1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Đáp án đề toán các trường THPT chuyên đề 2335851a

5 135 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 274,43 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂKNÔNG KỲ THI THỬ THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT TRẦN HƯNG ĐẠO Môn thi: TOÁN (Đáp án bao gồm trang) Thời gian làm bài: 180 phút, không kể thời gian giao đề Lần thứ II, Ngày thi: 28/12/2015 Đáp án Câu Nội dung Điểm Tập xác định: D = R +Giới hạn: lim y   , lim y   x 0,25 x x  x  + Ta có y  3x  x; y    BBT: x  y + y 0 -  + 0,25   +Hàm số đồng biến khoảng  ;0   2;  +Hàm số nghịch biến khoảng  0;2  + Cực trị: Hàm số đạt cực đại tại: xcđ = 0, ycđ = y(0) = Hàm số đạt cực tiểu xct = 2, yct = y(2) = -3 + Đồ thị 0,25 0,25 -10 -5 10 -2 -4 -6 + Ta thấy hàm số cho xác định liên tục  2;  y' x2  2x x   y'   x  0,25  x  1 +Trên  2;  y' = có nghiệm x = 0,25 +Ta có y    4; y    16 0,25 +Max y = 16 x = 0,25 +Min y = x = 3a +Gọi z  a  bi , , a, b  R (1  i) z  (2  i ) z   2i  (1  i )(a  bi )  (2  i)(a  bi )   2i 3a  2b  a   3a  2b  bi   2i     b  b  2 +Vậy z   2i 3b +Đặt: 3x  t , 0,25 t  t  +Với t=1: 3x   x  +Với t=2: 3x   x  log 2 0,25 t0 có: t  3t     0,25   I   x  x  x dx   x dx   x  x dx 0,25 I1   x dx  x3  0 0,5 I   x  x dx Đặt t   x  x   t  xdx  tdt Đổi cận: x   t  1; x   t   t3 t5   I    1  t  t dt    t  t dt        15 0 Vậy I  I1  I  2 15 0,5  +Đường thẳng  có vectơ phương u  1; 2; 1 , qua M(1;-1;0); mặt phẳng  (Oxy) có vectơ pháp tuyến k   0;0;1 0,25 +Vậy (P) có phương trình 2( x  1)  ( y  1)  hay 2x – y – = 0.25    +Suy (P) có vectơ pháp tuyến n  [u , k ]   2; 1;  qua M (Oxy) có phương trình z =  ' giao tuyến (P) (Oxy) 2x  y   z  +Xét hệ  x  t  +Đặt x = t hệ trở thành  y  3  2t z   0,25 0.25 x  t  +Vậy  ' có phương trình  y  3  2t z   6a PT  cos2x + cos8x + sinx = cos8x 0,25  1- 2sin x + sinx =  sinx = v sin x    6b 0,25  7  x   k 2 ; x    k 2 ; x   k 2 , ( k  Z ) 6 Số cách lấy viên bi C144  1001 cách Ta đếm số cách lấy viên bi có đủ màu : + TH1: 1Đ, 1T, 2V có C 21 C51 C 72 cách + TH2: 1Đ, 2T, 1V có C 21 C 52 C 71 cách + TH3: 2Đ, 1T, 1V có C 22 C51 C 71 cách Vậy số cách lấy viên bi có đủ màu C 21 C 51 C 72 + C 21 C 52 C 71 + C 22 C 51 C 71 = 385 cách 0,25 0,25 1001  385 616   Xác suất lấy viên bi không đủ màu P  1001 1001 13 +Ta có: AN  AB  BN  2a S Diện tích tam giác ABC là: S ABC  0,25 BC AN  4a M Thể tích hình chóp S.ABC là: 1 VS ABC  S ABC SA  4a 3.8a 3 C A H 32a 3  (đvtt) N 0,25 B +Ta có: VB AMN BA BM BN   VS ABC BA BS BC 0,25 8a 3 VB AMN  VS ABC  2 +Mặt khác, SB  SC  5a  MN  SC  5a ; AM  SB  5a +Gọi H trung điểm AN MH  AN ,  MH  AM  AH  a 17 +Diện tích tam giác AMN S AMN 1  AN MH  2a 3.a 17  a 51 2 +Vậy khoảng cách từ B đến (AMN) là: 0,25 d ( B, ( AMN ))  3VB AMN 8a 3 8a 8a 17    S AMN 17 a 51 17 0,25 +Gọi H,E trung điểm MN,BC suy H  2;1 Từ GT suy IAMB, IANC hình thoi Suy AMN,IBV tam giác cân + Suy AH  MN , IE  BC , AHEI hình bình hành + Suy G trọng tâm HEI  HG cắt IE F trung điểm IE 0,25 + Vì BC / / MN , K  2; 1  BC   BC  : y    8   H  2;1 , G  ;0     F  3;   + Từ    2     HF  HG  0,25 + Từ EF  BC   EF  : x   E  3; 1 0,25 + Vì F trung điểm IE nên I  3;0   R  + Từ ta có:  C  :  x  3  y  phương trình đường tròn cần tìm  y  2 0,25 + Đk:  x  y + Từ pt thứ ta có:  y   y  12    x  y   x2   y   y   y  12     x2   y       x  y  x   x  y    y   y  12   2 2y   y    x x2   x2  y  y   y    y  2 2 x   x  y   y2 0 x    x  y   0 0.25 + Thay vào pt ta được: y   y   x3   x  0,25  y2  y2  x 4  x  y2  3 4  y2  x 4  x + Xét hàm số: ft   t  t  t  R Ta có: 3t  0,   t  R   f y   f  x     t 4  y    x    + Vậy ta có:  TM   y   x  y  2 f t  '    Kl: Nghiệm hệ là:  x; y    4; 2 10 y2  x 3 0,25  + Ta có:  a  b    2ab  a  b Nên ta có: 2a  7b  16ab  2a  7b  2ab  14ab  3a  8b  14ab    a  4b  3a  2b  4a  6b  2a  3b + Vậy ta có: 0,5 25a 2 2  2a  7b  16ab 25b + Tương tự ta có: 25a 1 2a  3b 2b  7c  16bc + Mặt khác theo Cauchy  shwarz Ta có:  25b 2b  3c  2 3c 25c  2  2c  c     a  a c  3a  2c  3 + Từ (1),(2),(3) ta có:  a2  a  b  c   c  2c  b2 c2  P  25      c  2c  25 5a  b  c  2a  3b 2b  3c 2c  3a    a  b  c   c  2c 0.25 + Mà a  b  c  theo giả thiết nên ta có: P  c  2c  15   c  1  14  14 Vậy GTNN P  14 Dấu "  " xảy a  b  c  0.25  Chú ý: Học sinh có lời giải khác với đáp án chấm thi có lập luận dựa vào SGK hành có kết xác đến ý cho điểm tối đa ý đó; cho điểm đến phần học sinh làm từ xuống phần làm sau không cho điểm ... cách lấy viên bi C144  1001 cách Ta đếm số cách lấy viên bi có đủ màu : + TH1: 1Đ, 1T, 2V có C 21 C51 C 72 cách + TH2: 1Đ, 2T, 1V có C 21 C 52 C 71 cách + TH3: 2Đ, 1T, 1V có C 22 C51 C 71 cách... 71 cách + TH3: 2Đ, 1T, 1V có C 22 C51 C 71 cách Vậy số cách lấy viên bi có đủ màu C 21 C 51 C 72 + C 21 C 52 C 71 + C 22 C 51 C 71 = 385 cách 0,25 0,25 1001  385 616   Xác suất lấy viên bi... 14  14 Vậy GTNN P  14 Dấu "  " xảy a  b  c  0.25  Chú ý: Học sinh có lời giải khác với đáp án chấm thi có lập luận dựa vào SGK hành có kết xác đến ý cho điểm tối đa ý đó; cho điểm đến phần

Ngày đăng: 19/09/2017, 14:36

HÌNH ẢNH LIÊN QUAN

Thể tích hình chóp S.ABC là: - Đáp án đề toán các trường THPT chuyên đề 2335851a
h ể tích hình chóp S.ABC là: (Trang 3)
+Suy ra AH  MN IE , BC AHE I, là hình bình hành. - Đáp án đề toán các trường THPT chuyên đề 2335851a
uy ra AH  MN IE , BC AHE I, là hình bình hành (Trang 4)