNG TRONG KHÔNG GIAN. A/ Phương trình của mặt phẳng. Bài 1: Lập phương tổng quát của mp(α) đi qua 3 đ A(2; –5; 1), B(3; 4; –2) C(0; 0; –1). Bài 2: Cho điểm M(2; –1; 3) và mp(α) có p.trình 2x –y + 3z –1 = 0. Lập pt tổng quát của mp(β) đi qua M và song song với mp(α). Bài 3: Hãy lập pt mp(α) đi qua 2 điểm M(7; 2; –3), N(5; 6; –4) và song song vơi trục Oz. Bài 4: Lập pt mp(α) đi qua điểm M(2; –1; 2) và vuông góc với các mp: 2x – z + 1 = 0 và y = 0. Bài 5: Lập pt mp(α) đi qua gốc tọa độ và vuông góc với các mp: 2x – y + 3z – 1 = 0 và x + 2y + z = 0. Bài 6: Lập pt mp(α) đi qua hai điểm A(1; –1; –2) B(3; 1; 1) và vuông góc với mp x – 2y + 3z – 5 = 0. Trang: 8 Bài 8: Tính khoảng cách từ điểm A(7; 3; 4) đến mp(α) có phương trình: 6x – 3y + 2z –13 = 0. Bài 9: Cho mp(α) : 2x – 2y – z – 3 = 0. Lập phương trình mp(β) song song với mp(α) và cách mp(α) một khoảng d = 5. Bài 10: Viết phương trình mặt phẳng trong mỗi trường hợp sau: a/ Đi qua M(1; 3; –2) và vuông góc với trục Oy. b/ Đi qua M(1; 3; –2) và vuông góc với đ.thẳng AB với A(0; 2; –3) và B(1; –4; 1). c/ Đi qua M(1; 3; –2) và song song với mp: 2x – y + 3z + 4 = 0. Bài 11: Cho hai điểm A(2; 3; –4) và B(4; –1; 0). Viết pt mặt phẳng trung trực của đoạn thẳng AB. Bài 12: Cho ∆ABC, với A(–1; 2; 3), B(2; –4; 3) và C(4; 5; 6). Viết phương trình mp(ABC). Bài 13: Viết ptmp đi qua 2điểm P(3; 1; –1) và Q(2; –1; 4) và vuông góc với mp: 2x – y + 3z + 1 = 0. Bài 14: Cho A(2; 3; 4). Hãy viết p.trình mp(P) đi qua các hình chiếu của A trên các trục tọa độ, và p.trình mp(Q) đi qua các hình chiếu của A trên các mặt phẳng tọa độ. Bài 15: Viết p.trình mp qua điểm M(2; –1; 2), ssong với trục Oy và vuông góc với mp: 2x – y + 3z + 4 = 0. Bài 16: Viết phương trình mặt phẳng trong mỗi trường hợp sau: a/ Qua I(–1;–2;–5) và đồng thời ⊥ với hai mp (P): x + 2y –3z +1 = 0 và (Q): 2x – 3y + z + 1 = 0. b/ Qua M(2; –1; 4) và cắt chiều dương các trục tọa độ Ox, Oy, Oz lần lượt tại P, Q, R sao cho : OR = 2OP = 2OQ. c/ Qua giao tuyến của hai mặt phẳng (P): 2x – y –12z – 3 = 0, (Q): 3x + y – 7z – 2 = 0 và vuông góc với mp(R): x + 2y + 5z – 1 = 0. d/ Qua giao tuyến của hai mặt phẳng (P): x + 3y + 5z – 4 = 0, mp(Q): x – y – 2z + 7 = 0 và song song với trục Oy. e/ Là mp trung trực của đoạn thẳng AB với A(2; 1; 0), B(–1; 2; 3). II/ Vò trí tương đối của hai mặt phẳng. Bài 1: Xác đònh m để hai mặt phẳng: Song song với nhau? Trùng nhau? Cắt nhau?vng góc ? a/ (P): 2x –my + 3z –6 + m = 0; (Q): (m+3)x –2y + (5m +1)z–10 = 0 b/ (P): (1– m)x + (m + 2)y + mz + 1 = 0; (Q): 4mx – (7m + 3)y –3(m + 1)z + 2m = 0 Bài 2: Cho 3 mặt phẳng (P): 2x – y + z + 1 = 0; (Q): x + 3y –z + 2 = 0 và (R): –2x + 2y+ 3z + 3 = 0. a/ Chứng minh (P) cắt (Q). b/ Viết p.trình mp(S) qua giao tuyến của hai mp(P), (Q) và qua điểm M(1; 2; 1). c/ Viết p.trình mp(T) qua giao tuyến của hai mp(P), (Q) và song song với mp(R). d/ Viết p.trình mp(U) qua giao tuyến của hai mp(P), (Q) và vuông góc với mp(R). Tiết 32 +33+34 II/ ĐƯỜNG THẲNG TRONG KHÔNG GIAN. Bài 1: 1) Lập phương trình tham số của đường thẳng d đi qua điểm M(2; 0;–3) và nhận (2; 3;5)a → = − làm vectơ chỉ phương. 2) Lập p.trình của đường thẳng d đi qua điểm M(–2; 6; –3) và: Song song với đường thẳng a: x t y t z t = + = − − = − − 1 5 2 2 1 3) Lập p.trình tham số Đi qua hai điểm A(1; 0; –3), B(3, –1; 0). 4) Viết phương trình của đường thẳng d biết: d qua M(4; 3; 1) và // với đ.thẳng:( x = 1 + 2t; y = –3t; z = 3 + 2t). 5) Viết phương trình đường thẳng Đi qua điểm (–2; 1; 0) và vuông góc với mp: x + 2y – 2z = 0 Trang: 9 Bài 2: Cho A(2; 3; 1), B(4; 1; –2), C(6; 3; 7) và D(–5; –4; 8). Viết ptts, chính tắc của: a/ Đường thẳng BM, với M là trọng tâm của ∆ACD. b/ Đường cao AH của tứ diện ABCD. Bài 3: Lập p.trình đường thẳng đi qua điểm (3; 2; 1), vuông góc và cắt đường thẳng: 1 2 4 3 x y z + = = . Bài 4: Lập p.trình đường thẳng đi qua điểm (–4; –5; 3) và cắt cả hai đường thẳng: 1 3 2 3 2 1 x y z+ + − = = − − ; 2 1 1 2 3 5 x y z− + − = = − . Bài 5: Cho đ.thẳng d: 1 1 2 2 1 3 x y z+ − − = = và mp(P): x – y- z – 1 = 0. a/ Tìm ptct của đường thẳng d đi qua điểm M(1; 1; –2), song song với mp(P) và vuông góc với d. b/ Gọi N = d ∩ (P). Tìm điểm K trên d sao cho KM = KN. Bài 6: Cho mp(α) có p.trình: 6x + 2y + 2z + 3 = 0 và mp(β) có p.trình: 3x – 5y – 2z – 1 = 0. a/ Hãy viết p.trình tham số của đ.thẳng d đi qua điểm M(1; 4; 0) và song song với (α) và (β). b/ Lập phương trình của mp(γ) chứa đường thẳng d và đi qua giao tuyến của hai mp (α) và (β). c/ Lập p.trình của mp(P) đi qua M và vuông góc với (α) và (β). Bài 7: Cho mp(α) có phương trình: 2x – 3y + 3z – 17 = 0 và hai điểm A(3; –4; 7), B(–5; –14; 17). a/ Viết p.trình tham số của đ.thẳng d đi qua A và vuông góc với (α). b/ Hãy tìm trên α một điểm M sao cho tổng các khoảng cách từ M đến A và B là bé nhất. Bài 8: Lập phương trình tham số và tổng quát của đương thẳng d: a/ Đi qua điểm M(2; –3; –5) và ⊥ với mp(α): 6x – 3y – 5z + 2 = 0. b/ Đi qua điểm N(1; 4; –2) và // với các mp : 6x + 2y + 2z + 3 = 0 và 3x – 5y – 2z – 1 = 0. Bài 9: Lập phương trình tham số và ptct của đường thẳng d: a/ Đi qua hai điểm A(1; –2; 1), B(3; 1; –1). b/ Đi qua điểm M(1; –1; –3) và ⊥ với mp(α): 2x – 3y + 4z – 5 = 0. Bài 10: Viết ptđt d nằm trong mặt phẳng: y + 2z = 0 và cắt hai đường thẳng: 1 4 x t y t z t = − = = ; 2 4 2 1 x t y t z = − = + = . Bài 12: Cho hai đường thẳng: d: 1 1 2 2 3 1 x y z+ − − = = ; d’: 2 2 1 5 2 x y z− + = = − . a/ CMR: d và d’ chéo nhau. b/ Viết p.trình đường thẳng vuông góc chung của d và d’. Bài 13: Cho 3 đt d 1 : 5 2 14 3 x t y t z t = = − = − ; d 2 : 1 4 2 1 5 x h y h z h = − = + = + ; a/ CMR: d 1 và d 2 chéo nhau. b/ Tìm p.trình hai mp (P) // (P’) và lần lượt đi qua d 1 và d 2 . Bài 14: Chứng minh hai đường thẳng d 1 và d 2 chéo nhau. Lập ptđt d vuông góc và cắt hai đường thẳng đó. a/ d 1 : 7 3 9 1 2 1 x y z− − − = = − ; d 2 : 3 1 1 7 2 3 x y z− − − = = − Trang: 10 [...]... lũy thừa với số mũ thực - Phát biểu được định nghĩa, viết các cơng thức về tính chất của hàm số mũ - Phát biểu được định nghĩa, viết các cơng thức về tính chất của lơgarit, lơgarit thập phân, lơgarit tự nhiên, hàm số lơgarit * Về kỹ năng: Học sinh rèn luyện các kỹ năng sau: - Sử dụng các quy tắc tính lũy thừa và lơgarit để tính các biểu thức, chứng minh các đẳng thức liên quan - Giải phương trình, . )(').( = b a xvxu )()( - ∫ b a dxxvxu )().(' *Chú ý : - Đặt u theo thứ tự ưu tiên : Logarit(lôcNêpe), đa thức, … . - Sau khi đặt u, toàn bộ phần còn. atant, t −∈ 2 ; 2 ππ + Các bước tiếp theo : đổi cận, thay thế tương tự như phương pháp đổi biến dạng 2 Bài tập : Tính các tích phân sau : 1/ ∫ −