Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
15,17 MB
Nội dung
GIẢI TÍCH (CƠ BẢN) Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS TS. Lê Hoàn Hóa Ngày 21 tháng 12 năm 2004 KHÔNGGIAN MÊTRIC (tt) 5 Khônggian mêtric đầy đủ 5.1 Định nghĩa Cho (X, d) là khônggian mêtric và (x n ) n là dãy trong X. Dãy (x n ) n là dãy cơ bản ⇔ ∀ε > 0, ∃n 0 ∈ N : ∀n n 0 , ∀p ∈ N thì d(x n+p , x n ) < ε. Khônggian mêtric (X, d) được gọi là khônggian mêtric đầy đủ nếu mọi dãy cơ bản đều hội tụ. Cho X là tập hợp các hàm số thực liên tục trên [0, 1] với mêtric d(x, y) = max{|x(t)−y(t)| : t ∈ [0, 1]}. Cho (x n ) n định bởi x n (t) = t n , ta có: lim n→∞ x n (t) = 0 nếu 0 t < 1 1 nếu t = 1 Tuy nhiên (x n ) n không phải là dãy cơ bản trong X vì d(x n , x 2n ) = max{t n −t 2n : t ∈ [0, 1]} = 1 4 với mọi n ∈ N. Thí dụ: 1) R n với mêtric d(x, y) = [ n i=1 (x i − y i ) 2 ] 1/2 là khônggian mêtric đầy đủ. 2) X là tập hợp các hàm số thực liên tục trên [a, b] với mêtric d(x, y) = max{|x(t) − y(t)| : t ∈ [a, b]} là khônggian mêtric đầy đủ. 3) l p = {x = (x n ) n : ∞ 1 |x n | p < ∞}, p 1, với mêtric định bởi: với x = (x n ) n , y = (y n ) n trong l p ta định nghĩa d(x, y) = ∞ 1 |x n − y n | p 1/p (l p , d) là khônggian mêtric đầy đủ. 5.2 Định nghĩa Cho (X, d) là khônggian mêtric, D là tập hợp con khác rỗng của X. Với x, y ∈ D đặt d D (x, y) = d(x, y). Khi đó d D là mêtric trên D và (D, d D ) là khônggian mêtric con của (X, d). 8 Giả sử (X, d) là khônggian mêtric đầy đủ và D ⊂ X. Khi đó: D là khônggian mêtric đầy đủ ⇔ D là tập đóng Thật vậy, giả sử (D, d D ) là khônggian mêtric đầy đủ, (x n ) n là dãy trong D, lim n→∞ x n = x. Ta chứng minh x ∈ D. Do (x n ) n là dãy trong (X, d) hội tụ về x nên (x n ) n là dãy cơ bản trong (X, d). Với ε > 0 cho trước, có n 0 ∈ N sao cho với mọi n n 0 và p ∈ N thì d(x n+p , x n ) < ε. Do x n ∈ D, ∀n ∈ N nên d D (x n+p , x n ) = d(x n+p , x n ) < ε. Vậy, (x n ) n là dãy cơ bản trong (D, d D ). Do (D, d D ) là khônggian mêtric đầy đủ nên (x n ) n hội tụ trong (D, d D ) và do giới hạn duy nhất nên lim n→∞ x n = x ∈ D. Vậy D là tập đóng. Ngược lại, giả sử D là tập đóng. Cho (x n ) n là dãy cơ bản trong (D, d D ). Do d D (x n+p , x n ) = d(x n+p , x n ), ∀n, p ∈ N nên (x n ) n cũng là dãy cơ bản trong khônggian mêtric đầy đủ (X, d), vậy hội tụ. Đặt x = lim n→∞ x n . Do D là tập đóng nên x ∈ D. Suy ra lim n→∞ d D (x, x n ) = lim n→∞ d(x, x n ) = 0 hay lim n→∞ x n = x trong (D, d D ). Vậy (D, d D ) là khônggian mêtric đầy đủ. Từ kết quả trên ta có thể thí dụ về khônggian mêtric không đầy đủ. Do R n với mêtric d(x, y) = [ n i=1 (x i − y i ) 2 ] 1/2 là khônggian mêtric đầy đủ, lấy D là một tập hợp con khác rỗng, D không là tập đóng trong R n . Khi đó khônggian mêtric con (D, d D ) không là khônggian mêtric đầy đủ. 5.3 Ánh xạ co Cho (X, d) là khônggian mêtric đầy đủ, f : X → X thỏa mãn điều kiện: có hằng số 0 k < 1 sao cho: d(f(x), f(y)) k d(x, y), ∀x, y ∈ X (f được gọi là ánh xạ co hệ số k) Khi đó có duy nhất x 0 ∈ X sao cho f (x 0 ) = x 0 và lim n→∞ f n (x) = x 0 với mọi x ∈ X. Chứng minh: CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC PHẦN I MỘT SỐ KIẾN THỨC CƠ BẢN THƯỜNG DÙNG TRONG GIẢI TỐN HÌNHHỌCKHƠNGGIAN ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… 10 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHÔNGGIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… 11 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHÔNGGIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… 12 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… 13 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC PHẦN II TỔNG HỢP CÁC BÀI TẬP HÌNHHỌCKHÔNGGIAN TRONG ĐỀ THI ĐẠI HỌC Câu 1.CĐ 2008 Câu 2.CĐ 2009 ……………………………………………………………………………………………… 14 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC Câu 3.CĐ 2010 Câu 4.CĐ 2011 Câu 5.CĐ 2012 Câu 6.CĐ2013 Câu 7.A2002 Câu 8.B2002 Câu 9.D2002 Câu 10.A2003 Câu 11.B2004 ……………………………………………………………………………………………… 15 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ÔN LUYỆN THI ĐẠI HỌC Câu 12.A2006 Câu 13.B2006 Câu 14.D2006 Câu 15.A2007 Câu 16.B2007 Câu 17.D2007 Câu 18.A2008 ……………………………………………………………………………………………… 16 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC Câu 19.B2008 Câu 20.D2008 Câu 21.A2009 Câu 22.B2009 Câu 23.D2009 Câu 24.A2010 Câu 25.B2010 Câu 26.D2010 ……………………………………………………………………………………………… 17 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNHHỌCKHÔNGGIAN – ÔN LUYỆN THI ĐẠI HỌC Câu 27.A2011 Câu 28.B2011 Câu 29.D2011 Câu 30.A2012 Câu 31.B2012 Câu 32.D2012 Câu 33.A2013 Câu 34.B,D 2013 Câu 35 ĐH VINH LẦN 2013 ……………………………………………………………………………………………… 18 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875 – BÁCH KHOA ĐÀ NẴNG 2013 Truy cập : http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNHHỌCKHƠNGGIAN – ƠN LUYỆN THI ĐẠI HỌC Câu 36 ĐH VINH LẦN ...BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH ĐẶNG VĂN CƯỜNG MỘT SỐ TÍNH CHẤT ĐỊA PHƯƠNG VÀ TOÀN CỤC CỦA MẶT ĐỐI CHIỀU HAI TRONG KHÔNGGIAN LORENTZ-MINKOWSKI LUẬN ÁN TIẾN SĨ TOÁNHỌC Nghệ An - 2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH ĐẶNG VĂN CƯỜNG MỘT SỐ TÍNH CHẤT ĐỊA PHƯƠNG VÀ TOÀN CỤC CỦA MẶT ĐỐI CHIỀU HAI TRONG KHÔNGGIAN LORENTZ-MINKOWSKI LUẬN ÁN TIẾN SĨ TOÁNHỌC Chuyên ngành: Hìnhhọc và Tôpô Mã số: 62 46 10 01 NGƯỜI HƯỚNG DẪN KHOA HỌC PGS. TS. ĐOÀN THẾ HIẾU TS. NGUYỄN DUY BÌNH Nghệ An - 2013 i MỤC LỤC Mục lục i Lời cam đoan iii Lời cảm ơn iv Mở đầu 1 1 Lý do chọn đề tài . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Mục đích nghiên cứu . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Đối tượng nghiên cứu . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Phạm vi nghiên cứu . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 Phương pháp nghiên cứu . . . . . . . . . . . . . . . . . . . . . . . . 4 6 Ý nghĩa khoa học và thực tiễn . . . . . . . . . . . . . . . . . . . . . 5 7 Tổng quan và cấu trúc luận án . . . . . . . . . . . . . . . . . . . . . 6 7.1 Tổng quan luận án . . . . . . . . . . . . . . . . . . . . . . . . 6 7.2 Cấu trúc luận án . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chương 1 Kiến thức cơ sở 11 1.1 Khônggian Lorentz-Minkowski . . . . . . . . . . . . . . . . . . . . . 11 1.2 Các độ cong của mặt trong R n+1 1 . . . . . . . . . . . . . . . . . . . . 16 a) Độ cong liên kết với một trường vectơ pháp . . . . . . . . . . 16 b) Elip độ cong . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Kết luận chương 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chương 2 Xây dựng ánh xạ ν-Gauss nhận giá trị trên HS r , trên LS r và tính chất hìnhhọc của mặt ν-rốn 23 2.1 Ánh xạ Gauss nhận giá trị trên HS r và mặt n ± r -rốn . . . . . . . . . 25 a) Ánh xạ n ± r -Gauss . . . . . . . . . . . . . . . . . . . . . . . . . 26 b) Mặt n ∗ r -dẹt đối chiều hai . . . . . . . . . . . . . . . . . . . . . 27 ii c) Mặt n ∗ r -rốn đối chiều hai . . . . . . . . . . . . . . . . . . . . . 30 d) Một số ví dụ mặt ν-rốn trong R 4 1 . . . . . . . . . . . . . . . . 35 2.2 Ánh xạ Gauss nhận giá trị trên LS r và mặt l ± r -rốn . . . . . . . . . . 40 a) Ánh xạ l ± r -Gauss . . . . . . . . . . . . . . . . . . . . . . . . . 40 b) Mặt l ∗ r -rốn đối chiều hai . . . . . . . . . . . . . . . . . . . . . 41 2.3 Mặt rốn đối chiều hai . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Kết luận chương 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Chương 3 Tính chất hìnhhọc của mặt ν-phẳng trong R 4 1 49 3.1 Mối liên hệ giữa mặt ν-rốn và mặt ν-phẳng . . . . . . . . . . . . . . 49 3.2 Tính phẳng của mặt trong khônggian 4-chiều . . . . . . . . . . . . 54 a) Tính phẳng của mặt trong R 4 . . . . . . . . . . . . . . . . . 54 b) Tính phẳng của mặt kiểu khônggian trong R 4 1 . . . . . . . . 58 3.3 Một số ví dụ về mặt ν-phẳng . . . . . . . . . . . . . . . . . . . . . . 62 Kết luận chương 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Chương 4 Mặt kẻ và mặt tròn xoay kiểu khônggian trong R 4 1 68 4.1 Mặt kẻ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Mặt tròn xoay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 a) Mặt tròn xoay kiểu hypebolic . . . . . . . . . . . . . . . . . 73 b) Mặt tròn xoay kiểu eliptic . . . . . . . . . . . . . . . . . . . 79 c) Mặt tròn xoay với kinh tuyến phẳng . . . . . . . . . . . . . 84 Kết luận chương 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Kết luận và kiến nghị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Danh mục các công trình của nghiên cứu sinh liên quan đến luận án . . 90 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Chỉ mục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 iii Lời cam đoan Tôi xin cam đoan đây là công trình nghiên cứu của LỜI MỞ ĐẦU Hiện nay cùng với sự phát triển nhanh chóng của Toán học, nội dung của hìnhhọc vi phân đã mở rộng sang nghiên cứu các đường và mặt trên đa tạp. Đa tạp đã trở thành môi trường nghiên cứu trong nhiều lónh vực Toánhọc hiện đại, chẳng hạn như nghành “giải tích trên đa tạp” nghiên cứu về trường vectơ, dạng vi phân, tích phân,… trên đa tạp khả vi. Mục tiêu cơ bản của đề tài này là trình bày lại khônggian các dạng vi phân trên đa tạp khả vi một cách đầy đủ, ngắn gọn. Nội dung đề tài bao gồm 2 chương: Chương 1: Một số kiến thức chuẩn bò Trong chương này, chúng tôi nhắc lại một số khái niệm cơ sở để làm tiền đề cho việc trình bày những khái niệm ở chương sau,đó là: hàm vectơ, tính liên tục và khả vi của hàm vectơ ,…, trình bày về đa tạp khả vi, ánh xạ khả vi giữa hai đa tạp, khônggian tiếp xúc, phân thớ tiếp xúc, phân thớ đối tiếp xúc và trường vectơ. Chương 2: Dạng vi phân Nội dung của chương này là trình bày các khái niệm : nh xạ đa tuyến tính thay dấu và các tính chất của chúng trên khônggian vectơ đònh chuẩn, các dạng vi phân trên khônggian hữu hạn chiều và trên đa tạp, tích ngoài của các dạng vi phân,không gian các dạng vi phân và một số ví dụ minh hoạ. Để hoàn thành đề tài này, tuy bản thân đã có nhiều nổ lực và cố gắng song trong đề tài không tránh khỏi những sai sót, vì vậy em rất mong nhận được sự góp ý, chỉ bảo của các thầy cô và bạn bè. Em xin chân thành cảm ơn! Đăk Lăk, ngày 18 tháng 5 năm 2007 Sinh viên Trần Thò Mỹ Hạnh LỜI CẢM ƠN Với tình cảm chân thành và lòng biết ơn sâu sắc tôi xin chân thành cảm ơn: Ban Giám hiệu trường Đại học Tây Nguyên, khoa Sư Phạm, bộ môn Toán cùng toàn thể các thầy cô giáo trường Đại học Tây Nguyên đã dạy dỗ và truyền đạt cho tôi những kiến thức quý báu trong suốt quá trình học tập tại trường. Đặc biệt, tôi xin gửi lời cảm ơn sâu sắc đến thầy Nguyễn Văn Bồng, người đã trực tiếp giảng dạy và hướng dẫn tận tình, truyền đạt cho tôi những kiến thức và kinh nghiệm để tôi có thể hoàn thành luận văn này. Cuối cùng, tôi xin gửi lời cảm ơn đến gia đình và tập thể lớp Sư Phạm Toán K03, những người đã giúp đỡ, động viên, tạo mọi điều kiện tốt nhất cho tôi học tập và hoàn thành luận văn cuối khoá. Đăk Lăk, ngày 18 tháng 5 năm 2007 Sinh viên Trần Thò Mỹ Hạnh CHƯƠNG I MỘT SỐ KIẾN THỨC CHUẨN BỊ Trong chương này chúng tôi sẽ trình bày các khái niệm : Hàm vectơ, tính liên tục và khả vi của hàm vectơ…. Nhắc lại một số kiến thức của đa tạp khả vi như: khái niệm bản đồ, Atlas, ánh xạ khả vi giữa hai đa tạp, khái niệm về cung tham số, đường cong, vectơ tiếp xúc. Mô tả cấu trúc của khônggian tiếp xúc và phân thớ tiếp xúc, trên cơ sở đó xây dựng khái niệm về phân thớ đối tiếp xúc, trường vectơ và trường vectơ khả vi trên đa tạp, là kiến thức cơ sở cho việc nghiên cứu các dạng vi phân ở chương II. 1.1. Hàm vectơ. 1.1.1. Đònh nghóa: Cho U là tập mở trong ¡ n , hàm vectơ trên U là ánh xạ f :U → ¡ m x a f(x)= (f 1 (x),….,f m (x)), trong đó x=(x 1 ,x 2 ,….,x n ) f i :U → ¡ x a f i (x) , ∀ i=1,2…m. 1.1.2. Hàm vectơ liên tục. Hàm vectơ f : U ⊂ ¡ n → ¡ m được gọi là liên tục tại x 0 ∈ U nếu ε >0, ∃ δ > 0 : ∀ x ∈ U mà P x – x 0 P < δ thì P f(x) – f(x 0 ) P < ε . Nhận xét: f = (f 1 ,… , f m ) liên tục trên U khi và chỉ khi các f i liên tục trên U, tức là f i liên tục tại mọi x ∈ U, i=1,2,…,m. Nếu hàm f : U ⊂ ¡ n → ¡ m liên tục tại x 0 ∈ U và g : f(U) ⊂ V ⊂ ¡ m → ¡ p liên tục tại f(x 0 ) thì hàm số hợp g.f : U ⊂ ¡ n → ¡ p liên tục tại x 0 . 1.1.3. Hàm vectơ khả vi. Cho U ⊂ ¡ n , hàm vectơ f : U → ¡ m được gọi là khả vi tại a ∈ U nếu tồn tại một ánh xạ tuyến tính λ : ¡ n → ¡ m sao cho 0 ( ) ( ) ( ) lim h f a h f a h h λ → + − −P P P P =0 nh xạ tuyến tính λ được gọi là đạo hàm của f tại a. Ký hiệu: λ = D f(a). Ta gọi hàm f khả vi trên U nếu hàm f khả vi tại mọi điểm a của U và gọi hạng của f tại a là Rank a (f)= Rank(Df(a)). 1.1.4. Hàm khả vi lớp C r . f : U ⊂ ¡ n → ¡ m với U BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Xayyalinh Kolakanh KHÔNGGIAN Lp LUẬN VĂN THẠC SĨ TOÁNHỌC Thành phố Hồ Chí Minh – 2015 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Xayyalinh Korlakanh KHÔNGGIAN Lp Chuyên ngành: Toán Giải Tích Mã số: 60460102 LUẬN VĂN THẠC SĨ TOÁNHỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS.NGUYỄN BÍCH HUY Thành phố Hồ Chí Minh – 2015 LỜI CẢM ƠN Trước hết, xin kính gửi đến Thầy, PGS.TS Nguyễn Bích Huy lời cảm ơn sâu sắc tận tình bảo học tập, thời gian tìm hiểu trình bày hoàn chỉnh luận văn Xin trân trọng cảm ơn quý Thầy Cô giảng dạy khoa toán trường Đại học Sư phạm Thành phố Hồ Chí Minh tận tình truyền đạt kiến thức kinh nghiệm quý báu cho suốt trình học tập trường Xin trân trọng cảm ơn quý Thầy Cô công tác phòng Sau Đại học trường Đại học Sư phạm Thành phố Hồ Chí Minh tạo điều kiện thuận lợi cho hoàn tất chương trình học tập thức luận văn Cuối cùng, xin cảm ơn người thân bạn bè động viên giúp đỡ suốt trình học tập thức luận văn Xayyalinh Korlakanh MỤC LỤC Lời cảm ơn Lời nói đầu Chương KHÔNGGIAN LP THEO MỘT ĐỘ ĐO TỔNG QUÁT P 1.1 Khônggian L .2 1.2 Sự hội tụ tính đầy đủ: .7 1.3 Tập trù mật Tính khả li 10 1.4 Khônggian liên hợp Lp 12 1.5.Tính chất lồi đều: 17 1.6 Một số ánh xạ khônggian Lp 19 Chương KHÔNGGIAN LP THEO ĐỘ ĐO LEBESGUE 22 2.1 Tập trù mật, tính khả li: .22 2.2 Phép chập làm trơn 24 2.3 Tập compact: 31 KẾT LUẬN 34 TÀI LIỆU THAM KHẢO MỞ ĐẦU Các khônggian Lp đóng vai trò quan trọng giải tích ứng dụng Một mặt chúng mô hình mà định lí tổng quát lí thuyết hàm thực, Giải tích hàm, Lí thuyết phương trình vi phân tích phân ứng dụng vào để kiểm tra hiệu định lí tổng quát Mặt khác khônggian Lp lại công cụ hiệu để nghiên cứu Lí thuyết khônggian Sobolev, Lí thuyết phương trình vi phân, Vật lí lượng tử, Lí thuyết xác suất… Trong học phần Độ đo –Tích phân, Giải tích hàm sinh viên chuyên ngành Toán làm quen bước đầu với khônggian Lp Việc tìm hiểu sâu đầy đủ khônggian giúp sinh viên hiểu môn học Độ đo – Tích phân, Giải tích hàm, Topo đại cương mối liên hệ chúng giúp sinh viên làm quen với nghiên cứu khoa học Nội dung luận văn tập trung nghiên cứu đặc trưng khônggian Lp gồm hai chương: Chương Trình bày định nghĩa khônggian Lp (1 ≤ p ≤ ∞ ) theo độ đo tổng quát, số khái niệm tính chất đặc biệt sử dụng chương sau Chương Là trường hợp riêng chương mà ta xét khônggian Lp (1 ≤ p ≤ ∞ ) theo độ đo Lebesgue Chương chủ yếu xây dựng khái niệm tích chập Lp để xếp xỉ hàm Lp hàm trơn điều kiện để tập Lp compact tương đối Chương KHÔNGGIAN LP THEO MỘT ĐỘ ĐO TỔNG QUÁT P 1.1 Khônggian L Định nghĩa 1.1.1 Cho khônggian độ đo (X,F,μ) Ta định nghĩa: i) LP (X,μ)={ f :X→ f đo được, ∫ p d µ < ∞} , ≤ p < ∞ với chuẩn: f X f p = p f ∫ X p g ⇔ f ( x) = g ( x) hkn X Do đó, xét f ∈ Lp cần ta có Trong 𝐿𝑃 ta qui ước f = thể thay giá trị hàm tập có độ đo không f ( x) nÕu x ∈ X\A nÕu x ∈ A,µA=0 Ví dụ f ′ = f với f ′ ( x ) = ii) L∞ ( = X , µ) {f :X → | f đo được, ∃c 0, ∃ 𝑔𝑔 𝐶 (𝑋 ): ‖𝑔 − 𝑓‖ 𝑝 < 𝜀 Bước1: f =1 A (A ∈ F, μ(A) 𝑛 𝑣à |𝑥| < 𝑛�) ���� Với n, Ω 𝑛 phủ hữu hạn wi : Ω n ⊂ wi với 𝐼𝑛 ⊂ 𝐼 hữu hạn i∈I i Đặt J = I n J đếm n Ta có: W = W n n ⊂ W n ⊂ wi hay W = wi n i∈J i∈J Vì f = hkn 𝑤𝑖 nên f = hkn W Nhận xét 2.2.1 i) Nếu 𝑓1 = 𝑓2 hkn Ω supp 𝑓1 = supp 𝑓2 Ta nói giá 𝑓 𝜖 𝐿𝑝 (mà không cần rõ chọn hàm lớp tương đương) 28 ii) Nếu f liên tục Ω ta kiểm chứng dễ dàng định nghĩa trùng với định nghĩa thông thường giá Mệnh đề 2.2.2 Giả sử f ∈ L1 ( n ) , g ∈ Lp ( N ) Khi đó, supp ( f ∗ g ) ⊂ supp f +suppg Chứng ... download tài liệu H T V www.nitropdf.com CHUN ĐỀ HÌNH HỌC KHƠNG GIAN – ƠN LUYỆN THI ĐẠI HỌC PHẦN II TỔNG HỢP CÁC BÀI TẬP HÌNH HỌC KHƠNG GIAN TRONG ĐỀ THI ĐẠI HỌC Câu 1.CĐ 2008 Câu 2.CĐ 2009 ………………………………………………………………………………………………... http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNH HỌC KHÔNG GIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… 10 BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875... http://www.slideshare.net/barackobamahtv để download tài liệu H T V www.nitropdf.com CHUYÊN ĐỀ HÌNH HỌC KHÔNG GIAN – ÔN LUYỆN THI ĐẠI HỌC ……………………………………………………………………………………………… BIÊN SOẠN : HOÀNG THÁI VIỆT – 01695316875