1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

s domain analysis phân tích mạch trong miền s

21 151 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 71,52 KB

Nội dung

phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử

S-Domain Analysis s-Domain Circuit Analysis Time domain (t domain) Linear Circuit Differential equation Complex frequency domain (s domain) Laplace Transform L Laplace Transform L Classical techniques Response waveform Transformed Circuit Algebraic equation Algebraic techniques Inverse Transform L-1 Response transform Kirchhoff’s Laws in s-Domain t domain s domain i2 (t ) Kirchhoff’s current law (KCL) i1 (t ) i3 (t ) i4 (t ) i1 (t ) + i2 (t ) − i3 (t ) + i4 (t ) = I1 ( s ) + I ( s ) − I ( s ) + I ( s ) = + v2 (t ) − Kirchhoff’s voltage law (KVL) − v1 (t ) + v2 (t ) + v3 (t ) = + v4 (t ) − + + + v1 (t ) v3 (t ) v5 (t ) − − − − V1 ( s ) + V2 ( s ) + V3 ( s ) = Signal Sources in s Domain t domain s domain i (t ) + v(t ) v(t ) = vS (t ) i (t ) = depends _ on circuit vS (t ) L V (s ) V ( s ) = VS ( s ) I ( s ) = depends on circuit I (s ) _ + _ i (t ) = iS (t ) v(t ) v(t ) = depends + on circuit VS (s ) _ i (t ) Current Source: Voltage Source: + _ + Voltage Source: I (s ) _ iS (t ) L V (s ) + Current Source: I S (s) I ( s ) = VS ( s ) V ( s ) = depends on circuit Time and s-Domain Element Models Impedance and Voltage Source for Initial Conditions Resistor: vR (t ) = RiR (t ) Inductor: diL (t ) vL (t ) = L dt Capacitor: iR (t ) s-Domain I R (s ) + + vR (t ) R L _ VR (s ) R _ iL (t ) I L (s ) + vL (t ) _ L L iC (t ) + t vC (t ) = ∫ iC (τ )dτ vC (t ) C _ + vC (0) Ls VL (s ) _ _ + I C (s ) L VC (s ) _ VR ( s ) = RI R ( s ) LiL (0) VL ( s ) = LsI L ( s ) − LiL (0) Capacitor: + C Resistor: Inductor: + _ + Time Domain Cs VC ( s ) = I C ( s) + Cs vC (0) vC( ) s s Impedance and Voltage Source for Initial Conditions • Impedance Z(s) Z ( s) = voltage transform current transform with all initial conditions set to zero • Impedance of the three passive elements Z R ( s) = VR ( s ) =R I R (s) VL ( s ) = Ls I L (s) with iL (0) = VC ( s ) = I C ( s ) Cs with vC ( ) = Z L ( s) = Z C (s) = Time and s-Domain Element Models Admittance and Current Source for Initial Conditions Time Domain Resistor: iR (t ) = vR (t ) R Inductor: iR (t ) + + vR (t ) iC (t ) = C dvC (t ) dt R L _ VR (s ) Resistor: R iL (t ) I L (s ) + L VL (s ) Ls _ iC (t ) I C (s ) + vC (t ) _ Inductor: + L + C L VC (s ) _ Cs VR ( s ) R I R (s) = _ t iL (t ) = ∫ vL (τ ) dτ vL (t ) L _ + iL (0) Capacitor: s-Domain I R (s ) I L (s) = i L ( 0) s VL ( s ) + Ls i L( ) s Capacitor: I C ( s ) = CsVC ( s ) − CvC (0) CvC (0) Admittance and Current Source for Initial Conditions • Admittance Y(s) Y ( s) = current transform = voltage transform Z ( s) with all initial conditions set to zero • Admittance of the three passive elements YR ( s ) = I R ( s) = VR ( s ) R YL ( s ) = I L ( s) = VL ( s ) Ls with iL (0) = YC ( s ) = I C ( s) = Cs VC ( s ) with vC( ) = Example: Solve for Current Waveform i(t) R L i (t ) L VA s + VR (s ) − _ + _ + V Au (t ) R I (s ) Ls _ + + VL (s ) LiL (0) _ VA By KVL: − + VR ( s ) + VL ( s ) = s Resistor: VR ( s ) = RI ( s ) Inductor: VL ( s ) = LsI ( s ) − LiL (0) V − A + RI ( s) + LsI ( s) − LiL (0) = s VA L iL (0) + I (s) = s ( s + R L) s + R L VA R VA R i L ( 0) = − + s s+R L s+R L R − t V A V A − RL t Inverse Transform: i (t ) =  − e + iL (0)e L u (t )  R R forced response natural response Series Equivalence and Voltage Division I1 ( s ) I (s ) Rest of Circuit + V1 ( s ) − Z1 + V (s) − V1 ( s ) = Z1 ( s ) I1 ( s ) = Z1 ( s ) I ( s ) + Z2 V2 ( s) I ( s ) − V2 ( s ) = Z ( s ) I ( s ) = Z ( s ) I ( s ) KVL: V ( s ) = V1 ( s ) + V2 ( s ) = ( Z1 ( s ) + Z ( s )) I ( s ) I (s ) Rest of Circuit + V (s) Z EQ − Z EQ = Z1 + Z Z EQ ( s ) = Z1 ( s ) + Z ( s ) V1 ( s) = Z1 ( s ) V (s) Z EQ ( s ) V2 ( s ) = Z (s) V (s) Z EQ ( s) Parallel Equivalence and Current Division I1 ( s ) = Y1 ( s )V ( s ) I (s ) Rest of Circuit + I1 ( s ) I (s) V (s) Y Y2 − I ( s ) = Y2 ( s )V ( s ) KCL: I ( s ) = I1 ( s ) + I ( s ) = (Y1 ( s ) + Y2 ( s ))V ( s ) I (s ) Rest of Circuit + V (s) Y EQ − YEQ = Y1 + Y2 YEQ ( s ) = Y1 ( s ) + Y2 ( s ) I1 ( s ) = Y1 ( s ) I ( s) YEQ ( s ) I (s) = Y2 ( s) I (s) YEQ ( s ) Example: Equivalence Impedance and Admittance A L v1 (t ) R _ + B L A V1 ( s ) B Z EQ ( s ) = Ls + Z EQ1 ( s) = Ls + Ls Z EQ ZR EQ1 Z EQ Inductor current = at t = + capacitor voltage = C v2 (t ) Find equivalent impedance at A and B _ Solve for v2(t) RCs + 1 = + Cs = YEQ1 ( s ) = Z EQ1 ( s ) R R Z EQ1 RLCs + Ls + R + = RCs + 1 V2 ( s ) Z EQ1 ( s ) Cs _ V2 ( s ) = V1 ( s ) Z EQ R = V1 ( s) RCLs + Ls + R R RCs + _ + General Techniques for s-Domain Circuit Analysis • Node Voltage Analysis (in s-domain) – – – – Use Kirchhoff’s Current Law (KCL) Get equations of node voltages Use current sources for initial conditions Voltage source current source • Mesh Current Analysis (in s-domain) – – – – Use Kirchhoff’s Voltage Law (KVL) Get equations of currents in the mesh Use voltage sources for initial conditions Current source voltage source (Works only for “Planar” circuits) Formulating Node-Voltage Equations Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions Step 1: Select a reference node Identify a node voltage at each of the non-reference nodes and a current with every element in the circuit Step 2: Write KCL connection constraints in terms of the element currents at the non-reference nodes Step 3: Use the element admittances and the fundamental property of node voltages to express the element currents in terms of the node voltages Step 4: Substitute the device constraints from Step into the KCL connection constraints from Step and arrange the resulting equations in a standard form Example: Formulating Node-Voltage Equations L iS (t ) R C Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions Step 1: Identify N-1=2 node voltages and a current with each element t domain VA (s ) I ( s) I S (s) Reference node Step 2: Apply KCL at nodes A and B: iL (0) − − I1 ( s ) − I ( s ) = I s Node A : ( ) L S s iL (0) i (0) + I1 ( s ) − I ( s ) = Node B : CvC (0) + L s s Step 3: Express element equations in terms of node Ls VB (s ) voltages I1 ( s ) I ( s ) I1 ( s ) = YL ( s )[VA ( s ) − VB ( s )] = [VA ( s ) − VB ( s )] Ls R Cs CvC (0) I ( s ) = YR ( s)VA ( s ) = GVA ( s) where G = R s domain I ( s ) = YC ( s )VB ( s) = CsVB ( s ) Formulating Node-Voltage Equations (Cont’d) Step 2: Apply KCL at nodes A and B: iL (0) − I1 ( s ) − I ( s ) = Node A : I S ( s ) − s i (0) + I1 ( s ) − I ( s ) = Node B : CvC (0) + L s Step 3: Express element equations in terms of node voltages I1 ( s ) = YL ( s)[VA ( s) − VB ( s)] = [VA ( s ) − VB ( s )] Ls I ( s ) = YR ( s )VA ( s) = GVA ( s ) where G = R I ( s ) = YC ( s )VB ( s ) = CsVB ( s) Step 4: Substitute eqns in Step into eqns in Step and collect common terms to yield node-voltage eqns i (0)     Node A :  G + VA ( s ) −  VB ( s ) = I S ( s ) − L s Ls   Ls   i (0)     Node B : −  VA ( s ) +  + Cs VB ( s) = CvC (0) + L s   Ls  Ls  Solving s-Domain Circuit Equations G + Ls − Ls • Circuit Determinant: ∆( s ) = − Ls Cs + Ls = (G + Ls )(Cs + Ls ) − (1 Ls ) GLCs + Cs + G = Ls Depends on circuit element parameters: L, C, G=1/R, not on driving force and initial conditions • Solve for node A using Cramer’s rule: − Ls I S ( s ) + i L ( 0) s ∆ A ( s) iL (0) s + CvC (0) Cs + Ls = VA ( s ) = ∆(s) ∆(s) ( LCs + 1) I S ( s) − LCsiL (0) + CvC (0) = + GLCs + Cs + G GLCs + Cs + G Zero State when initial condition sources are turned off Zero input when input sources are turned off Solving s-Domain Circuit Eqns (Cont’d) • Solve for node B using Cramer’s rule: G + Ls I S ( s ) − iL (0) s − Ls iL (0) s + CvC (0) ∆ B (s) = ∆( s) ∆( s) I S ( s) GLiL (0) + (GLs + 1)CvC (0) = + GLCs + Cs + G GLCs + Cs + G VB ( s ) = Zero State Zero input Network Functions Network function = Zero - state Response Transform Input Signal Transform • Driving-point function relates the voltage and current at a given pair of terminals called a port V (s) = Z ( s) = I ( s) Y ( s) • Transfer function relates an input and response at different ports in the circuit V (s) TV ( s ) = Voltage Transfer Function = V1 ( s ) I (s) TI ( s ) = Current Transfer Function = V1 I1 ( s ) I ( s) In TY ( s) = Transfer Admittance = V1 ( s) V (s) V1 TZ ( s) = Transfer Impedance = I1 ( s ) _ + _ + In I (s ) + Circuit in the zero-state V (s ) − Circuit Output in the V1 or I1 V or I zero-state 2 Input I2 + V2 − TV (s ) Out I1 TI (s ) In Out I2 TY (s ) + V2 − I1 TZ (s ) Out In Out Calculating Network Functions Z1 V1 ( s ) + Z2 V2 ( s) − I (s) I1 ( s ) Y1 Y2 • Driving-point impedance Z EQ ( s ) = Z1 ( s) + Z ( s ) • Voltage transfer function:   Z (s) V2 ( s ) =  V1 ( s )  Z1 ( s ) + Z ( s )  V (s) Z ( s) TV ( s) = = V1 ( s ) Z1 ( s ) + Z ( s ) • Driving-point admittance YEQ ( s ) = Y1 ( s ) + Y2 ( s) • Voltage transfer function:  Y2 ( s )  I (s) =  Y1 ( s)  Y1 ( s) + Y2 ( s )  I (s) Y2 ( s ) TI ( s ) = = I1 ( s ) Y1 ( s ) + Y2 ( s) _ + Impulse Response and Step Response • Input-output relationship in s-domain Input Y ( s) = T ( s) X ( s) X (s ) • When input signal is an impulse x(t ) = δ (t ) Y ( s) = T ( s) ×1 = T ( s) T(s) Circuit Output Y (s ) – Impulse response equals network function – H(s) = impulse response transform – h(t) = impulse response waveform • When input signal is a step x(t ) = u (t ) – G(s) = step response transform – g(t) = step response waveform T (s) H (s) = G (s) = s s g ( s) = ∫ h(τ )dτ , t (=) means equal almost everywhere, dg (t ) excludes those points at which g(t) h(t )(=) dt has a discontinuity ... YL ( s) [VA ( s) − VB ( s) ] = [VA ( s ) − VB ( s )] Ls I ( s ) = YR ( s )VA ( s) = GVA ( s ) where G = R I ( s ) = YC ( s )VB ( s ) = CsVB ( s) Step 4: Substitute eqns in Step into eqns in Step... conditions • Solve for node A using Cramer s rule: − Ls I S ( s ) + i L ( 0) s ∆ A ( s) iL (0) s + CvC (0) Cs + Ls = VA ( s ) = ∆ (s) ∆ (s) ( LCs + 1) I S ( s) − LCsiL (0) + CvC (0) = + GLCs + Cs +... H (s) = impulse response transform – h(t) = impulse response waveform • When input signal is a step x(t ) = u (t ) – G (s) = step response transform – g(t) = step response waveform T (s) H (s)

Ngày đăng: 03/11/2017, 11:14

TỪ KHÓA LIÊN QUAN

w