bai tap ve day so cap so 30000 tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả các lĩnh v...
dcq Phương pháp chứng minh qui nạp 1.Chứng minh rằng : a) 1 + 2 + 3 + … + n = b) 1 2 + 2 2 + 3 2 + …+ n 2 = c) 1 + 3 + 5 + …+ (2n – 1) = n 2 d) 1 2 + 3 2 + 5 2 + …+ (2n – 1) 2 = e) 1 3 + 2 3 + 3 3 + …+ n 3 = f) + + + .+ = g) 1 + + + .+ = 1 – h) (1 – )(1 – )…(1 – ) = h) 1.2 + 2.3 + 3.4 + …+ n(n + 1) = i) 1.2 + 2.5 + 3.8 + …+ n(3n – 1) = n 2 (n + 1) n ∈ N i) + + + .+ = j) 1.2 + 2.5 + 3.7 + …+ n(3n – 1) = n 2 (n + 1) k) 1.4 + 2.7 + 3.10 + …+ n(3n + 1) = n(n + 1) 2 l) 1 + 4 + 7 + …+ (3n + 1) = l) 2 + 5 + 8 + …+ (3n – 1) = m) + + + .+ = n) + + + .+ = – p) 1 + 3 + 6 + 10 + . + = q) + + + .+ = 2.Chứng minh rằng : a)n 3 – n chia hết cho 6 ∀ n > 1 b) n 3 + 11n chia hết cho 6 ∀ n c) 4 2n +2 – 1 chia hết cho 15 ∀ n d) 2 n+2 > 2n + 5 d) n 3 + 3n 2 + 5n chia hết cho 3 e) 4 n + 15n – 1 chia hết cho 9 e) 3 n – 1 > n ∀ n > 1 f) 3 n > 3n + 1 g) 2 n – n > f)11 n +1 + 12 2n – 1 chia hết cho 133 g) 5.2 3n – 2 + 3 3n – 1 chia hết cho 19 g) 2n 3 – 3n 2 + n chia hết cho 6 g) 3 n > n 2 + 4n + 5 f) ∀ n >1 g) ∀ n ≥ 1 h) … < i) 1 + + + …+ > ∀n ≥ 2 j) 1 + + + …+ < 2 ∀n ≥ 2 k) 1 + + + …+ < n 3. Chứng minh rằng = 2cos ( n dấu căn) 4. Chứng minh rằng (1 + a) n ≥ 1 + na với a > – 1 5. Chứng minh rằng a) sinx + sin2x + sin3x + …+ sinnx = b) 1 + cosx + cos2x + cos3x + …+ cosnx = c) cos 2 x + cos 2 2x + cos 2 3x + …+ cos 2 nx = + 6.Cho n số thực dương x 1 ,x 2 ,…,x n thỏa mãn điều kiện x 1. x 2. …x n = 1 Chứng minh rằng: x 1 + x 2 + …+ x n ≥ n 7.Cho n số thực x 1 ,x 2 ,…,x n ∈ (0;1) n ≥ 2 . Chứng minh rằng: (1 – x 1 )(1– x 2 )…(1 – x n ) > 1 – x 1 – x 2 – …– x n Dãy số 1.Viết 5 số hạng đầu tiên của các dãy số sau : a) u n = b) u n = c) u n = d) u n = e) u n = b) u n = c) u n = (1 + ) n d) u n = 2.Cho dãy số u n = a) Xác định 5 số hạng đầu tiên b) số là số hạng thứ mấy của dãy số c) số là số hạng thứ mấy của dãy số 2.Cho dãy số (u n ) với u n = 5.4 n – 1 + 3 Chứng minh rằng: u n + 1 = 4u n – 9 ∀ n ≥ 1 3.Tìm số hạng thứ n của các dãy số sau: a) u 1 = 3 ; u n +1 = u n + 4 b) u 1 = 4 ; u n +1 = 3u n + 2 c) u 1 = 2 ; u n +1 = u n d) u 1 = ; u n +1 = e) u 1 = ; u n +1 = f) u 1 = ; u n +1 = g) u 1 = 1 ; u n +1 = u n + 1 g) u 1 = 1 ; u n +1 = u n + () n 4.Cho dãy số (u n ) xác định bởi : u 1 = 0 ; u 2 = 1 ; u n + 2 = a)Chứng minh rằng: u n + 1 = – u n + 1 b)Xác định công thức tính u n .Từ đó tính limu n 4.Cho dãy số (u n ) xác định bởi : u 1 = 2 ; u 2 = 1 ; u n = a)Chứng minh rằng: 2u n + u n–1 = 4 và u n – u n– 1 = 3(– ) n– 2 b) Tính limu n 4.Tìm số hạng thứ 2005 của dãy số: a) u 1 = 1 ; u 2 = – 2 ; u n = 3u n – 1 – 2u n – 2 b) u 1 = 1 ; u 2 = 2 ; u n = 4u n – 1 – 3u n – 2 5.Cho dãy số (u n ) xác định bởi u 1 = 1 và u n + 1 = u n + 7 ∀ n ≥ 1 a)Tính u 2 , u 4 và u 6 b)Chứng minh rằng: u n = 7n – 6 ∀n ≥ 1 6.Cho dãy số (u n ) xác định bởi u 1 = 1 và u n + 1 = – u n 2 + u n + 1 ∀ n ≥ 1 a)Tính u 2 , u 3 và u 4 b)Chứng minh rằng: u n = u n + 3 ∀n ≥ 1 7.Cho dãy số (u n ) xác định bởi u 1 = 2 và u n + 1 = 5u n ∀ n ≥ 1 a)Tính u 2 , u 4 và u 6 b)Chứng minh rằng: u n = 2.5 n – 1 ∀n ≥ 1 8.Cho dãy số (u n ) xác định bởi u 1 = 2 và u n + 1 = 3u n + 2n – 1 ∀ n ≥ 1 dcq Chứng minh rằng: u n = 3 n – n ∀n ≥ 1 9.Cho dãy số (u n ) xác định bởi u 1 = 2 và u n + 1 = ∀ n ≥ 1 Chứng minh rằng: (u n ) là một dãy không đổi 9. Cho dãy số (u n ) xác định bởi u 1 = và u n + 1 = 4u n + 7 ∀ n ≥ 1 a)Tính u 2 , u 3 và u 4 b)Chứng minh rằng: u n = ∀n ≥ 1 10.Xét tính đơn điệu của các dãy số sau: a) u n = b) u n = c) u n = n – d) u n = 3. Xét tính đơn điệu của các dãy số sau: a) u n = b) u n = n 2 – 5 c) u n = d) u n = (– 1) n .n e) u n = 2 n f) u n = g) u n = h) u n = i) u n = n + cos 2 n h) u n = 1 – 4. Xét tính đơn điệu của các dãy Onthionline.net CHUONG 3: BAI TAP DAY SO- CAP SO_lop 11_KHTN Câu 1: cho (un) cấp số cộng vô hạn với u1=3, u9=-37; (vn) cấp số nhân vô hạn với v1=2, v6=486 Tìm công sai d csc (un), công bội csn (vn) tính v10 + (u1+u2+ +u15) Câu 2: tính a) A=7+77+777+ +777 77(n số 7) b) B=1+2.3+3.32+4.33+ .+2011.32010 Câu 3: người ta trồng 3003 theo hình tam giác nh sau: hàng thứ có cây, hàng thứ hai có cây, hàng th ứ ba có cây, h ỏi có hàng? Câu 4: tìm số dương a b cho a, a+2b, 2a+b l ập thành m ột csc (b+1)2, ab+5, (a+1)2 lập thành csn Câu 5: tìm ba số hạng đầu csn, biết tăng s ố th ứ hai thêm số tạo thành csc, n ếu sau tăng s ố cu ối thêm chúng lại lập thành csn Câu 6: a) ba góc tam giác vuông lập thành m ột csc Tìm s ố đo góc b)số đo góc đa giác lồi có cạnh lập thành m ột csc có công sai d= 3o tìm số đo góc Về các dãy số xác định bởi dãy các phương trình Trần Nam Dũng – ĐH KHTN Tp HCM Trong toán học, có rất nhiều trường hợp ta không xác định được giá trị cụ thể đối tượng mà chúng ta đang xét (ví dụ số, hàm số) nhưng vẫn có thể thực hiện các phép toán trên các đối tượng đó. Ví dụ ta có thể không biết giá trị các nghiệm của một phương trình, nhưng vẫn biết được tổng của chúng: “Tìm tổng các nghiệm của phương trình cos 5 x – 5cos 3 x + 3cosx – 1 = 0 trên đoạn [0, 2π]”. hay là tính tích phân của một hàm mà ta không có biểu thức tường minh: “Chứng minh rằng với mọi t ≥ 0, phương trình x 3 + tx – 8 = 0 luôn có 1 nghiệm dương duy nhất, ký hiệu là x(t). Tính .)]([ 7 0 2 ∫ dttx ” Trong bài viết nhỏ này, chúng ta sẽ đề cập đến một tình huống căn bản khác, đó là khảo sát những dãy số xác định bởi dãy các phương trình: “Cho dãy các hàm số f n (x) xác định bởi công thức tường mình hoặc truy hồi thoả mãn điều kiện: các phương trình f n (x) = 0 có nghiệm duy nhất x n ∈ D. Cần khảo sát các tính chất của x n như khảo sát sự hội tụ, tìm giới hạn …” Chúng ta bắt đầu từ một bài toán thi tuyển sinh vào khoa Toán trường Đại học Độc lập Matxcơva năm 2000 Bài toán 1. Ký hiệu x n là nghiệm của phương trình 0 1 1 11 = − ++ − + nxxx thuộc khoảng (0, 1) a) Chứng minh dãy {x n } hội tụ; b) Hãy tìm giới hạn đó. Bình luận: x n được xác định duy nhất vì hàm số nxxx xf n − ++ − += 1 1 11 )( liên tục và đơn điệu trên (0, 1). Tuy nhiên, ta không thể xác định được giá trị cụ thể của x n . Rất may mắn, để chứng minh tính hội tụ của x n , ta không cần đến điều đó. Chỉ cần chứng minh tính đơn điệu và bị chặn là đủ. Với tính bị chặn, mọi thứ đều ổn vì 0 < x n < 1. Với tính đơn điệu, ta chú ý một chút đến mối liên hệ giữa fn(x) và f n+1 (x): f n+1 (x) = f n (x) + 1 1 )()( 1 −− += + nx xfxf nn . Đây chính là chìa khoá để chứng minh tính đơn điệu của x n . Lời giải: Rõ ràng x n được xác định 1 cách duy nhất, 0 < x n < 1. Ta có f n+1 (x n ) = f n (x n ) + 1/(x n -n-1) = 1/(x n -n-1) < 0, trong khi đó f n+1 (0 + ) > 0. Theo tính chất của hàm liên tục, trên khoảng (0, x n ) có ít nhất 1 nghiệm của f n+1 (x). Nghiệm đó chính là x n+1 . Như thế ta đã chứng minh được x n+1 < x n . Tức là dãy số {x n } giảm. Do dãy này bị chặn dưới bởi 0 nên dãy số có giới hạn. Ta sẽ chứng minh giới hạn nói trên bằng 0. Để chứng minh điều này, ta cần đến kết quả quen thuộc sau: 1 + 1/2 + 1/3 + … + 1/n > ln(n) (Có thể chứng minh dễ dàng bằng cách sử dụng đánh giá ln(1+1/n) < 1/n) Thật vậy, giả sử lim x n = a > 0. Khi đó, do dãy số giảm nên ta có x n ≥ a với mọi n. Do 1 + 1/2 + 1/3 + … + 1/n ∞ khi n ∞ nên tồn tại N sao cho với mọi n ≥ N ta có 1 + 1/2 + 1/3 + … + 1/n > 1/a. Khi đó với n ≥ N ta có 0 = 0 111 2 1 1 111 1 11 =−< − ++ − + − +< − ++ − + aanxnxxx nnnn Mâu thuẫn. Vậy ta phải có lim x n = 0. Bài toán 2. Cho n là một số nguyên dương > 1. Chứng minh rằng phương trình x n = x + 1 có một nghiệm dương duy nhất, ký hiệu là x n . Chứng minh rằng x n dần về 1 khi n dần đến vô cùng và tìm )1(lim − ∞→ n n xn . Lời giải: Rõ ràng x n > 1. Đặt f n (x) = x n – x – 1. Khi đó f n+1 (1) = - 1 < 0 và f n+1 (x n ) = x n n+1 – x n – 1 > x n n – x n – 1= f n (x n ) = 0. Từ đó ta suy ra 1 < x n+1 < x n . Suy ra dãy {x n } có giới hạn hữu hạn a. Ta chứng minh a = 1. Thật vậy, giả 1 ĐI TÌM CÔNG THỨC TỔNG QUÁT DÃY SỐ 2 2 2 lim x * ˆ n n n u u u 1 1 2 1 2 n n n u TRẦN DUY SƠN Xuân kỷ sửu 2009 Đi tìm công thức tổng quát dãy số Trần Duy Sơn 2 ______________________________________________________________________________ The love makes us stronger Giới thiệu Dãy số là một phần của Đại số cũng như Giải tích toán học. Dãy số đóng một vai trò cực kì quan trọng trong toán học cũng như nhiều lĩnh vực của đời sống. Trong các kì thi HSG quốc gia, IMO (Olympic toán học quốc tế), hay những kì thi giải toán của nhiều tạp chí toán học các bài toán về dãy số được xuất hiện khá nhiều và được đánh giá ở mức độ khó. Các bạn học sinh cũng đã được làm quen với dãy số từ rất sớm, từ hồi tiểu học chúng đã được làm quen với các bài toán về dãy số như: tìm quy luật của một dãy số đơn giản,… Đây không phải một giáo trình về lí thuyết dãy số mà chỉ là một chuyên đề nhỏ trình bày một vấn đề nhỏ trong lĩnh vực dãy số. Tập tài liệu này gần như một bài viết mở, như một cuộc trao đổi, trò chuyên, trình bày con đường đi tìm công thức tổng quát của một số dạng dãy số cơ bản, từ đó ứng dụng để giải một số bài toán. Do đây là chuyên đề đầu tay của tôi, nên nội dung cũng như cách trình bày trong tài liệu này chắc chắn còn nhiều thiếu xót, rất mong bạn đọc thông cảm và có ý kiến đóng góp để bài viết được hoàn thiện. Mọi ý kiên đóng góp, phản hồi xin gửi về địa chỉ hòm thư: ibelieveicanfly@ymail.com Trần Duy Sơn Xuân kỷ sửu 2009 Đi tìm công thức tổng quát dãy số Trần Duy Sơn 3 ______________________________________________________________________________ The love makes us stronger Một số kí hiệu dùng trong tập tài liệu CSN – Cấp số nhân CSC – Cấp số cộng CTTQ – Công thức tổng quát Đi tìm công thức tổng quát dãy số Trần Duy Sơn 4 ______________________________________________________________________________ The love makes us stronger Mục lục Trang Đi tìm công thức tổng quát dãy số……………………………………………………… 5 Phương trình sai phân tuyến tính…………………………………………………………. 14 Sử dụng phép thế lượng giác để xác định CTTQ dãy số………………………………… 16 Các bài toán dãy số chọn lọc…………………………………………………………… 18 Bài tập đề nghị……………………………………………………………………………. 20 Tài liệu tham khảo……………………………………………………………………… 21 Đi tìm công thức tổng quát dãy số Trần Duy Sơn 5 ______________________________________________________________________________ The love makes us stronger Đi tìm công thức tổng quát dãy số Trong phần này, tôi và các bạn sẽ cùng nhau tìm hiểu và nêu ý tưởng tìm CTTQ của một số dạng dãy số bản. Chúng ta sẽ bắt đầu bằng một bài tập đơn giản trong sách giáo khoa sau: Ví dụ 1: (Bài 45, trang 123, Đại số & Giải tích 11 nâng cao) Cho dãy số ( ) n u xác định bởi: 1 2u và 1 1 2 n n u u 2.n Chứng minh rằng 1 1 2 1 2 n n n u Với mọi số nguyên dương .n Ý tưởng: Khi gặp dạng bài chắc hẳn nhiều bạn sẽ nghĩ ngay đến việc chứng minh bằng phương pháp quy nạp. Nhưng làm như thế thì chẳng có gì thú vị, vậy tại sao chúng ta không thử đi tìm một cách giải khác cho bài toán này! Ta nhận thấy đề bài cho một công thức truy hồi xác định dãy ( ) n u và cho số hạng đầu tiên 1 2u nên ý tưởng của chúng ta sẽ là tìm cách đưa ( ) n u về một CSC hoặc CSN để dễ dàng liên hệ với 1 u đã cho. Giải: Ta viết lại 1 ( ):2 1 n n n u u u từ đó ta sẽ tìm cách đưa về CSN. Nhưng một rắc rối nhỏ là ở vế phải của công thức truy hồi có số 1. Bây giờ nếu đặt n n u v d và thay vào dãy ta được: 1 2( ) 1. n n v d v d Từ đó nếu 2 1 1d d d thì ( ) n v sẽ là một CSN với công bội 1 1 1 1 . 2 2 n n q v v Mà CHUYÊN ĐỀ DÃY SỐ CHUYÊN ĐỀ DÃY SỐ Phương pháp chứng minh qui nạp 1.Chứng minh rằng : a) 1 + 2 + 3 + … + n = n(n + 1) 2 b) 1 2 + 2 2 + 3 2 + …+ n 2 = n(n + 1)(2n + 1) 6 c) 1 + 3 + 5 + …+ (2n – 1) = n 2 d) 1 2 + 3 2 + 5 2 + …+ (2n – 1) 2 = n(2n – 1)(2n + 1) 3 e) 1 3 + 2 3 + 3 3 + …+ n 3 = n 2 (n + 1) 2 4 f) 1 1.2 + 1 2.3 + 1 3.4 + + 1 n(n + 1) = n n + 1 g) 1 + 1 2 + 1 2 2 + + 1 2 n = 1 – 1 2 n h) (1 – 1 4 )(1 – 1 9 )…(1 – 1 n 2 ) = n + 1 2n h) 1.2 + 2.3 + 3.4 + …+ n(n + 1) = n(n + 1)(n + 2) 3 i) 1.2 + 2.5 + 3.8 + …+ n(3n – 1) = n 2 (n + 1) n N i) 1 1.3 + 1 3.5 + 1 5.7 + + 1 (2n – 1)(2n + 1) = n 2n + 1 j) 1.2 + 2.5 + 3.7 + …+ n(3n – 1) = n 2 (n + 1) k) 1.4 + 2.7 + 3.10 + …+ n(3n + 1) = n(n + 1) 2 l) 1 + 4 + 7 + …+ (3n + 1) = 3n 2 + 5n + 2 2 l) 2 + 5 + 8 + …+ (3n – 1) = n(3n + 1) 2 m) 1 3 + 1 3 2 + 1 3 3 + + 1 3 n = 3 n – 1 2.3 n n) 1 3 + 2 3 2 + 3 3 3 + + n 3 n = 3 4 – 2n + 3 4.3 n p) 1 + 3 + 6 + 10 + + n(n + 1) 2 = n(n + 1)(n + 2) 6 q) 1 1.2.3 + 1 2.3.4 + 1 3.4.5 + + 1 n(n + 1)(n + 2) = n(n + 3) 4(n + 1)(n + 2) 2.Chứng minh rằng : a)n 3 – n chia hết cho 6 n > 1 b) n 3 + 11n chia hết cho 6 n c) 4 2n +2 – 1 chia hết cho 15 n d) 2 n+2 > 2n + 5 d) n 3 + 3n 2 + 5n chia hết cho 3 e) 4 n + 15n – 1 chia hết cho 9 e) 3 n – 1 > n n > 1 f) 3 n > 3n + 1 g) 2 n – n > 3 2 f)11 n +1 + 12 2n – 1 chia hết cho 133 g) 5.2 3n – 2 + 3 3n – 1 chia hết cho 19 g) 2n 3 – 3n 2 + n chia hết cho 6 g) 3 n > n 2 + 4n + 5 f) 1 n + 1 + 1 n + 2 + 1 n + 3 + …+ 1 2n > 13 24 n >1 g) 1 n + 1 + 1 n + 2 + 1 n + 3 + …+ 1 3n + 1 > 1 n ≥ 1 h) 1 2 . 3 4 . 5 6 … 2n + 1 2n + 2 < 1 3n + 4 i) 1 + 1 2 + 1 3 + …+ 1 n > n n ≥ 2 j) 1 + 1 2 + 1 3 + …+ 1 n < 2 n n ≥ 2 k) 1 + 1 2 + 1 3 + …+ 1 2 n – 1 < n 3. Chứng minh rằng 2 + 2 + …+ 2 = 2cos 2 n + 1 ( n dấu căn) 4. Chứng minh rằng (1 + a) n ≥ 1 + na với a > – 1 5. Chứng minh rằng a) sinx + sin2x + sin3x + …+ sinnx = sin nx 2 .sin (n +1)x 2 sin x 2 b) 1 + cosx + cos2x + cos3x + …+ cosnx = cos nx 2 .sin (n +1)x 2 sin x 2 c) cos 2 x + cos 2 2x + cos 2 3x + …+ cos 2 nx = n 2 + sinnx.cos(n + 1)x 2sinx 6.Cho n số thực dương x 1 ,x 2 ,…,x n thỏa mãn điều kiện x 1. x 2. …x n = 1 Chứng minh rằng: x 1 + x 2 + …+ x n ≥ n 7.Cho n số thực x 1 ,x 2 ,…,x n (0;1) n ≥ 2 . Chứng minh rằng: (1 – x 1 )(1– x 2 )…(1 – x n ) > 1 – x 1 – x 2 – …– x n CHUYÊN ĐỀ DÃY SỐ CHUYÊN ĐỀ DÃY SỐ Dãy số 1.Viết 5 số hạng đầu tiên của các dãy số sau : a) u n = 1 2n – 1 b) u n = 3n + 1 n 2 + 1 c) u n = 1 + (– 2) n n + 1 d) u n = 1 n + 1 – n e) u n = n 2 n b) u n = 2 n – 1 2 n + 1 c) u n = (1 + 1 n ) n d) u n = n + 1 n 2 + 1 2.Cho dãy số u n = 3n – 1 2n + 1 a) Xác định 5 số hạng đầu tiên b) số 17 15 là số hạng thứ mấy của dãy số c) số 32 7 là số hạng thứ mấy của dãy số 2.Cho dãy số (u n ) với u n = 5.4 n – 1 + 3 Chứng minh rằng: u n + 1 = 4u n – 9 n ≥ 1 3.Tìm số hạng thứ n của các dãy số sau: a) u 1 = 3 ; u n +1 = u n + 4 b) u 1 = 4 ; u n +1 = 3u n + 2 c) u 1 = 2 ; u n +1 = 1 2 u n d) u 1 = 2 ; u n +1 = 2 + u n e) u 1 = 3 3 ; u n +1 = u n + 1 1 – u n f) u 1 = 3 ; u n +1 = u n + 1 1 – u n g) u 1 = 1 ; u n +1 = 1 3 u n + 1 g) u 1 = 1 ; u n +1 = u n + ( 1 2 ) n 4.Cho dãy số (u n ) xác định bởi : u 1 = 0 ; u 2 = 1 ; u n + 2 = u n+1 + u n 2 a)Chứng minh rằng: u n + 1 = – 1 2 u n + 1 b)Xác định công thức tính u n .Từ đó tính limu n 4.Cho dãy số (u n ) xác định bởi : u 1 = 2 ; u 2 = 1 ; u n = u n–1 + u n– 2 2 a)Chứng minh rằng: 2u n + u n–1 = 4 và u n – u n– 1 = 3(– 1 2 Dạng 1. QUY LUẬT VIẾT DÃY SỐ: * Kiến thức cần lưu ý (cách giải): Trước hết ta cần xác định quy luật của dãy số. Những quy luật thường gặp là: + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó cộng (hoặc trừ) với 1 số tự nhiên d; + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó nhân (hoặc chia) với 1 số tự nhiên q khác 0; + Mỗi số hạng (kể từ số hạng thứ ba) bằng tổng hai số hạng đứng trước nó; + Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của số hạng đứng trước nó cộng với số tự nhiên d cộng với số thứ tự của số hạng ấy; + Số hạng đứng sau bằng số hạng đứng trước nhân với số thứ tự; v . . . v 1. Loại 1: Dãy số cách đều: Bài 1: Viết tiếp 3 số: a, 5, 10, 15, b, 3, 7, 11, Giải: a, Vì: 10 – 5 = 5 15 – 10 = 5 Dãy số trên 2 số hạng liền nhau hơn kém nhau 5 đơn vị. Vậy 3 số tiếp theo là: 15 + 5 = 20 20 + 5 = 25 25 + 5 = 30 Dãy số mới là: 5, 10, 15, 20, 25, 30. b, 7 – 3 = 4 11 – 7 = 4 Dãy số trên 2 số hạng liền nhau hơn kém nhau 4 đơn vị. Vậy 3 số tiếp theo là: 11 + 4 = 15 15 + 4 = 19 19 + 4 = 23 Dãy số mới là: 3, 7, 11, 15, 19, 23. Dãy số cách đều thì hiệu của mỗi số hạng với số liền trước luôn bằng nhau 2. Loại 2: Dãy số khác: Bài 1: Viết tiếp 3 số hạng vào dãy số sau: a, 1, 3, 4, 7, 11, 18, b, 0, 2, 4, 6, 12, 22, c, 0, 3, 7, 12, d, 1, 2, 6, 24, Giải: a, Ta nhận xét: 4 = 1 + 3 7 = 3 + 4 11 = 4 + 7 18 = 7 + 11 Từ đó rút ra quy luật của dãy số là: Mỗi số hạng (Kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng trước nó. Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 7, 11, 18, 29, 47, 76, b, Tương tự bài a, ta tìm ra quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của 3 số hạng đứng trước nó. Viết tiếp ba số hạng, ta được dãy số sau. 0, 2, 4, 6, 12, 22, 40, 74, 136, c, ta nhận xét: Số hạng thứ hai là: 3 = 0 + 1 + 2 Số hạng thứ ba là: 7 = 3 + 1 + 3 Số hạng thứ tư là: 12 = 7 + 1 + 4 . . . Từ đó rút ra quy luật của dãy là: Mỗi số hạng (kể từ số hạng thứ hai) bằng tổng của số hạng đứng trước nó cộng với 1 và cộng với số thứ tự của số hạng ấy. Viết tiếp ba số hạng ta được dãy số sau. 0, 3, 7, 12, 18, 25, 33, d, Ta nhận xét: Số hạng thứ hai là 2 = 1 x 2 Số hạng thứ ba là 6 = 2 x 3 số hạng thứ tư là 24 = 6 x 4 . . . Từ đó rút ra quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ hai) bằng tích của số hạng đứng liền trước nó nhân với số thứ tự của số hạng ấy. Viết tiếp ba số hạng ta được dãy số sau: 1, 2, 6, 24, 120, 720, 5040, Bài 2: Tìm số hạng đầu tiên của các dãy số sau: a, . . ., 17, 19, 21 b, . . . , 64, 81, 100 Biết rằng mỗi dãy có 10 số hạng. Giải: a, Ta nhận xét: Số hạng thứ mười là 21 = 2 x 10 + 1 Số hạng thứ chín là: 19 = 2 x 9 + 1 Số hạng thứ tám là: 17 = 2 x 8 + 1 . . . Từ đó suy ra quy luật của dãy số trên là: Mỗi số hạng của dãy bằng 2 x thứ tự của số hạng trong dãy rồi cộng với 1. Vậy số hạng đầu tiên của dãy là 2 x 1 + 1 = 3 b, Tương tự như trên ta rút ra quy luật của dãy là: Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó. Vậy số hạng đầu tiên của dãy là: 1 x 1 = 1 Bài 3: Lúc 7 giờ sáng, Một người xuất phát từ A, đi xe đạp về B. Đến 11 giờ trưa người đó dừng lại nghỉ ăn trưa một tiếng, sau đó lại đi tiếp và 3 giờ chiều thì về đến B. Do ngược gió, cho nen tốc độ của người đó sau mỗi giờ lại giảm đi 2 km. Tìm tốc độ của người đó khi xuất phát, biết rằng tốc đọ đi trong tiếng cuối quãng đường là 10 km/ giờ. Giải: Thời gian người đó đi trên đường là: (11 – 7) + (15 – 12) = 7 (giờ) Ta nhận xét: Tốc độ người đó đi trong tiếng thứ 7 là: 10 (km/giờ) = 10 + 2 x 0 Tốc độ người đó đi trong tiếng thứ 6 là: 12 (km/giờ) = 10 + 2 x 1 Tốc độ người đó đi trong tiếng thứ 5 là: 14 (km/giờ) = 10 + 2 x 2 . . . Từ đó rút ra tốc độ người đó lúc xuất phát (trong tiếng thứ nhất) là: 10 + 2 x 6 = 22 (km/giờ) Bài 4: Điền các số thích hợp vào ô trống, sao cho tổng các số ở 3 ô liên tiếp đều bằng 1996: Giải: Ta đánh số các ô theo thứ tự như sau: Theo điều kiện của đầu bài ta có: 496 + ô7 + ô 8 = 1996 ô7 + ô8 + ô9 = 1996 Vậy ô9 = 496. Từ đó ta tính được ô8 = ô5 = ô2 =