Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn
Trang 1 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT Năm 1992 – 1993 ( 1993 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4,5 điểm): Cho hàm số y x 3 6x29x
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Viết phơng trình tiếp tuyến của đồ thị (C) tại điểm uốn
3 Dựa vào đồ thị (C), biện luận theo m số nghiệm của phơng trình: x3 6x29x m 0
4 Tính diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và các đờng thẳng x=1 và x=2
Câu 2: (1,5 điểm): Cho hàm số 2 sinx
y e x Chứng minh rằng: 2y 2yy0
Câu 3: (2 điểm): Trên mặt phẳng tọa độ Oxy cho hypebol (H): 3x2 y2 12
1 Tìm tọa độ các đỉnh, tiêu điểm, tâm sai và phơng trình các đờng tiệm cận của (H) đó
2 Tìm các giá trị của tham số k để đờng thẳng y=kx cắt (H) trên
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): 2x+y-z-6=0
1 Viết phơng trình tham số của mặt phẳng (P)
2 Viết phơng trình tham số của đờng thẳng qua gốc tọa độ và vuông góc với (P)
Năm 1993 – 1993 ( 1994 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số
y
x k
với tham số k
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi k=1
2 Viết phơng trình đờng thẳng (d) đi qua điểm A(3; 0) có hệ số góc a Biện luận theo a số giao điểm của đồ thị (C) và đờng thẳng (d) Viết phơng trình tiếp tuyến của đồ thị (C) đi qua A
3 Chứng minh rằng với k bất kỳ, đồ thị hàm số luôn luôn có điểm cực đại, cực tiểu và tổng các tung độ của chúng bằng 0
Câu 2: (2 điểm): Tính tích phân:
1 2 5
0
sin xdx
e
Câu 3: (2 điểm): Trên mặt phẳng tọa độ Oxy cho ba điểm A(-1; 2), B(2; 1), C(2; 5).
1 Viết phơng trình tham số của đờng thẳng AB và AC Tính độ dài các đoạn thẳng AB và AC
2 Viết phơng trình đờng tròn ngoại tiếp tam giác ABC
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxy cho mặt phẳng:
( ) : 3 x 2y2z 5 0 và ( ) : 4 x5y z 1 0
1 Chứng minh rằng hai mặt phẳng trên vuông góc với nhau
2 Viết phơng trình tham số của mặt phẳng ( ) và ( )
Năm 1994 – 1993 ( 1995 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (1,5 điểm): Cho hàm số f x( ) 2 x216cosx cos 2x
1 Tìm f’(x) và f”(x), từ đó tính f’(0) và f ( ).
2 Giải phơng trình f”(x)=0
Câu 2: (4,5 điểm): Cho hàm số:
2
1
y x
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Viết phơng trình tiếp tuyến của (C) tại các giao điểm của (C) với trục hoành
3 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và trục hoành
Câu 3: (2 điểm): Trên mặt phẳng tọa độ Oxy cho elip (E) có phơng trình: x24y2 4
1 Tìm tọa độ các đỉnh, các tiêu điểm, tâm sai của (E) đó
2 Đờng thẳng qua một tiêu điểm của (E) và song song với trục Oy cắt (E) tại hai điểm M và N, tính độ dài đoạn thẳng MN
3 Tìm các giá trị của tham số k để đờng thẳng y=k+x cắt (E) nói trên
Câu 4: (2 điểm): Trong không gian với htđ Oxyz cho 4 điểm A(-2; 0; 1), B(0; 10; 3), C(2; 0; -1), D(5; 3; -1)
1 Viết phơng trình mặt phẳng (P) qua ba điểm A, B, C
2 Viết phơng trình mặt cầu tâm D và tiếp xúc với mặt phẳng (P)
Năm 1995 – 1993 ( 1996 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4,5 điểm): Cho hàm số
( )
1
f x
x
, m l tham số, có đồ thị à tham số, có đồ thị (Cm)
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m=-2
2 Chứng minh rằng (Cm nhận giao điểm các đờng tiệm cận làm tâm đối xứng.)
3 Đờng thẳng d đi qua gốc tọa độ có hệ số góc k
a Biện luận theo k số giao điểm của đờng thẳng d và đồ thị (C)
Trang 2 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT
b Suy ra phơng trình tiếp tuyến của đồ thị (C)
c Tính diện tích hình phẳng giới hạn bởi đồ thị â, trục hoành và tiếp tuyến vừa tìm đợc
Câu 2: (2 điểm): Tính tích phân:
1
5
2
2
.ln( 1)
2
x dx
x
Câu 3: (1,5 điểm): Trên mặt phẳng tọa độ Oxy cho hyperbol (H) có phơng trình: 9x2 4y2 36
1 Tìm tọa độ các đỉnh, các tiêu điểm, tâm sai và phơng trình các đờng tiệm cận của (H) Vẽ (H) đó
2 Tìm các giá trị của tham số m để đờng thẳng y=mx-1 có điểm chung với (H) nói trên
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(1; 0; 0), B(0;-2; 0), C(0; 0; 3).
1 Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành
2 Viết phơng trình mặt phẳng (P) qua ba điểm A, B, C
3 Thí sinh chọn một điểm M (khác A, B, C) thuộc mặt phẳng (P), rồi viết ph ơng trình đờng thẳng đi qua M và vuông góc với mặt phẳng (P)
Năm 1996 – 1993 ( 1997 Kỳ 1 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số y x 3 3x2
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Tính diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành, trục tung và đờng thẳng x=-1
3 Một đờng thẳng d đi qua điểm uốn của đồ thị (C) và có hệ số góc k Biện luận theo k số gioa điểm của đồ thị (C) và đờng thẳng d
4 Tìm tọa độ các giao điểm đó trong trờng hợp k=1
Câu 2: (2 điểm): Tính tích phân:
1
3
1
4 lnx xdx
2
0
2
Câu 3: (2 điểm): Trên mặt phẳng tọa độ Oxy cho elip (E) có phơng trình: 3x25y2 30
1 Tìm tọa độ các đỉnh, các tiêu điểm, tâm sai của (E) đó
2 Đờng thẳng đi qua tiêu điểm F2(2; 0) của (E) và song song với trục Oy cắt (E) tại hai điểm M và N, tính khoảng cách từ M và N tới tiêu điểm F1
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho 4 điểm A(3;-2;-2), B(3;2;0), C(0;2;1), D(-1;1;2).
1 Viết phơng trình mặt phẳng (BCD) Suy ra ABCD là tứ diện
2 Viết phơng trình mặt cầu tâm A tiếp xúc với mặt phẳng (BCD) Tìm tọa độ tiếp điểm
Năm 1996 – 1993 ( 1997 Kỳ 2 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4,5 điểm): Cho hàm số 1 4 2 9
2
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và trục hoành
3 Vẽ và viết phơng trình tiếp tuyến của đồ thị (C) tại tiếp điểm có hoành độ x=1
Câu 2: (1,5 điểm): Tính tích phân: 3 2
0
sin x tgxdx
Câu 3: (2 điểm): 1 Trên mặt phẳng tọa độ Oxy viết phơng trình đờng tròn (T) có tâm Q(2; -1) và bán kính
10
R . Chứng minh rằng (không dùng hình vẽ) điểm A(0; 3) nằm ngoài đờng tròn (T)
2 Viết phơng trình các đờng thẳng đi qua A(0; 3) và không có điểm chung đối với đờng tròn (T)
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(1; 4; 0), B(0; 2; 1), C(1; 0; -4).
1 Viết phơng trình tham số của đờng thẳng AB
2 Viết phơng trình tổng quát của mặt phẳng ( ) đi qua điểm O và vuông góc với đờng thẳng AB Xác định tọa độ giao điểm của đờng thẳng AB với mặt phẳng ( )
Năm 1997 – 1993 ( 1998 Kỳ 1 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số y x 33x2mx m 2, m là tham số, có đồ thị (C m).
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m=3
2 Gọi A là giao điểm của đồ thị (C) và trục tung Viết phơng trình tiếp tuyến d của đồ thị (C) tại điểm A
3 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và tiếp tuyến d
4 Tìm các giá trị của tham số m để đồ thị (C m) cắt trục hoành tại 3 điểm phân biệt
Câu 2: (2 điểm): Tính tích phân:
1
3
1
4 lnx xdx
0
sin
x
Câu 3: (2 điểm): Trên mặt phẳng tọa độ Oxy cho hai điểm A(2; 3) và B(-2; 1).
Trang 3 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT
1 Viết phơng trình đờng tròn đi qua hai điểm A, B và có tâm nằm trên trục hoành
2 Viết phơng trình chính tắc của parabol đi qua điểm A và nhận trục hoành làm tâm đối xứng Vẽ đờng tròn và parabol vừa tìm đợc trên cùng một hệ tọa độ
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4).
1 Viết phơng trình mặt cầu đi qua bốn điểm O, A, B, C Xác định tọa độ tâm I và độ dài bán kính của mặt cầu đó
2 Viết phơng trình mặt phẳng (ABC) Viết phơng trình tham số của đờng thẳng đi qua I và vuông góc với mặt phẳng (ABC)
Năm 1997 – 1993 ( 1998 Kỳ 2 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số 1
( )
1
x
x
1 Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số
2 Viết phơng trình tiếp tuyến của đồ thị (H) tại điểm A(0; 1) Chứng minh rằng có đúng một tiếp tuyến của đồ thị (H) đi qua điểm B(0; -1)
3 Tìm tất cả các điểm nguyên trên đồ thị (H) (Điểm nguyên là điểm có hoành độ lẫn tung độ của nó đều
là số nguyên)
Câu 2: (2 điểm):
1 Tính tích phân:2 2 2
0
sin xcos xdx
2 Giải phơng trình: 31 x 4 23 4
Câu 3: (2 điểm): Trên mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C) có tâm I(1; -2) và bán kính R=3.
1 Viết phơng trình tổng quát của đờng tròn (C)
2 Viết phơng trình đờng thẳng chứa dây cung của đờng tròn (C) nhận gốc tọa độ làm trung điểm
Câu 4: (2 điểm): Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật có các đỉnh là A(3; 0; 0),
B(0; 4; 0), C(0; 0; 5), O(0; 0; 0) và D là đỉnh đối diện với O
1 Xác định tọa độ đỉnh D Viết phơng trình tổng quát của mặt phẳng (ABD)
2 Viết phơng trình đờng thẳng đi qua â và vuông góc với mặt phẳng (ABD)
3 Tính khoảng cách từ điểm C tới mặt phẳng (ABD)
Năm 1998 – 1993 ( 1999 Kỳ 1 - Ban KHTN ( Thời gian: 150 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số yf x( )x3 (m2)x m , m là tham số
1 Tìm m để hàm số tơng ứng có cực trị tại x=-1
2 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m=1
3 Biện luận theo k số gioa điểm của đồ thị (C) với đờng thanửg y=k
Câu 2: (2 điểm):
1 Tính tích phân:2 2
0
sin 3
x dx
2 Tìm số nghiệm phức của phơng trình: x2 x 2 0
Câu 3: (4 điểm): Trong không gian với hệ tọa độ Oxyz cho điểm D(-3; 1; 2) và mặt phẳng ( ) đi qua ba điểm
A(1; 0; 11), B(0; 1; 10), C(1; 1; 8)
1 Viết phơng trình đờng thẳng AC
2 Viết phơng trình mặt phẳng ( )
3 Xét vị trí tơng đối của mặt phẳng ( ) với mặt cầu tâm D, bán kính R, khi R thay đổi
Năm 1998 – 1993 ( 1999 Kỳ 1 ( Thời gian: 150 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số yf x( )x3 (m2)x m , m là tham số
1 Tìm m để hàm số tơng ứng có cực trị tại x=-1
2 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m=1
3 Biện luận theo k số gioa điểm của đồ thị (C) với đờng thanửg y=k
Câu 2: (2 điểm):
1 Tính tích phân:2 2
0
cos 4xdx
Trang 4 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT
2 Giải phơng trình: 3 x 2 14
x x
Câu 3: (4 điểm): Trong không gian với hệ tọa độ Oxyz cho điểm D(-3; 1; 2) và mặt phẳng ( ) đi qua ba điểm
A(1; 0; 11), B(0; 1; 10), C(1; 1; 8)
1 Viết phơng trình đờng thẳng AC
2 Viết phơng trình tổng quát của mặt phẳng ( )
3 Viết phơng trình mặt cầu tâm D, bán kính R=5 Chứng minh rằng mặt cầu này cắt mặt phẳng ( )
Năm 1999 – 1993 ( 2000 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm):
1 Khảo sát sự biến thiên và vẽ đồ thị hàm số 1 1
1
x
2 Dựa vào đồ thị (G), hãy biện luận số nghiệm của phơng trình 1 1
1
2x x1m, tuỳ theo tham số m.
3 Tính diện tích hình phẳng giới hạn bởi đồ thị (G), trục hoành và các ờng thẳng x=2 và x=4
Câu 2: (2 điểm):
1 Cho hàm số 1 2
( ) cos
2
x
f x x Hãy tính đạo hàm f”(x) và giải phơng trình: f(x)-(x-1)f’(x)=0
2 Có 5 tem th khác nhau và 6 bì th cũng khác nhau Ngời ta muốn chọn từ đó chỉ ra 3 tem th, 3 bì
th và dán 3 tem th ấy lên 3 bì th đã chọn, mỗi bì th chỉ dán một tem th Hỏi có bao nhiêu cách làm
nh vậy
Câu3: (2 điểm): Trong mặt phẳng với hệ toạ độ Oxy, cho hypebol có phơng trình: 4x2 9y2 36
1 Xác định toạ độ các đỉnh, toạ độ các tiêu điểm và tâm sai của hypebol
2 Viết phơng trình chính tắc của elip đi qua điểm 7 3
;3 2
và có chung các tiêu điểm với hypebol
đã cho
Câu 4: (2 điểm): Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) và mặt cầu (S) có các phơng trình
tơng ứng: ( ) : 2P x 3y4z 5 0 ( ) : S x2y2z23x4y 5z 6 0
1 Xác định toạ độ tâm I và bán kính R của mặt cầu (S)
2 Tính khoảng cách từ tâm I đến mặt phẳng (P) Từ đó suy ra rằng mặt phẳng (P) cắt mặt cầu (S) theo một đờng tròn mà ta kí hiệu là (C) Xác định bán kính r và toạ độ tâm H của đờng tròn
Năm 2000 – 1993 ( 2001 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1: (4 điểm): Cho hàm số 1 2
3 4
y x x (C)
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Cho điểm M thuộc (C) có hoành độ x 2 3 Viết phơng trình đờng thẳng (d) đi qua M và là tiếp tuyến của (C)
3 Tính diện tích hình phẳng giới hạn bởi (C) và tiếp tuyến của nó tại điểm M
Câu 2: (1 điểm): Tính tích phân 6
0
(sin 6 sin 2 6)
Câu 3: (1,5 điểm): Trong mặt phẳng Oxy cho elip (E):
1
6 2
a Xác định toạ độ các tiêu điểm và độ dài các trục của (E)
b Điểm M thuộc (E) nhìn hai tiêu điểm của nó dới một góc vuông Viết phơng trình tiếp tuyến của (E) tại M
Câu 4: (2,5 điểm): Trong không gian với hệ toạ độ Oxyz cho các điểm A(1;0;0), B(1;1;1), 1 1 1
; ;
3 3 3
a Viết PTTQ của mặt phẳng ( ) vuông góc với đờng thẳng OC tại C Chứng minh rằng ba điểm O, B,
C thẳng hàng Xét vị trí tơng đối của mặt cầu (S) tâm B, bán kính 2 với mặt phẳng ( )
b Viết PTTQ của đờng thẳng (d) là hình chiếu vuông góc của đờng thẳng AB lên mặt phẳng ( )
Câu 5: (1 điểm): Tìm số hạng không chứa ẩn x trong khai triển nhị thức Newton:
12
1
x x
Năm 2001 – 1993 ( 2002 ( Thời gian: 180 phút, không kể thời gian giao đề )
Trang 5 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT
Câu 1: (3 điểm): Cho hàm số yx42x2 (C)3
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Dựa vào đồ thị (C) hãy xác định các giá trị của m để phơng trình: x4 2x2m có bốn nghiệm 0 phân biệt
Câu 2: (2 điểm):
1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: 2 cos 2x4sinx trên đoạn 0;
2
2 Có bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau
Câu 3: (1,5 điểm): Trong mặt phẳng Oxy cho hypebol (H) đi qua điểm 5
5;
9
M
và nhận điểm F1(5;0)là tiêu
điểm của nó
a Viết phơng trình chính tắc của (H)
b Viết phơng trình tiếp tuyến của (H) biết rằng tiếp tuyến này song song với đờng thẳng 5x+4y-1=0
Câu 4: (2,5 điểm): Trong không gian với hệ toạ độ Oxyz cho mặt phẳng( ) : x y z 1 0 và đờng thẳng
1 ( ) :
a Viết PTCT của các đờng thẳng là giao tuyến của mặt phẳng ( ) với các mặt phẳng toạ độ Tính thể tích của khối tứ diện ABCD biết A, B, C là giao điểm tơng ứng của mặt phẳng ( ) với các trục toạ độ
Ox, Oy, Oz còn D là giao điểm của đờng thẳng (d) với mặt phẳng toạ độ Oxy
b Viết phơng trình mặt cầu (S) đi qua bốn điểm A, B, C, D Xác định toạ độ tâm và bán kính của đờng tròn là giao tuyến của mặt cầu (S) với mặt phẳng (ACD)
Câu 5: (1 điểm): Tính diện tích hình phẳng giới hạn bởi các đờng y2 2x và 1 y x 1.
Năm 2002 – 1993 ( 2003 ( Thời gian: 150 phút, không kể thời gian giao đề )
Câu 1: (3 điểm):
1 Khảo sát hàm số
2
y
x
2 Xác định m để đồ thị hàm số
2
y
x m
có các tiệm cận trùng với các tiệm cận tơng ứng của đồ thị hàm số khảo sát trên
Câu 2: (2 điểm):
1 Tìm nguyên hàm F(x) của hàm số
2
( )
2 1
f x
biết rằng 1
(1) 3
2 Tìm diện tích hình phẳng giới hạn bởi đồ thị của hàm số
2
2 10 12
2
y
x
và đờng thẳng y = 0.
Câu 3: (1,5 điểm): Trong mặt phẳng với hệ toạ độ Oxy cho một elip (E) có khoẳng cách giữa các đờng chuẩn
là 36 và các bán kính qua tiêu của điểm M nằm trên (E) là 9 và 15
a Viết phơng trình chính tắc của elip (E)
b Viết phơng trình tiếp tuyến của (E) tại điểm M
Câu 4: (2,5 điểm): Trong không gian với hệ toạ độ Oxyz cho bốn điểm A, B, C, D có toạ độ xác định bởi hệ
thức
(2; 4; 1), 4 , (2; 4;3), 2 2
A OB i j k C OD i j k
a Viết PTTS của đờng vuông góc chung của hai đường thẳng AB và CD Tớnh gúc giữa đường thẳng
và mặt phẳng (ABD).
b Viết phương trỡnh mặt cầu (S) đi qua bốn điểm A, B, C, D Viết phương trỡnh tiếp diện ( ) của mặt cầu (S) song song với mặt phẳng (ABD).
Câu 5: (1 điểm): Giải hệ phương trỡnh cho bởi hệ thức sau: y1: y 1: y 1 6 : 5 : 2
x x x
Năm 2006 – 1993 ( 2007 ( Thời gian: 180 phút, không kể thời gian giao đề )
Câu 1 (3,5 điểm) Cho hàm số 2
1
2 1
y x
x
, gọi đồ thị của hàm số là (H).
1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2 Viết phơng trình tiếp tuyến với đồ thị (H) tại điểm A(0;3)
Câu 2 (1,0 điểm) Tìm giá trị lớn nhất của hàm số f x 3x3 x2 7x trên đoạn [0;2].1
Trang 6 Nguyễn Nguyễn Nguyễn Đ ức Nguyễn Thụy Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Nguyễn Một Nguyễn số Nguyễn đ ề Nguyễn thi Nguyễn tụt Nguyễn nghiệp Nguyễn THPT
Câu 3 (1,0 điểm) Tính tích phân
2 ln 1
x
Câu 4 (1,5 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E) có phơng trình
1
25 16
Xác định toạ
độ các tiêu điểm, tính độ dài các trục và tâm sai của elip (E)
Câu 5 (2,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho đờng thẳng (d) có phơng trình 2 1 1
và mặt phẳng (P) có phơng trình x y3z2 0
1 Tìm toạ độ giao điểm M của đờng thẳng (d) với mặt phẳng (P).
2 Viết phơng trình mặt phẳng chứa đờng thẳng (d) và vuông góc với mặt phẳng (P).
Câu 6 (1,0 điểm) Giải phơng trình 4 5 3 6
1
C n C n C n (trong đó k Cn là số tổ hợp chập k của n phần tử).