de kiem tra 1 tiet toan 11 chuong i 62607 tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả...
ĐỀ A - KIỂM TRA 1 TIẾT TOÁN 11 Bài 1: (2.0 điểm) Tìm hệ số của số hạng chứa 14 x trong khai triển ( ) 10 3 xx + Bài 2: (3.0 điểm) Ba xạ thủ A, B, C độc lập với nhau cùng bắn vào một mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của A, B và C tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để: a) A và B bắn trượt mục tiêu còn C bắn trúng mục tiêu. b) Có ít nhất một xạ thủ bắn trúng mục tiêu. Bài 3: (3.5 điểm) Một thiết bị gồm 3 bộ phận hoạt động độc lập với nhau.Xác suất trong thời gian t các bộ phận bị hỏng tương ứng là: 0,4 ; 0,2 ; 0,3.Gọi X là số bộ phận bị hỏng trong thời gian t a/ Lập bảng phân bố xác suất của X b/ Xác suất để trong thời gian t có không quá 2 bộ phận bị hỏng là bao nhiêu? Bài 4: (1.5 điểm) Trong 1 đề thi gồm 50 câu. Mỗi câu có 5 phương án trả lời và chỉ có 1 phương án đúng. Nếu trả lời đúng thì được 0,2 điểm, nếu trả lời sai thì bị trừ 0,1 điểm. Bạn Tý do không học bài nên làm bài bằng cách chọn ngẫu nhiên 1 phương án trả lời trong mỗi câu. Tính xác suất để Tý làm bài được 7 điểm ……………………………………………………………………………………………………………………… ĐỀ B - ĐỀ KIỂM TRA 1 TIẾT TOÁN 11 Bài 1: (2.0 điểm) Tìm hệ số của số hạng chứa 6 x trong khai triển 10 3 1 + x x Bài 2: (3.5 điểm) Có ba cái hộp chứa các quả cầu. Hộp thứ nhất có 3 quả cầu đỏ và 2 quả cầu xanh. Hộp thứ hai có 5 quả cầu xanh, không có quả cầu đỏ. Hộp thứ ba có 2 quả cầu xanh và 3 quả cầu đỏ. Lấy ngẫu nhiên từ mỗi hộp ra một quả cầu. Tính xác suất để: a) Ba quả cầu lấy ra cùng màu. b) Ba quả cầu lấy ra có đúng hai quả màu xanh. Bài 3: (3.5 điểm) Anh Bình mua bảo hiểm công ty A. Công ty trả 500 nghìn đồng nếu anh Bình ốm, 1 triệu đồng nếu anh Bình gặp tai nạn và 6 triệu nếu anh vừa bị ốm vừa tai nạn. Mỗi năm anh Bình đóng 100 nghìn tiền bảo hiểm. Biết trong một năm, xác suất anh Bình chỉ ốm là 0,0485, chỉ gặp tai nạn là 0,0285, ốm và gặp tai nạn là 0,0015. X là số tiền công ty bảo hiểm trả cho anh Bình mỗi năm. a. Lập bảng phân bố xác suất của X. b. Tính E(X). Nêu ý nghĩa. Bài 4: (1.0 điểm) Tìm số bộ thứ tự (x ; y ; z ; t) sao cho x + y + z + t = 100 với x, y, z, t là những số tự nhiên. Onthionline.net Họ tên: Ngày / 10/ 2005 Lớp: STT: kiểm tra hình chương I-lớp 11(Thời gian làm 45 phút) A./ Trắc nghiệm khách quan: ( điểm) (Làm vào đề).Tô đen hình tròn cạnh a đáp án đúng: b c d Câu 01/ Số trục đối xứng tam giác là: a) ; b) ; c) ; d) Câu 02/ Đường thẳng -3x + 4y + = ảnh đường 3x - 4y + = qua phép biến hình: a) ĐOx ; b) ĐOy ; c) ĐO ; d) Không thể xác định thẳng a b c d Câu 03/ ảnh đường thẳng ∆ qua phép quay Q90O đường a thẳng b a) // ∆ ; b) ≡ ∆ ; c) ⊥ ∆ ; d) xác định c ; o d Câu 04/ Phép tịnh tiến biến M(1; -2) thành M' (5; 1) tọa độ vec a tơ b tịnh tiến là: c a) ( 3; 2) ; b) (3; -2) ; c) (3; 4) ; d) (4; 3) d Câu 05/ Tam giác ABC tâm O biến thành qua a b phép 120 60 c a) ĐA ; b) QO ; c) QO ; d) ĐO o o d Câu 06/ Các trung tuyến AM, BN, CP ∆ABC cắt G a ∆ABC ảnh ∆MNP qua phép: b a) VA ; b) VG−2 ; c) VG− ; d) VG−3 c 2 d B./ Trắc nghiệm tự luận: ( điểm) ( làm giấy kiểm tra) Onthionline.net Câu 07/ Hình bình hành ABCD có đường chéo BD cố định, đỉnh A chuyển động đường tròn (O, R) a) Tìm tập hợp đỉnh C b) Tìm tập hợp đỉnh E hình bình hành ADBE KIM TRA 1 TIT Đê Câu 1 n n n n 3 3 2 2 3 1 lim 2 1 + + + + x x x 0 1 1 lim → + − Câu 2 x x khi x f x x m khi x 2 1 ( ) 1 1 − ≠ = − = x Câu 3 !"#$%& x x x 5 4 3 5 3 4 5 0− + − = '( Câu 4 )!*(+, '+-/0' /1 / ABC∆ /0., 23 . ⊥ 1+ 45-6#7) SAB∆ , 23-6 ⊥ 1+. KIM TRA 1 TIT Đê Câu 1 x x x x 2 3 3 lim 2 15 → − + − x x x 1 3 2 lim 1 → + − − Câu 2 x x khi x f x x a khi x 2 2 1 ( ) 1 1 1 − − ≠ − = + + = x8 Câu 3 !"#$%& x x x 5 2 2 1 0− − − = '(, Câu 4 )&'"+, 9': 9 &);<,45=>?@#A% > . ,.B+.+9>+-+ , 23 +< ⊥ 1 9 =? ⊥ 1+.9 KIM TRA 1 TIT Đê Câu 1 n n n 3 2 3 2 4 lim 2 3 + + − x x x 1 2 3 lim 1 + → − − Câu 2 x a khi x f x x x khi x 2 2 0 ( ) 1 0 + < = + + ≥ xC Câu 3 !"#$%& x x x 5 2 2 1 0− − − = '(, Câu 4 )D Ea, %#7F/0'/G"F 1 .>H:I2))2. Ja,45=%. , !%E-=⊥12. 'A"K#7F=2/G "F1 KIM TRA 1 TIT Đê Câu 1 x x x x 2 3 1 3 2 1 lim 1 → − − − x x x 3 3 lim 3 − → + − Câu 2 x x khi x x f x khi x 2 2 3 2 2 2 4 ( ) 3 2 2 − − ≠ − = = x 0 2= Câu 3 !"#$%& x x 2 cos 0− = '(, Câu 4 )&'"+, 9': 9 &/0Ea/+-⊥1 9 !.9⊥+ )+- a 6 3 ,'L+ /"1 9 KIM TRA 1 TIT Đê Câu 1 x x x x x 2 3 2 3 2 lim 2 4 → − + − − ( ) x x x x 2 lim 2 1 →+∞ + − − Câu 2 x x khi x f x x khi x 2 2 3 1 1 ( ) 2 2 2 1 − + ≠ = − = x 0 1= Câu 3 !"#$%& m x m x 5 2 4 (9 5 ) ( 1) 1 0− + − − = '(, KIM TRA 1 TIT Đê Câu 1 x x x 3 0 ( 2) 8 lim → − + ( ) x x xlim 1 →+∞ + − Câu 2 x x khi x f x x x khi x 3 ² 2 1 1 ( ) 1 2 3 1 − − > = − + ≤ x 0 1= Câu 3 !"#$%& x x x 4 2 2 4 3 0+ + − = 'HJ(I(8M Câu 4 )&'"!D+, 9, 452>N@#A%+-/+ !- ⊥+9 !2N⊥1+.9 ) Câu 4 )!*( 9' >- >-90I /0'/,456;#7)/OP -- 9 ! 9⊥.6 45Q;#7)/OP- 6, !-Q⊥1. 9, KIM TRA 1 TIT Đê Câu 1 x x x x 3 2 1 2 3 1 lim 1 →− + − + ( ) x x x x 2 lim 1 →+∞ + + − Câu 2 x khi x f x x x khi x 2( 2) 2 ( ) ² 3 2 2 2 − ≠ = − + = x 0 2= Câu 3 !"#$%& x x 5 3 1− = 'HI(I(MJ) Câu 4 )&'"+, ': DE>+-⊥1 >+- a 3 452%. , ! %E. ⊥1+-2 'LG"F1+. / 1 , KIM TRA 1 TIT Đê Câu 1 x x x x 2 3 4 3 lim 3 → − + − ( ) x x x 2 lim 1 1 →−∞ + + − Câu 2 x x x khi x f x x khi x ³ ² 2 2 1 ( ) 1 4 1 − + − ≠ = − = x 0 1= Câu 3 Đề 1: Bài 1: cho tứ diện ABCD có AB, AC,AD đôi một vuông góc; AB=AC=AD=a. gọi M,N lần lượt là trung điểm AC, BD. a) Chứng minh: + = b) Tính góc giữ c) Gọi G là trọng tâm tam giác BCD. Phân tích Bài 2: Cho hình chop S.ABCD có đáy ABCD là hình vuông cạnh a. (ABCD) và SA=. Gọi H,K lần lượt là hình chiếu của A lên SB, SD. a) Chứng minh CD (SAD) b) Chứng minh SC HK c) Tính góc giữa SA và mặt phẳng (AHK) Đề 1: Bài 1: cho tứ diện đều ABCD cạnh a. gọi M,N lần lượt là trung điểm AB, CD. a) Chứng minh: + = b) Tính góc giữa đường thẳng AN và CB c) Gọi G là trọng tâm tam giác ABC. Phân tích Bài 2: Cho hình chop S.ABCD có đáy ABCD là hình chữ nhật tâm O, AD=2AB=2a. (ABCD) và SA=. a) Gọi G là trọng tâm tam giác SAD.Chứng minh SG b) Gọi M,N lần lượt là trung điểm SC, CD. Gọi H là hình chiếu của O lên MN. Chứng minh OH c) Gọi là góc giữa SO và mặt phẳng (SAB). Tính Đề kiểm tra 1 tiết khối 11 Môn: Giải tích Thời gian: 45 phút A- Phần chung ( 8 điểm ) Câu 1: Tính các đạo hàm của các hàm số sau a) 1 1 x y x + = − b) 2 2 2 2 x n x m y n x m x = + + + ( với m, n là các hằng số) c) 2 sin (cos3 )y x= Câu 2: Cho hàm số 3 2 ( ) 2y f x x x x = = − + . Giải bất phương trình: '( ) 0f x ≥ B- Phần riêng ( 2 điểm ) Câu 3: ( Dành cho học sinh khối cơ bản) Cho hàm số 3 2 3 3y x x = + − . Viết phương trình tiếp tuyến của đồ thị hàm số đã cho, biết tiếp tuyến của nó song song với đường thẳng : y = 9x +2010 Câu 4: ( Dành cho học sinh khối nâng cao) Cho hàm số 3 3 1y x x = − + . Viết phương trình tiếp tuyến của đồ thị hàm số đã cho, biết tiếp tuyến của nó đi qua điểm A(1, - 6) Hết BÀI KIỂM TRA TIẾT TRƯỜNG THPT YÊN THẾ Môn: Đại số giải tích - Lớp 11A7 Thời gian làm bài: 45 phút GV: Đào Trung Kiên Mã đề 682 Họ tên học sinh: Câu : Hàm số y = tan x tuần hoàn với chu kì nào? A 2π B −π C π π D Câu : Trong [0; 3π] phương trình A B √ sin x − cos x = có nghiệm C Câu : Để phương trình sin x + √ π π cos x − = a + sin 2x − cos 2x có nghiệm, tham số a phải D thoả mãn điều kiện A ≤ a ≤ 1 B − ≤ a ≤ 2 C −2 ≤ a ≤ Câu : Phương trình sin 3x + sin x = cos 3x + cos x có nghiệm là: π x = π + kπ x = + k2π x = kπ 2 π kπ A B C π π x= + x = + kπ x = + kπ 8 D −3 ≤ a ≤ x = π + kπ D x = π + kπ Câu : Trong hàm sau hàm số có tập xác định R A y = cot x B y = sin 3x − cos x C y = sin x Câu : Điều kiện để phương trình sin√ x + cos x = m vô nghiệm √ √ A −2 ≤ m ≤ B |m| > C − ≤ m ≤ D y = tan x D |m| ≤ π π π Câu : Số nghiệm phương trình tan[ (cos x − sin x)] = (− ; ) 2 A B Vô số C D √ π Câu : Với x ∈ ( ; π) thoả mãn sin x = , giá trị biểu thức B = + cos x bằng: √ √ √ √ − 13 − 13 − 13 + 13 A B C − D 16 4 Câu : Phương trình sin2 x − sin x cos x − cos2 x = có nghiệm x = − π + k2π x = −45o + k.180o A B x = arctan + k.180o x = arctan + k2π π π x = − + kπ C x = − + kπ D 4 x = arctan + kπ Câu 10 : Phương trình sin 2x = có nghiệm π A x = − + kπ B x = kπ x = π + kπ C x = kπ x = π + 2kπ D x = π + k2π Trang 1/3 - Mã đề thi 682 Câu 11 : Biết x nghiệm phương trình sin x + cos x = m Khi ta có sin 2x m2 − D m − A − m2 B m2 − C Câu 12 : Phương trình tan x = −1 có tất nghiệm π π π A x = − + kπ B x = + k2π C x = + kπ 4 π Câu 13 : Phương trình cos( − 2x) + = cos2 x có nghiệm kπ π x = + kπ A x = π + B x = + k2π C x = kπ 2 D x = x = k2π π kπ D x= + Câu 14 : Phương trình sin6 x + sin2 x cos x + cos6 x = có nghiệm π π π B x = k C x = + k2π A x = + kπ 4 π Câu 15 : Cho hàm số y = sin 2x + cos x − 1, ta có y( ) bằng: √ A −1 + B 2,036044889 C 3,86268 Câu 16 : Phương trình sin x + 1 = có nghiệm x = − π + 2kπ π A x = − + k2π B x = 7π + k2π 5π + kπ π D x = k √ 1+ D x = − π + 2kπ D x = 4π + k2π C x = kπ Câu 17 : Đồ thị hình đồ thị hàm số nào? y −2π π −π 2π x −1 −2 A y = sin x + π − B y = sin x − π C y = − sin x − π D y = sin x − π − Câu 18 : Đồ thị hình đồ thị hàm số nào? y −2π π −π 2π x −1 −2 A y = cot x B y = tan x C y = cos x D y = sin x Câu 19 : Để phương trình sin4 x + cos4 x = m có nghiệm, tham số m phải thoả mãn điều kiện 1 A − ≤ m ≤ − B ≤ m ≤ C ≤ m ≤ D ≤ m ≤ 4 Trang 2/3 - Mã đề thi 682 Câu 20 : Phương trình sin2 x − sin x + = có nghiệm x = − π + 2kπ x = arcsin + 2kπ π π A x = + k2π C B 3π x = + k2π x= + k2π 2 Câu 21 : Phương trình cos x + = có nghiệm A x = kπ B x = −π + kπ C x = k2π D x = kπ D x = π + k2π Câu 22 : Hàm số y = cos x nghịch biến khoảng khoảng sau: π π 2π π 3π π + k2π) C (k2π; (2k + 1)π) D ( + k2π; + k2π) A (− + k2π; + k2π) B (− + k2π; 2 2 Câu 23 : Trong phép biến đổi sau phép sai? π A sin x − cos x = ⇔ cos(x + ) = π C sin x − cos x = ⇔ sin(x − ) = π B sin x − cos x = ⇔ cos x = cos(x − ) π D sin x − cos x = ⇔ sin x = sin(x + ) Câu 24 : Giá trị lớn hàm số y = − sin2 x + cos x + A B C D Câu 25 : Giá trị lớn hàm số y = sin x − cos x + A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 3/3 - Mã đề thi 682 BÀI KIỂM TRA TIẾT TRƯỜNG THPT YÊN THẾ Môn: Đại số giải tích - Lớp 11A7 Thời gian làm bài: 45 phút GV: Đào Trung Kiên Mã đề 119 Họ tên học sinh: Câu : Biết x nghiệm phương trình sin x + cos x = m Khi ta có sin 2x m2 − D m2 − A − m2 B m − C Câu : Hàm số y = cos x nghịch biến khoảng khoảng sau: 3π π 2π π π π + k2π) C (− + k2π; + k2π) D (− + k2π; + k2π) A (k2π; (2k + 1)π) B ( + k2π; 2 2 π π π Câu : Số nghiệm phương trình tan[ (cos x − sin x)] = (− ; ) 2 A B C D Vô số Câu : Điều √ phương trình sin x + cos x = m vô nghiệm √ kiện để B |m| ≤ C −2 ≤ m ≤ A − ≤ m ≤ Câu : Trong phép biến đổi sau ...Onthionline.net Câu 07/ Hình bình hành ABCD có đường chéo BD cố định, đỉnh A chuyển động đường tròn (O,