Trường THPT Thiệu Hoá ĐỀKIỂMTRA MỘT TIẾT CHƯƠNG 3 Thời gian: 45 phút :Đề:01 Họ và tên:……………………………………………………………Hs Lớp…………. A/ Phần trắc nghiệm khách quan( 4 điểm) Câu 1 (1đ) Cho dãy số (u n ) xác định bởi u 1 =2 và u n+1 = 2 n .u n * n∀ ∈ ¥ . Giá trị của u 5 là: A. 10 B. 1024 C. 2048 D. 4096 Câu 2. (1,5 đ) Nếu cấp số cộng (u n ) với công sai d có u 2 = 2và u 50 = 74 thì: A. u 1 = 0 và d = 2 B. u 1 = -1 và d = 3 C. u 1 = 0,5 và d = 1,5 D. u 1 = -0,5 và d = 2,5 Câu 3(1,5 đ) Tổng 10 số hạng đầu tiên của cấp số nhân (u n ) với u 1 = -3, công bội q = -2, là: A. -511 B. -1025 C. 1025 D. 1023 B. Phần tự luận( 6 điểm). Câu 4 (2 đ). Cho dãy (u n ) xác định bởi u 1 = 6 và u n+1 = 3u n – 11 * n∀ ∈ ¥ . Chứng minh rằng ta luôn có n 1 n 3 11 u 22 − = + . Câu 5 (4 đ). Cho cấp số cộng (u n ) có u 17 = 33 và u 33 = 65. Tìm công sai vàsố hạng tổng quát của cấp số cộng đó. …………………………………………………………………………………………… . Đáp án phần trắc nghiệm: Câu 1 2 3 Chọn đáp án Bài làm phần tự luận Trường THPT Thiệu Hoá ĐỀKIỂMTRA MỘT TIẾT CHƯƠNG 3 Thời gian: 45 phút :Đề:02 Họ và tên:…………………………………………………………… Hs Lớp…………. A/ Trắc nghiệm khách quan: (3 điểm) Câu 1 ( 1 đ). Hãy chọn phương án đúng Cho dãy số (u n ) xác định bởi u 1 = 1 và u n+1 = u n + n, * n∀ ∈ ¥ . Khi đó u 11 bằng A. 36 B. 60 C. 56 D. 44 Câu 2 (2 đ). Với mỗi cấp số nhân (u n ) cho bởi u 1 và công sai d ở cột trái trong bảng sau đây, hãy chọn ở cột phải một kết luận đúng (trong 4 kết luận đã nêu): Cấp số cộng (u n ) Kết luận A. u 1 = 1; d = 3 B. u 1 = -5; d = 4 1. u 7 = 19 và u 15 = 47 2. u 4 = 10 và u 10 = 28 3. u 7 = 19 và u 10 – u 5 = 20 4. u 7 = 7 và u 3 + u 7 = 20 B/ Phần tự luận.( 7 điểm ) Câu 3 (4 đ) Bốn góc trong tứ giác lập thành một cấp số nhân và góc lớn nhất gấp 27 lần góc nhỏ nhất. Tìm các góc của tứ giác. Câu 4 (2 đ). Cho cấp số cộng có u 4 + 97 u = 101. Hãy tính tổng 100 số hạng đầu tiên của cấp số cộng đó. Đáp án phần trắc nghiệm: Câu 1 2 3 Chọn đáp án Bài làm phần tự luận Trường THPT Thiệu Hoá ĐỀKIỂMTRA MỘT TIẾT CHƯƠNG 3 Thời gian: 45 phút: Đề:03 Họ và tên:……………………………………………………………Hs Lớp…………. A- Trắc nghiệm khách quan(4 điểm) Câu 1.(1 điểm).Cho dãy (u n ) xác định bởi: u 1 = 1và u n+1 = u n + 1, 1 ≥∀ n . Ta có u 44 là: a, 36 b,65 c, 56 d, 44 Câu 2.(1,5 điểm). Giá trị của P = q.q 2 q 3 …q 99 .q 100 a,q 1000 b,q 100 c,q 5050 d,q 505 Câu 3.(1,5 điểm). Cho cấp số cộng có u 5 + u 19 = 90. Tổng của 23 số hạng đầu tiên là: a, 2070 b, 1035 c, 45, d, một số khác B- Tự luận(6 điểm) Bài 1(3 điểm) Cho 3 số có tổng bằng 28 lập thành cấp số nhân. Tìm cấp số nhân đó biết nếu số thứ nhất giảm 4 thì ta được 3 số lập thành cấp số cộng. Bài 2(3 điểm) Cho dãy (u n ), kí hiệu tổng n số hạng đầu tiên của nó là S n , được xác định 2 37 2 nn S n − = a)( 2 điểm) Tính u 1 , u 2 , u 3 b) ( 1 điểm). chứng minh dãy số trên là cấp số cộng …………………………………………………………………………………………… Đáp án phần trắc nghiệm: Câu 1 2 3 Chọn đáp án Bài làm phần tự luận Trường THPT Thiệu Hoá ĐỀKIỂMTRA MỘT TIẾT CHƯƠNG 3 Thời gian: 45 phút: Đề:04 Họ và tên:…………………………………………… .………………Hs Lớp…………. A- Trắc nghiệm khách quan(4 điểm) Câu 1 (1 điểm). Cho dãy số )( n u với 1 2 1 + − = n n n u . Khi đó 1 − n u bằng: A. n n n u 2 1 1 − = − C. n n n u 22 1 − = − B. 1 1 22 − − − = n n n u D. n n n u 2 1 = − Câu 2: (1,5 điểm) Cho cấp số cộng )( n u có 12 5 = u và tổng 21 số hạng đầu tiên là 504 21 = S . Khi đó 1 u bằng: A. 4 C. 20 B. 48 D. Đáp số khác onthionline.net- ôn thi trực tuyến ĐỀKIỂMTRA TIẾT Môn: Toán Đạisố &Giải tớch 11 -đề Họ tên học sinh: Lớp 11a I.Phần trắc nghiệm: (2 điểm) Cõu 1: Số hạng khụng chứa x khai triển (x + A) 594 B) 485 C) 584 12 ) là: x D) 495 Cõu 2: Một lớp cú 45 học sinh có 25 nữ, Giỏo viờn kiểmtra cũ học sinh Xỏc suất để khụng cú học sinh nữ là: C 202 A) C 45 C 252 B) C 45 C 452 − C 202 C) C 452 A252 D) A45 II Phần tự luận: (8 điểm) Cõu Tỡm n biết An2 + A22n = 110 Cõu Tớnh số hạng x7 khai triển (1 - x)11 Cõu Một tỳi chứa bi xanh bi đỏ Rỳt ngẫu nhiờn bi Tớnh xỏc suất để được: a) Ba đỏ b) Một màu xanh Cõu 2: Cú bao nhiờu cỏch chia sỏch khỏc cho học sinh cho học sinh nhận hai học sinh nhận - -Bài làm: ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… onthionline.net- ôn thi trực tuyến ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… onthionline.net- ôn thi trực tuyến ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… onthionline.net- ôn thi trực tuyến ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………………………………………………………………… ……………………………………………………… ... ĐỀKIỂMTRA CHƯƠNG 3 – ĐS & GT 11 Thời gian 45 phút. Đềsố 1 A/ Phần trắc nghiệm khách quan Hãy chọn phương án đúng trong các phương án đã cho ở mỗi câu sau. Câu 1 (1 đ) Cho dãy số (u n ) xác định bởi u 1 =2 và u n+1 = 2 n .u n * n∀ ∈¥ . Giá trị của u 5 là: A. 10 B. 1024 C. 2048 D. 4096 Câu 2. (1 đ) Nếu cấp số cộng (u n ) với công sai d có u 1 = 2và u 50 = 74 thì: A. u 1 = 0 và d = 2 B. u 1 = -1 và d = 3 C. u 1 = 0,5 và d = 1,5 D. u 1 = -0,5 và d = 2,5 Câu 3(1 đ) Tổng 10 số hạng đầu tiên của cấp số nhân (u n ) với u 1 = 1, công bội q = -2, là: A. -511 B. -1025 C. 1025 D. 1023 B. Phần tự luận. Câu 4 (3 đ). Cho dãy (u n ) xác định bởi u 1 = 6 và u n+1 = 3u n – 11 * n∀ ∈¥ . Chứng minh rằng ta luôn có n 1 n 3 11 u 22 − = + . Câu 5 (4 đ). Cho cấp số cộng (u n ) có u 17 = 33 và u 33 = 65. Tìm công sai vàsố hạng tổng quát của cấp số cộng đó. ……………Hết………… ĐỀKIỂMTRA CHƯƠNG 3 – ĐS & GT 11 Thời gian 45 phút. Đềsố2. A/ Phần trắc nghiệm khách quan Câu 1 ( 1 đ). Hãy chọn phương án đúng Cho dãy số (u n ) xác định bởi u 1 = 1 và u n+1 = u n + n, * n∀ ∈¥ . Khi đó u 11 bằng A. 36 B. 60 C. 56 D. 44 Câu 2 (2 đ). Với mỗi cấp số nhân (u n ) cho bởi u 1 và công sai d ở cột trái trong bảng sau đây, hãy chọn ở cột phải một kết luận đúng (trong 4 kết luận đã nêu): Cấp số cộng (u n ) Kết luận A. u 1 = 1; d = 3 B. u 1 = -5; d = 4 1. u 7 = 19 và u 15 = 47 2. u 4 = 10 và u 10 = 28 3. u 7 = 19 và u 10 – u 5 = 20 4. u 7 = 7 và u 3 + u 7 = 20 B/ Phần tự luận. Câu 3 (5 đ). Cho dãy (u n ) xác định bởi u 1 = 1 và u n+1 = 2u n + 5 * n∀ ∈¥ . 1/ CMR dãy số (v n ) xác định bởi v n = u n + 5 là một cấp số nhân. Hãy xác định số hạng tổng quát của cấp số nhân đó. 2/ Xác định số hạng tổng quát của dãy số (u n ). Câu 4 (2 đ). Cho cấp số cộng có u 4 + u 7 = 101. Hãy tính tổng 100 số hạng đầu tiên của cấp số cộng đó. ……………Hết………… ĐỀSỐ 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI TRƯỜNG THPT CHU VĂN AN ĐỀKIỂMTRA ĐỊNH KÌ NĂM HỌC 2014 - 2015 Môn: ĐẠISỐVÀGIẢITÍCH - Lớp 11 Buổi thi: Chiều ngày 02 tháng 10 năm 2014 Thời gian làm bài: 60 phút, không kể thời gian phát đề ( Đề thi gồm 01 trang ) Câu 1 (8,0 điểm). Giải các phương trình sau 1. sin3 cos x x ; 2. sin2 3cos2 2sin x x x ; 3. 222 3 cos cos 3 cos 5 2 x x x ; 4. cos2 cos sin 0 x x x . Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 sin 22 3cos . A x x Câu 3 (1,0 điểm). Tìm các giá trị của tham số m để phương trình cos2 sin 1 0 x x m có nghiệm trên đoạn 3 ; 4 6 . Hết ĐÁP ÁN – THANG ĐIỂM ĐỀKIỂMTRAĐẠISỐ - GIẢITÍCH LỚP 11ĐỀSỐ 1 CÂU NỘI DUNG ĐIỂM 1 Giải các phương trình lượng giác: 8,00 1 sin3 cos x x (2 điểm) sin3 cos sin3 sin( ) 2 x x x x 0,5 3 22 3 22 x x k x x k 1,0 8 2 ( ) 4 x k k x k 0,5 2 sin 2 3cos2 2sin x x x 1 3 sin 2 cos2 sin 22 x x x sin(2 ) sin 3 x x 1,0 222 3 3 ( ) 2222 3 9 3 x x k x k k x x k x k 1,0 3 222 3 cos cos 3 cos 5 2 x x x 1 cos2 1 cos6 1 cos10 3 2222 x x x 0,5 2cos6 cos4 cos6 0 x x x 0,5 cos6 0 cos6 (2cos4 1) 0 1 cos4 2 x x x x 0,5 12 6 ( ) 6 2 x k k x k 0,5 4 cos2 cos sin 0 x x x 22 cos sin cos sin 0 x x x x 0,5 (cos sin )(cos sin 1) 0 x x x x 0,5 cos sin 0 2 cos( ) 0 ( ) 4 4 x x x x k k 0,5 2 cos sin 1 2 cos 1 ( ) 4 22 x k x x x k x k 0,5 2 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: 2 sin 22 3cos A x x 1,0 sin 2 3 cos2 3 A x x 0,25 Ta có: 2 sin 2 3cos2 2 x x với mọi x 0,25 min 3 2 A khi 5 sin2 3cos2 2 ( ) 12 x x x k k 0,25 max 3 2 A khi sin2 3cos2 2 ( ) 12 x x x k k Ghi chú: Học sinh có thể đưa về sin2 3cos2 3 x x A . Phương trình có nghiệm trên 2 1 3 ( 3 ) 3 2 3 2 A A 0,25 3 Tìm các giá trị của tham số m để phương trình cos2 sin 1 0 x x m (1) có nghiệm trên đoạn 3 [ ; ] 4 6 . 1,0 Đặt sin t x . Ta có phương trình: 22 t t m (2) 0,25 Vì 3 1 ; 1; 4 6 2 x t 0,25 Yêu cầu bài toán (2) có nghiệm 1 1; 2 t . Lập được bảng biến thiên của hàm số2 ( ) 2 f t t t trên 1 1; 2 0,25 Kết luận: 1 3 8 m 0,25 Hết TRƯỜNG THPT NGUYỄN DUY THÌ MÃ ĐỀ 132 ĐỀKIỂMTRA CHƯƠNG I MÔN ĐẠISỐVÀGIẢITÍCH LỚP 11 (thời gian làm 45 phút) Câu 1: Mệnh đề sau đúng? A Hàm số lượng giác có tập xác định ¡ B Hàm số y = cot x có tập xác định ¡ y = tan x C Hàm số có tập xác định ¡ D Hàm số y = sin x có tập xác định ¡ Câu 2: _ 5π 3π + k 2π ; + k 2π ÷ − nghịch biến khoảng A Đồng biến khoảng π π − + k 2π ; + k 2π ÷ với k ∈ Z 3π π + k 2π ÷ + k 2π ; nghịch biến khoảng B Đồng biến khoảng π π − + k 2π ; + k 2π ÷ với k ∈ Z π π − + k 2π ; + k 2π ÷ nghịch biến khoảng C Đồng biến khoảng 3π π + k 2π ÷ + k 2π ; 2 với k ∈ Z π + k 2π ; π + k 2π ÷ nghịch biến khoảng ( π + k 2π ; k 2π ) D Đồng biến khoảng với k ∈ Z Câu 3: Phương trình sin2x = m có nghiệm khi: A ∀m ∈ R B −2 ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ −1 Câu 4: Giá trị lớn hàm số y = sin2x + cos2x là: A B C D Câu 5: Tất nghiệm phương trình sin2x – cos2x – sinx + cosx – = là: π π x = + kπ x = ± + k 2π A B π π π x = + kπ ; x = ± + k 2π x = + k 2π 4 C D Câu 6: Mệnh đề sau sai? A Hàm số y = sin x có chu kỳ 2π C Hàm số y = cot x có chu kỳ 2π B Hàm số y = cos x có chu kỳ 2π D Hàm số y = tan x có chu kỳ π Câu 7: Giá trị nhỏ giá trị lớn hàm số y = 3sin x − là: A −8 − B C −5 D −5 Câu 8: Tìm tất giá trị m để phương trình: m.sinx +cosx = m ∈ [ −2; ] A m ≥ m ≤ −2 B C m ≥ D m ≤ −2 có nghiệm? Trang 1/3 Câu 9: Hàng ngày mực nước kênh lên, xuống theo thủy triều Độ sâu h(m) mực nước kênh tính thời điểm t (giờ, ) ngày tính công thức πt π h = 3cos + ÷+ 12 4 Hỏi ngày có thời điểm mực nước kênh đạt độ sâu lớn ? A B C D Câu 10: Điều kiện xác định hàm số y = cotx là: π π π π x ≠ + kπ x ≠ +k x ≠ + kπ A B x ≠ kπ C D Câu 11: Hàm số y = sin x có đồ thị đối xứng qua đâu: A Qua gốc tọa độ B Qua đường thẳng y = x C Qua trục tung D Qua trục hoành x x s in + cos ÷ + cos x = 2 Câu 12: Tất nghiệm phương trinh là: −π −π π π x= + k 2π x= + kπ x = + k 2π x = + kπ 6 6 A B C D Câu 13: Tất nghiệm pt 2cos2x = –2 là: π x = + kπ A B x = k 2π C x = π + k 2π D x= π + k 2π Câu 14: Tất nghiệm phương trình s inx + cos x = là: π 5π π 2π x = − + k 2π ; x = + k 2π x = + k 2π ; x = + k 2π 4 3 A B π 3π π 5π x = − + k 2π ; x = + k 2π x = − + k 2π ; x = + k 2π 4 12 12 C D Câu 15: Tất nghiệm phương trình: sin2x + sin2x – 3cos2x = π x = + kπ ; x = acr tan + k π A B x = acr tan + kπ π x = + kπ C D x = kπ ; x = acr tan + kπ Câu 16: Hàm số y =sin2x hàm số tuần hoàn với chu kỳ? A T = π B T = π C T = π /2 Câu 17: Giá trị lớn hàm số y = cos2x +3 là: A B C π 2sin x − ÷− = 3 Câu 18: Tất nghiệm phương trình là: D T = π D π π 7π π +k ;x = +k 24 A B x = kπ ; x = π + k 2π π π x = k 2π ; x = + k 2π x = π + k 2π ; x = k 2 C D Câu 19: Hàm số sau hàm số không chẵn không lẻ? A y = sinx B y = cos2x + x2 x≠ Trang 2/3 C y = x + s inx + t anx D y = sinx + cosx Câu 20: Tất nghiệm pt s inx + cos x = là: π π π x = + kπ x = − + kπ x = + kπ 3 A B C x= D Câu 21: Nghiệm dương nhỏ pt (2sinx – cosx) (1+ cosx ) = sin x là: 5π π π x= x= 6 A B C x = π D 12 −π + kπ Câu 22: _ π x= A B x= π x= π D x =0 C Câu 23: Hàm số có tập giá trị ¡ : A y = sin x B y = cos x C y = tan x D y = cos x + sin x Câu 24: Tất nghiệm pt cos2x – sinx cosx = là: π π x = + kπ x = + kπ A B 5π 7π π π x= + kπ ; x = + kπ x = + kπ ; x = + kπ 6 C D Câu 25: Tất nghiệm phương trình tanx + cotx = –2 là: π π π x = + kπ x = − + kπ x = + k 2π 4 A B C D x=− π + k 2π Hết ĐỀSỐ 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI TRƯỜNG THPT CHU VĂN AN ĐỀKIỂMTRA ĐỊNH KÌ NĂM HỌC 2014 - 2015 Môn: ĐẠISỐVÀGIẢITÍCH - Lớp 11 Buổi thi: Chiều ngày 02 tháng 10 năm 2014 Thời gian làm bài: 60 phút, không kể thời gian phát đề ( Đề thi gồm 01 trang ) Câu 1 (8,0 điểm). Giải các phương trình sau 1. sin3 cos x x ; 2. sin2 3cos2 2sin x x x ; 3. 222 3 cos cos 3 cos 5 2 x x x ; 4. cos2 cos sin 0 x x x . Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 sin 22 3cos . A x x Câu 3 (1,0 điểm). Tìm các giá trị của tham số m để phương trình cos2 sin 1 0 x x m có nghiệm trên đoạn 3 ; 4 6 . Hết ĐÁP ÁN – THANG ĐIỂM ĐỀKIỂMTRAĐẠISỐ - GIẢITÍCH LỚP 11ĐỀSỐ 1 CÂU NỘI DUNG ĐIỂM 1 Giải các phương trình lượng giác: 8,00 1 sin3 cos x x (2 điểm) sin3 cos sin3 sin( ) 2 x x x x 0,5 3 22 3 22 x x k x x k 1,0 8 2 ( ) 4 x k k x k 0,5 2 sin 2 3cos2 2sin x x x 1 3 sin 2 cos2 sin 22 x x x sin(2 ) sin 3 x x 1,0 222 3 3 ( ) 2222 3 9 3 x x k x k k x x k x k 1,0 3 222 3 cos cos 3 cos 5 2 x x x 1 cos2 1 cos6 1 cos10 3 2222 x x x 0,5 2cos6 cos4 cos6 0 x x x 0,5 cos6 0 cos6 (2cos4 1) 0 1 cos4 2 x x x x 0,5 12 6 ( ) 6 2 x k k x k 0,5 4 cos2 cos sin 0 x x x 22 cos sin cos sin 0 x x x x 0,5 (cos sin )(cos sin 1) 0 x x x x 0,5 cos sin 0 2 cos( ) 0 ( ) 4 4 x x x x k k 0,5 2 cos sin 1 2 cos 1 ( ) 4 22 x k x x x k x k 0,5 2 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: 2 sin 22 3cos A x x 1,0 sin 2 3 cos2 3 A x x 0,25 Ta có: 2 sin 2 3cos2 2 x x với mọi x 0,25 min 3 2 A khi 5 sin2 3cos2 2 ( ) 12 x x x k k 0,25 max 3 2 A khi sin2 3cos2 2 ( ) 12 x x x k k Ghi chú: Học sinh có thể đưa về sin2 3cos2 3 x x A . Phương trình có nghiệm trên 2 1 3 ( 3 ) 3 2 3 2 A A 0,25 3 Tìm các giá trị của tham số m để phương trình cos2 sin 1 0 x x m (1) có nghiệm trên đoạn 3 [ ; ] 4 6 . 1,0 Đặt sin t x . Ta có phương trình: 22 t t m (2) 0,25 Vì 3 1 ; 1; 4 6 2 x t 0,25 Yêu cầu bài toán (2) có nghiệm 1 1; 2 t . Lập được bảng biến thiên của hàm số2 ( ) 2 f t t t trên 1 1; 2 0,25 Kết luận: 1 3 8 m 0,25 Hết SỞ GIÁO DỤC & ĐÀO TẠO HÀ NAM TRƯỜNG THPT NGUYỄN HỮU TIẾN ĐỀKIỂMTRA TIẾT Môn: Đạisốgiảitích11 Thời gian làm bài: 45 phút; (20 câu trắc nghiệm) Mã đề thi 137 Họ tên: Lớp: Câu Đáp án 10 11 12 13 14 15 16 17 18 19 20 Câu 1: Tất nghiệm phương trình sinx + cosx = là: π π π π x = − + kπ x = − + kπ x = + kπ x = + kπ 3 A B C D Câu 2: Với giá trị m phương trình sin x − m = có nghiệm A −2 ≤ m ≤ B m ≤ C ≤ m ≤ D m ≥ Câu 3: Hàng ngày mực nước kênh lên, xuống theo thủy triều Độ sâu h(m) mực nước kênh tính thời điểm t(giờ, h = 3.cos ) ngày tính công thức Hỏi ngày có thời