Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 140 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
140
Dung lượng
4,36 MB
Nội dung
CHUYÊNĐỀTRẮCNGHIỆMSỐPHỨC ÔN THI THPT QUỐC GIA 2016 - 2017 Header Page of 258 CHỦ ĐỀ CÁC PHÉP TOÁN CƠ BẢN Phương pháp Cho hai sốphức z a bi, z' a' b'i, a, b,a', b' ta cần nhớ định nghĩa phép tính sau: a a' z z' b b' z z' a a' b b' i; z z' a a' b b' i z.z' a bi a' b'i aa' bb' ab' a' b i z' z'.z a' b'i a bi aa' bb' ab' a' b i z z a b2 a b2 Vận dụng tính tính chất ta dễ dàng giải toán sau Ta cần ý kết sau: Với k , n Nếu n 4k k Nếu n 4k k i n i 4k i 1.i i Nếu n 4k k i n i 4k i 1 1 Nếu in n 4k k i n i 4k i 1 i n i 4k i i i I CÁC VÍ DỤ MẪU Ví dụ Cho số phức: z i 2 Tính sốphức sau: z; z2 ; (z)3 ;1 z z Giải Ta có i 2 z 3 1 z i i i 2 4 2 Tính (z)3 2 3 2 3 3 1 1 z i i i i 2 2 2 2 3 3 i ii 8 8 z z2 1 3 1 i i i 2 2 2 Ví dụ Tìm phần thực phần ảo số phức: a) z 5i 1 2i ; b) z 3i 5i ; c) z i ; d) z Footer Page of 258 2i i1 Giải www.toanmath.com CHUYÊNĐỀTRẮCNGHIỆMSỐPHỨC ÔN THI THPT QUỐC GIA 2016 - 2017 Header Page of 258 a) Ta có: z 5i 1 2i i 7i Vậy phần thực a ; phần ảo b b) Ta có: z 3i 5i 16 20i 12i 15 31 8i Vậy phần thực a 31 ; phần ảo b c) Ta có: z i 3.4.i 3.2.i i 12i i 11i Vậy phần thực a ; phần ảo b 11 d) Ta có: z 2i i 1 2 2i 2i 2 1 i i 1 i 1 2 Vậy phần thực a ; phần ảo b Ví dụ Thực phép tính sau: ; 1 i 3i a) A d) 2i ; D i 5 6i ; 3i b) B e) 7i 3i c) C 1 i 2 2026 Giải a) Ta có: A 1 i 2 i i 50 50 1 i 3i 3i 4i 3i i b) Ta có: B 5 6i 5 6i 3i 2 39i 2 39 i 3i 25 25 25 3i c) Ta có: C d) Ta có: D 1 i 2 3i 3i 3i 2 22 3i i 2 2i 2i i 3i 2i 2 3i i i e) Ta có: 7i 3i 2i 2026 1013 7i 3i 3i 3i 2026 1 i 2026 i 1013 21013.i1013 21013.i1012 i 21013.i Footer Page of 258 www.toanmath.com CHUYÊNĐỀTRẮCNGHIỆMSỐPHỨC ÔN THI THPT QUỐC GIA 2016 - 2017 Header Page of 258 Vậy 7i 3i 2026 21013 i Ví dụ Viết sốphức sau dạng a) z i 1 2i i i ; b) i i 2i z ; 1 i i 1 i a bi, a, b R : i 1 i ; c) z 1 i 1 i i e) z 2i 2 i ; d) z 1 2i Giải a) z i 1 2i i i 3 23 3.22 i 3.2i i 1 3.2i 2i 2i 3i 2i i 12i i 1 6i 12 8i 5i 1 18i b) z i i 2i 1 i i 1 i 1 i i i 1 1i 1 i 1 i 1 i i i 1 i 1 i 2i i i i i 2i 2i i i i 11 1 11 10 10 i 4i i i 1 i c) z 1 5i 1 i 1 i 4i 1 i 4i2 7i 1 7i 1 5i 5i 5i 1 5i 1 5i 35i 12i 34 12i 17 i 25 26 13 13 i i 3 i i 1 2i d) z 2i 2i 1 2i 2i 5i 1 3 4 i 4i 4i i 4i i 4i 3i i 1 i i 2 i e) z 5 2i 25 1 i 32 i 1 i i 1 i i 1 i i 32 32 32 32 Ví dụ Tìm nghịch đảo sốphức sau: a)z 4i; b) z 3 2i; c)z 1 i ; 2i d)z i Giải a) Xét z 4i Ta có: Footer Page of 258 www.toanmath.com CHUYÊNĐỀTRẮCNGHIỆMSỐPHỨC ÔN THI THPT QUỐC GIA 2016 - 2017 Header Page of 258 1 4i 4i i z 4i 32 4i 25 25 25 Vậy nghịch đảo sốphức z i z 25 25 b) Xét z 3 2i Ta có: 1 2i ...CHUYÊN TR C NGHI M S CH Ph ng pháp Cho hai s ph c Đ PH C ÔN THI THPT QU C GIA 2016 - 2017 CỦC PHÉP ởOỦN C z a bi, z' a' b'i, a, b,a', b' ” N ta c n nh đ nh nghĩa phép tính c b n sau: a a' z z' b b' z z' a a' b b' i; z z' a a' b b' i z.z' a bi a' b'i aa' bb' ab' a' b i z' z'.z a' b'i a bi aa' bb' ab' a' b i z z a b2 a b2 V n d ng tính tính ch t ta có th d dàng gi i toán sau ởa c)ng c n ý k t qu sau: V i k , n N u n 4k k N u n 4k k i n i 4k i 1.i i N u n 4k k i n i 4k i 1 1 N u I CÁC VÍ D in n 4k k i n i 4k i 1 i n i 4k i i i M U Ví d Cho s ph c: z i 2 Tính s ph c sau: z; z2 ; (z)3 ;1 z z Gi i Ta có i 2 z 3 1 i z i i 2 4 2 Tính (z)3 2 3 2 3 3 1 1 z i i i i 2 2 2 2 3 3 i ii 8 8 z z2 1 3 1 i i i 2 2 2 Ví d Tìm ph n th c ph n o c a s ph c: a) z 5i 1 2i ; b) z 3i 5i ; c) z i ; d) z 2i i1 Gi i www.toanmath.com CHUYÊN TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 a) Ta có: z 5i 1 2i i 7i V y ph n th c a ; ph n o b b) Ta có: z 3i 5i 16 20i 12i 15 31 8i V y ph n th c a 31 ; ph n o b c) Ta có: z i 3.4.i 3.2.i i 12i i 11i V y ph n th c a ; ph n o b 11 d) Ta có: z 2i i 1 2 2i 2i 2 1 i 2 i 1 i 1 V y ph n th c a ; ph n o b Ví d Th c hi n phép tính sau: ; 1 i 3i a) A d) 2i ; D i 5 6i ; 3i b) B e) 7i 3i c) C 1 i 2 2026 Gi i a) Ta có: A 1 i 2 i i 50 50 1 i 3i 3i 4i 3i i b) Ta có: B 5 6i 5 6i 3i 2 39i 2 39 i 3i 25 25 25 3i c) Ta có: C d) Ta có: D 1 i 2 3i 3i 3i 2 22 3i i 2 2i 2i i 3i 2i 2 3i i i e) Ta có: 7i 3i 2i 2026 1013 7i 3i 3i 3i 2026 1 i 2026 i 1013 21013.i1013 21013.i1012 i 21013.i www.toanmath.com CHUYÊN V y 7i 3i TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 2026 21013 i Ví d Vi t s ph c sau d a) z i 1 2i i i ; b) i i 2i z ; 1 i i 1 i i d ng a bi, a, b R : i 1 i ; c) z 1 i 1 i i e) z 2i 2 i ; d) z 1 2i Gi i a) z i 1 2i i i 3 23 3.22 i 3.2i i 1 3.2i 2i 2i 3i 2i i 12i i 1 6i 12 8i 5i 1 18i b) z i i 2i 1 i i 1 i 1 i i i 1 1i 1 i 1 i 1 i i i 1 i 1 i 2i i i i i 2i 2i i i i 11 1 11 10 10 i 4i i i 1 i c) z 1 5i 1 i 1 i 4i 1 i 4i2 7i 1 7i 1 5i 5i 5i 1 5i 1 5i 35i 12i 34 12i 17 i 25 26 13 13 i i 3 i i 1 2i d) z 2i 2i 1 2i 2i 5i 1 3 4 i 4i 4i i 4i i 4i 3i i 1 i i 2 i e) z 5 2i 25 1 i 32 i 1 i i 1 i i 1 i i 32 32 32 32 Ví d Tìm ngh ch đ o c a s ph c sau: a)z 4i; b) z 3 2i; c)z 1 i ; 2i d)z i Gi i a) Xét z 4i Ta có: www.toanmath.com CHUYÊN TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 1 4i 4i i z 4i 32 4i 25 25 25 V y ngh ch đ o c a s ph c z i z 25 25 b) Xét z 3 2i Ta có: 1 2i 3 2i 3 1 1 i z CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM GIẢI TÍCH 12 BIÊN SOẠN Điện thoại: 0916.563.244 Website: TOANMATH.com Mail: nhinguyenmath@gmail.com Tài luyện thi TNQG năm 2017 CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 MỤC LỤC TÓM TẮT LÍ THUYẾT CÁC DẠNG BÀI TẬP CHỦ ĐỀ CÁC PHÉP TOÁN TRÊN SỐPHỨC I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN II BÀI TẬP TỰ LUYỆN Phép toán sốphức – sốphức liên hợp – nghịch đảo Tìm phần thực phần ảo sốphức 15 Tìm module sốphức 30 Tìm sốphức thỏa mãn biểu thức cho trước 41 Một số dạng khác 50 CHỦ ĐỀ CĂN BẬC HAI CỦA SỐPHỨC 52 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 52 II BÀI TẬP TỰ LUYỆN 53 CHỦ ĐỀ PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐPHỨC 54 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 54 II BÀI TẬP TỰ LUYỆN 56 CHỦ ĐỀ TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐPHỨC Z 68 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 68 II BÀI TẬP TỰ LUYỆN 69 CHỦ ĐỀ BÀI TOÁN GTNN-GTLN TRÊN TẬP SỐPHỨC 87 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 87 II BÀI TẬP TỰ LUYỆN 89 CHỦ ĐỀ DẠNG LƯỢNG GIÁC CỦA SỐPHỨC VÀ ỨNG DỤNG 91 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 91 II BÀI TẬP TỰ LUYỆN 93 CHỦ ĐỀ MỘT SỐ DẠNG TOÁN CHỨNG MINH VỀ SỐPHỨC 95 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 95 II BÀI TẬP TỰ LUYỆN 96 NGÔ NGUYÊN – 0916.563.244 CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 TÓM TẮT LÍ THUYẾT I SỐPHỨC- Định nghĩa: Sốphứcsố có dạng z a bi(a, b R) , i đơn vị ảo, tức i 1 a gọi phần thực z, kí hiệu a Re z b gọi phần ảo z, kí hiệu b imz Tập hợp sốphức kí hiệu C - Các phép toán số phức: Cho z1 a1 b1i, z2 a2 b2i +) z1 z2 a1 a2 b1 b2 i +) z1 z2 a1 a2 b1 b2 i +) z1.z2 a1 b1i a2 b2i a1a2 a1b2i a2b1i b1b2i a1a2 b1b2 (a1b2 a2b1 )i +) z1 a1 b1i a1 b1i a2 b2i a1a2 b1b2 (a2b1 a1b2 )i z2 a2 b2i a2 b2i a2 b2i a22 b22 - Mô đun số phức, sốphức liên hợp, sốphức nghịch đảo Cho sốphức z a bi Khi : +) Đại lượng a b2 gọi môđun z Kí hiệu z a b2 +) Sốphức z a bi gọi sốphức liên hợp z +) Sốphức nghịch đảo z 1 z z II DẠNG LƯỢNG GIÁC CỦA SỐPHỨC a b -Định nghĩa: Cho z a bi a b 2 a2 b a b Với r z a b i a b (cos +sin )=r(cos +isin ) (*) (*) Gọi dạng lượng giác sốphức z, gọi acgumen z Nhận xét: Nếu acgumen z k 2 acgumen z -Tính chất: Nhân chia sốphức dạng lượng giác Cho z1 r1 (cos1 +isin1 ); z2 = r2 (cos2 +isin2 ) z1z2 r1r2 [cos(1 +2 )+isin(1 +2 )] ; z1 r1 [cos(1 2 )+isin(1 2 )] z r2 z r (cos +isin ) z = r (cos2 +isin2 ) z3 = r (cos3 +isin3 ) Được gọi công thức moavơrơ z n = r n (cosn +isinn ) NGÔ NGUYÊN – 0916.563.244 CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 CÁC DẠNG BÀI TẬP CHỦ ĐỀ CÁC PHÉP TOÁN TRÊN SỐPHỨC I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN Ví dụ 1: Cho z1 i, z2 i Tính z1 z1 z2 Lời giải: z1 z1 z2 i i i 10 10 0i z1 z1 z2 102 02 10 Ví dụ Tìm sốphức z biết z z i 1 i (1) Lời giải: Giả sử z a bi z a bi (1) a bi 2(a bi) (23 3.22 i 3.2i i )(1 i) a bi 2a 2bi (8 12i i)(1 i) (11i 2)(1 i) 13 3a 13 a 13 3a bi 11i 11i 2i 13 9i z 9i b b 9 Ví dụ Cho z1 3i, z2 i Tính z1 3z2 ; z1 z2 ; z13 3z2 z2 Lời giải +) z1 3z2 3i 3i 6i z1 3z2 52 62 61 +) z1 z2 4i 4i 1 i i z z 49 z2 1 i 1 i z2 4 +) z13 3z2 36i 54i 27i3 3i 49 6i z13 3z2 2437 Ví dụ Tìm sốphức z biết: z 3z 2i i (1) Lời giải: Giả sử z a bi , ta CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 MỤC LỤC TÓM TẮT LÍ THUYẾT CÁC DẠNG BÀI TẬP CHỦ ĐỀ CÁC PHÉP TOÁN TRÊN SỐPHỨC I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN II BÀI TẬP TỰ LUYỆN Phép toán sốphức – sốphức liên hợp – nghịch đảo Tìm phần thực phần ảo sốphức 15 Tìm module sốphức 30 Tìm sốphức thỏa mãn biểu thức cho trước 41 Một số dạng khác 50 CHỦ ĐỀ CĂN BẬC HAI CỦA SỐPHỨC 52 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 52 II BÀI TẬP TỰ LUYỆN 53 CHỦ ĐỀ PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐPHỨC 54 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 54 II BÀI TẬP TỰ LUYỆN 56 CHỦ ĐỀ TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐPHỨC Z 68 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 68 II BÀI TẬP TỰ LUYỆN 69 CHỦ ĐỀ BÀI TOÁN GTNN-GTLN TRÊN TẬP SỐPHỨC 87 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 87 II BÀI TẬP TỰ LUYỆN 89 CHỦ ĐỀ DẠNG LƯỢNG GIÁC CỦA SỐPHỨC VÀ ỨNG DỤNG 91 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 91 II BÀI TẬP TỰ LUYỆN 93 CHỦ ĐỀ MỘT SỐ DẠNG TOÁN CHỨNG MINH VỀ SỐPHỨC 95 I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN 95 II BÀI TẬP TỰ LUYỆN 96 NGÔ NGUYÊN – 0916.563.244 CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 TÓM TẮT LÍ THUYẾT I SỐPHỨC- Định nghĩa: Sốphứcsố có dạng z a bi(a, b R) , i đơn vị ảo, tức i 1 a gọi phần thực z, kí hiệu a Re z b gọi phần ảo z, kí hiệu b imz Tập hợp sốphức kí hiệu C - Các phép toán số phức: Cho z1 a1 b1i, z2 a2 b2i +) z1 z2 a1 a2 b1 b2 i +) z1 z2 a1 a2 b1 b2 i +) z1.z2 a1 b1i a2 b2i a1a2 a1b2i a2b1i b1b2i a1a2 b1b2 (a1b2 a2b1 )i +) z1 a1 b1i a1 b1i a2 b2i a1a2 b1b2 (a2b1 a1b2 )i z2 a2 b2i a2 b2i a2 b2i a22 b22 - Mô đun số phức, sốphức liên hợp, sốphức nghịch đảo Cho sốphức z a bi Khi : +) Đại lượng a b2 gọi môđun z Kí hiệu z a b2 +) Sốphức z a bi gọi sốphức liên hợp z +) Sốphức nghịch đảo z 1 z z II DẠNG LƯỢNG GIÁC CỦA SỐPHỨC a b -Định nghĩa: Cho z a bi a b 2 a2 b a b Với r z a b i a b (cos +sin )=r(cos +isin ) (*) (*) Gọi dạng lượng giác sốphức z, gọi acgumen z Nhận xét: Nếu acgumen z k 2 acgumen z -Tính chất: Nhân chia sốphức dạng lượng giác Cho z1 r1 (cos1 +isin1 ); z2 = r2 (cos2 +isin2 ) z1z2 r1r2 [cos(1 +2 )+isin(1 +2 )] ; z1 r1 [cos(1 2 )+isin(1 2 )] z r2 z r (cos +isin ) z = r (cos2 +isin2 ) z3 = r (cos3 +isin3 ) Được gọi công thức moavơrơ z n = r n (cosn +isinn ) NGÔ NGUYÊN – 0916.563.244 CHUYÊNĐỀSỐPHỨCTRẮCNGHIỆM TOÁN 12 CÁC DẠNG BÀI TẬP CHỦ ĐỀ CÁC PHÉP TOÁN TRÊN SỐPHỨC I PHƯƠNG PHÁP GIẢI VÀ BÀI TẬP CÓ HƯỚNG DẪN Ví dụ 1: Cho z1 i, z2 i Tính z1 z1 z2 Lời giải: z1 z1 z2 i i i 10 10 0i z1 z1 z2 102 02 10 Ví dụ Tìm sốphức z biết z z i 1 i (1) Lời giải: Giả sử z a bi z a bi (1) a bi 2(a bi) (23 3.22 i 3.2i i )(1 i) a bi 2a 2bi (8 12i i)(1 i) (11i 2)(1 i) 13 3a 13 a 13 3a bi 11i 11i CHUYÊN TR C NGHI M S CH Ph ng pháp Cho hai s ph c Đ PH C ÔN THI THPT QU C GIA 2016 - 2017 CỦC PHÉP ởOỦN C z a bi, z' a' b'i, a, b,a', b' ” N ta c n nh đ nh nghĩa phép tính c b n sau: a a' z z' b b' z z' a a' b b' i; z z' a a' b b' i z.z' a bi a' b'i aa' bb' ab' a' b i z' z'.z a' b'i a bi aa' bb' ab' a' b i z z a b2 a b2 V n d ng tính tính ch t ta có th d dàng gi i toán sau ởa c)ng c n ý k t qu sau: V i k , n N u n 4k k N u n 4k k i n i 4k i 1.i i N u n 4k k i n i 4k i 1 1 N u I CÁC VÍ D in n 4k k i n i 4k i 1 i n i 4k i i i M U Ví d Cho s ph c: z i 2 Tính s ph c sau: z; z2 ; (z)3 ;1 z z Gi i Ta có i 2 z 3 1 i z i i 2 4 2 Tính (z)3 2 3 2 3 3 1 1 z i i i i 2 2 2 2 3 3 i ii 8 8 z z2 1 3 1 i i i 2 2 2 Ví d Tìm ph n th c ph n o c a s ph c: a) z 5i 1 2i ; b) z 3i 5i ; c) z i ; d) z 2i i1 Gi i www.toanmath.com CHUYÊN TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 a) Ta có: z 5i 1 2i i 7i V y ph n th c a ; ph n o b b) Ta có: z 3i 5i 16 20i 12i 15 31 8i V y ph n th c a 31 ; ph n o b c) Ta có: z i 3.4.i 3.2.i i 12i i 11i V y ph n th c a ; ph n o b 11 d) Ta có: z 2i i 1 2 2i 2i 2 1 i 2 i 1 i 1 V y ph n th c a ; ph n o b Ví d Th c hi n phép tính sau: ; 1 i 3i a) A d) 2i ; D i 5 6i ; 3i b) B e) 7i 3i c) C 1 i 2 2026 Gi i a) Ta có: A 1 i 2 i i 50 50 1 i 3i 3i 4i 3i i b) Ta có: B 5 6i 5 6i 3i 2 39i 2 39 i 3i 25 25 25 3i c) Ta có: C d) Ta có: D 1 i 2 3i 3i 3i 2 22 3i i 2 2i 2i i 3i 2i 2 3i i i e) Ta có: 7i 3i 2i 2026 1013 7i 3i 3i 3i 2026 1 i 2026 i 1013 21013.i1013 21013.i1012 i 21013.i www.toanmath.com CHUYÊN V y 7i 3i TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 2026 21013 i Ví d Vi t s ph c sau d a) z i 1 2i i i ; b) i i 2i z ; 1 i i 1 i i d ng a bi, a, b R : i 1 i ; c) z 1 i 1 i i e) z 2i 2 i ; d) z 1 2i Gi i a) z i 1 2i i i 3 23 3.22 i 3.2i i 1 3.2i 2i 2i 3i 2i i 12i i 1 6i 12 8i 5i 1 18i b) z i i 2i 1 i i 1 i 1 i i i 1 1i 1 i 1 i 1 i i i 1 i 1 i 2i i i i i 2i 2i i i i 11 1 11 10 10 i 4i i i 1 i c) z 1 5i 1 i 1 i 4i 1 i 4i2 7i 1 7i 1 5i 5i 5i 1 5i 1 5i 35i 12i 34 12i 17 i 25 26 13 13 i i 3 i i 1 2i d) z 2i 2i 1 2i 2i 5i 1 3 4 i 4i 4i i 4i i 4i 3i i 1 i i 2 i e) z 5 2i 25 1 i 32 i 1 i i 1 i i 1 i i 32 32 32 32 Ví d Tìm ngh ch đ o c a s ph c sau: a)z 4i; b) z 3 2i; c)z 1 i ; 2i d)z i Gi i a) Xét z 4i Ta có: www.toanmath.com CHUYÊN TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 1 4i 4i i z 4i 32 4i 25 25 25 V y ngh ch đ o c a s ph c z i z 25 25 b) Xét z 3 2i Ta có: 1 2i 3 2i 3 1 1 i z 3 2i 2i 94 13 13 13 V y ngh ch đ o c a s ph c z c) Xét z 1 i Ta có: 2i 3 i z 13 ...CHUYÊN TR C NGHI M S PH C ÔN THI THPT QU C GIA 2016 - 2017 V y c p s c n tìm là: x; y 1; , 1; 2 Ví d Ch ng minh... Tính m - un c a s ph c z bi t 1 3i a mãn z b) Cho s ph c z th z 3i i 2i ởìm môđun c a s ph c z iz 1 i Gi i a) Ta có z 3i i 2i 6i 3i 2i 4i V y m - un c... m m 1 2 2 m 1 m2 L i bình: Ta có th tính z b ng cách bi n đ i m u nh sau www .toanmath.com