Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 60 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
60
Dung lượng
1,57 MB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Nguyễn Thị Thanh Huyền ẢNH HƢỞNG CỦAPHONONGIAMCẦMLÊNHIỆUỨNGRADIO–ĐIỆNTRONGHỐ LƢỢNG TỬVỚICƠCHẾTÁNXẠĐIỆNTỬ - PHONONÂM LUẬN VĂN THẠC SỸ KHOA HỌC Hà Nội – 2015 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Nguyễn Thị Thanh Huyền ẢNH HƢỞNG CỦAPHONONGIAMCẦMLÊNHIỆUỨNGRADIO–ĐIỆNTRONGHỐ LƢỢNG TỬVỚICƠCHẾTÁNXẠĐIỆNTỬ - PHONONÂM Chuyên ngành: Vật lý lý thuyết Vật lý toán Mã số: 60440103 LUẬN VĂN THẠC SỸ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS NGUYỄN VŨ NHÂN Hà Nội – 2015 LỜI CẢM ƠN Trước hết, em xin bày tỏ lòng biết ơn chân thành sâu sắc đến PGS.TS NGUYỄN VŨ NHÂN - Người hướng dẫn đạo tận tình cho em trình thực luận văn Em xin chân thành cảm ơn giúp đỡ dạy bảo tận tình thầy cô giáo môn Vật lí lý thuyết – Khoa Vật Lí – trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội suốt thời gian vừa qua, để em học tập hoàn thành luận văn cách tốt Xin chân thành cảm ơn quan tâm, giúp đỡ, tạo điều kiện ban chủ nhiệm khoa Vật Lí, phòng sau đại học trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội Em gửi lời cảm ơn chân thành tới gia đình, bạn bè động viên em suốt trình học tập hoàn thành luận văn MỤC LỤC Trang MỞ ĐẦU Chƣơng 1: HỐ LƢỢNG TỬ VÀ LÝ THUYẾT LƢỢNG TỬ VỀ HIỆUỨNGRADIOĐIỆNTRONG BÁN DẪN KHỐI 1.1 Khái niệm hốlượngtử 1.2 Hàm sóng phổ lượngđiệntửgiamcầmhốlượngtửvớihố cao vô hạn …………………………………………………………………… 1.3 Lý thuyết lượngtửhiệuứngradiođiện bán dẫn khối Chƣơng 2: PHƢƠNG TRÌNH ĐỘNG LƢỢNG TỬ CHO ĐIỆNTỬ VÀ HIỆUỨNGRADIOĐIỆNTRONGHỐ LƢỢNG TỬVỚIHỐ THẾ CAO VÔ HẠN DƢỚI ẢNH HƢỞNG CỦAPHONONÂMGIAMCẦM 11 2.1 Hamiltonion điệntử - phononhốlượngtửvớihố cao vô hạn .11 2.2 Xây dựng phương trình động lượngtử cho điệntửhốlượngtử 12 2.3 Biểu thức mật độ dòng toàn phần qua hốlượngtử 25 Chƣơng 3: TÍNH TOÁN SỐ VÀ VẼ ĐỒ THỊ KẾT QUẢ LÝ THUYẾT CHO HỐ LƢỢNG TỬVỚIHỐ THẾ CAO VÔ HẠN 41 3.1 Sự phụ thuộc thành phần E0x vào tần số Ω xạ .42 3.2 Sự phụ thuộc thành phần E0x vào tần số ω trường điệntừ phân cực thẳng… …….43 TÀI LIỆU THAM KHẢO 45 PHỤ LỤC 46 DANH MỤC BẢNG BIỂU Trang Bảng 3.1……………………………………………………………………………43 DANH MỤC HÌNH VẼ Trang Hình 3.1…………………………………………………………………………….44 Hình 3.2…………………………………………………………………………….45 MỞ ĐẦU Lý chọn đề tài Ngày người ta biết xạ laser ảnhhưởng đến độ dẫn điệnhiệuứng động khác chất bán dẫn khối không thay đổi nồng độ hạt tải hay nhiệt độ electron mà làm thay đổi xác suất tánxạ electron phonon tạp Người ta thay đổi độ lớn hiệuứng mà mở rộng phạm vi tồn chúng Thời gian gần vật lý bán dẫn thấp chiều ngày dành nhiều quan tâm nghiên cứu Việc chuyển từ hệ bán dẫn khối thông thường sang hệ thấp chiều làm thay đổi nhiều tính chất vật lý, có tính chất quang vật liệu Việc nghiên cứu kĩ hệ hai chiều như: hốlượng tử, siêu mạng pha tạp, siêu mạng hợp phần…nhận quan tâm nhà khoa học nước Trong vật liệu thấp chiều, hầu hết tính chất vật lý điệntử thay đổi có nhiều tính chất khác lạ so với vật liệu khối ( gọi hiệuứnggiảm kích thước) Với hệ thấp chiều có trúc nano, quy luật lượngtử bắt đầu cóhiệu lực, trươc hết thay đổi phổ lượng Phổ lượngđiệntử trở thành gián đoạn theo hướng tọa độ bị giới hạn Vì vật liệu bán dẫn xuất nhiều đặc tính mới, hiệuứng mà hệ điệntử ba chiều Ở bán dẫn khối, điệntử chyển động toàn mạng tinh thể ( cấu trúc ba chiều), hệ thấp chiều chuyển động điệntử bị giới hạn nghiêm ngặt dọc theo hai, ba trục tọa độ Phổ lượng hạt tải bị gián đoạn theo phương giới hạn Sư lượngtử hóa phổ lượng hạt tải dẫn đến thay dổi vật liệu hàm phân bố, mật độ trạng thái, mật độ dòng, tương tác điện tử-phonon…Nghĩa chuyển đổi từ hệ ba chiều sang hệ hai chiều, chiều hay không chiều làm thay đổi đáng kể tính chất hệ Cho tới nay, công trình nước quốc tế nghiên cứu lý thuyết hệ thấp chiều phong phú Gần có số công trình nghiên cứu ảnhhưởng sóng điệntừ mạnh ( trường xạ laser) lênhiệuứngradiođiệnđiệntửgiamcầm bán dẫn thấp chiều công bố Tuy nhiên, toán Hiệuứng radio-điện hốlượngtử mẻ, tác giả nghiên cứu ảnhhưởng sóng điệntừ mạnh (trường xạ laser) lênhiệuứng radio-điện điệntửgiamcầm chưa kể đến ảnhhưởngphonongiamcầm Vì vậy, luận văn này, lựa chọn đề tài nghiên cứu: “Ảnh hƣởng phonongiamcầmlênhiệuứng radio-điện hố lƣợng tửvớichếtánxạđiệntửphonon âm” Phƣơng pháp nghiên cứu Đối với toán hiệuứng radio-điện hốlượng tử, sử dụng phương pháp phương trình động lượngtử : Đây phương pháp sử dụng rộng rãi nghiên cứu hệ bán dẫn thấp chiều, đạt hiệu cao cho kết có ý nghĩa khoa học định Từ Hamilton hệ điệntử - phononâm biểu diễnlượngtử hóa lần hai ta xây dựng phương trình động lượngtử cho điệntửgiamcầmhốlượng tử, sau áp dụng phương trình động lượngtử để tính mật độ dòng hạt tải, cuối suy biểu thức giải tích cường độ điện trường Ngoài sử dụng chương trình Matlab để có kết tính toán số đồ thị phụ thuộc cường độ điện trường vào tần số xạ Kết luận văn thiết lập biểu thức giải tích cường độ điện trường hốlượngtửcó thêm sóng điệntừ mạnh (laser) ảnhhưởngphonon quang giamcầm Biểu thức cường độ điện trường phụ thuộc phức tạp không tuyến tính vào tần số ω, Ω sóng điện từ, nhiệt độ T hệ tham số hốlượngtử Cấu trúc luận văn Ngoài phần mở đầu, kết thúc, tài liệu tham khảo phụ lục, luận văn có chương, cụ thể : Chương 1: Hốlượngtử lý thuyết lượngtửhiệuứng radioelectric bán dẫn khối Chương 2: Phương trình động lượngtửhiệuứngradiođiệnhốlượngtửvớihố cao vô hạn ảnhhưởngphononâmgiamcầm Chương 3: Tính số vẽ đồ thị kết lý thuyết Các kết luận văn chứa đựng chương chương 3, đáng lưu ý thu biểu thức giải tích trường điệntừhốlượngtử (cơ chếtánxạđiệntử–phonon âm) có kể đến ảnhhưởngphonongiamcầm Các kết thu chứng tỏ ảnhhưởngphonongiamcầmlênhiệuứngradiođiệnhốlượngtử (cơ chếtánxạđiệntử - phonon âm) Đồng thời luận văn thực việc tính số vẽ đồ thị cho hốlượngtử GaAs/GaAsAl để làm rõ hiệuứng radio-điện hốlượngtửcó kể đến giamcầmphonon Các kết thu luận văn có giá trị khoa học, góp phần vào phát triển lý thuyết hiệuứngradio–điện bán dẫn thấp chiều nói chung hốlượngtử nói riêng N o me4 KTF m I N,N' F N 4 F 3 N , N F s N,N', m 4 F N , F N F F E0 (2.60) +) J = 2H ( ) 0 2 ( ) (Q( ), h d 2H ( ) N 0e2 E , h ( F N ) ( F ) d 2 ( ) N N N 0e2 ( F N ) 2H ( F ) ( E , h 2 ( F ) (2.61) S ( ), h d +) J 2H ( ) Re i ( ) ( F ) 2H ( ) Re E , h i ( ) i ( ) F e m N o me3 KTF m I N,N' F N 4 F 3 N , N ( F ) s2 N,N', m 4 F N, F N ( F ) d N oe4 KTF m 74 I N,N' N,N',m 4 s 2H ( F ) H2 ( F ) ( F ) F N 4 F 3 N , N 2 ( F ) H2 ( F ) F N, (2.62) H2 ( F ) ( F ) ( ) F N E , h F H2 ( F ) Suy ra: 20 ( F ) b 1 Ex hz Eox 2 ( F ) a 20 ( F ) b Eoy 1 E y hz 2 ( F ) a 20 ( F ) b E0 z Ex hy E y hx 2 ( ) a F Trong đó: 39 (2.63) N 0e2 a F N N N o e 4 KTF m H2 ( F ) b I N,N' F N 4 F 3 N , N ( F ) s2 H2 ( F ) N,N', m 4 F N, N 2 2mL2 ( F ) H2 ( F ) ( F ) ( ) ( ) F H F n2 ; F ( ) ( F ) F 1 40meV ; ( F ) 1012 s; 1013 s 1 Các biểu thức giải tích cường độ điện trường phụ thuộc vào tần số cường độ sóng điện mạnh, tần số trường điệntừ phân cực phẳng nhiệt độ hệ Sự phụ thuộc tính toán số vẽ đồ thị cho hốlượngtử chương luận văn 40 Chƣơng 3: TÍNH TOÁN SỐ VÀ VẼ ĐỒ THỊ KẾT QUẢ LÝ THUYẾT CHO HỐ LƢỢNG TỬVỚIHỐ THẾ CAO VÔ HẠN Trong chương này, trình bày kết tính toán số cho hốlượngtửđiển hình GaAs/GaAsAl Cường độ điện trường (2.63) coi hàm số phụ thuộc vào tham số nhiệt độ, tần số ω sóng điệntừtần số Ω trường sóng laser ảnhhưởngphononâmgiamcầm Bảng 3.1: Các tham số vật liệu Đại lƣợng Ký hiệu Giá trị Hệ số điện môi tĩnh 0 12.9 Hệ số điện môi cao tần 10.9 Điện tích hiệu dụng điệntử (C) E 2,07 Khối lượnghiệu dụng điệntử (kg) M 0.067 Năng lượngphonon quang (MeV) 0 36.25 Nồng độ hạt tải điện ( m ) n0 10 Độ rộng hốlượngtử (m) L 3 41 23 90.109 3.1 Sự phụ thuộc thành phần E0x vào tần số Ω xạ Hình 3.1: Sự phụ thuộc thành phần E0x cƣờng độ điện trƣờng vào tần số Hình 3.1: Mô tả phụ thuộc cường độ điện trường vào tần số xạ Ω hệ khảo sát điều kiện T= 270K; 1010 rad/s;E0=106 V/m; Ey=0,5.106 V/m; ( ) =10-12s, dải tần số từ 5^13 -10^16.Từ đồ thị cho thấy: + Thành phần E0x phụ thuộc phi tuyến phức tạp vào tần số Điều gây phần xuất thành phần qm giống yếu tố gây nhiễu có xét ảnhhưởngphonongiamcầm + Sự phụ thuộc phi tuyến thể rõ dải tầntừ 10^14 – 1,5.10^14 42 3.2 Sự phụ thuộc thành phần E0x vào tần số ω trƣờng điệntừ phân cực thẳng x 10 unconfined phonon confined phonons -2 E0x (V/m) -4 -6 -8 -10 -12 The frequency of electmagnetic field (s ) -1 10 12 x 10 Hình 3.2: Sự phụ thuộc thành phần E0x vào tần số ω Hình 3.2 mô tả phụ thuộc thành phần E0x vào tần số xạ hệ 1014 rad/s;E0=106 V/m; Ey=1,5.106 khảo sát điều kiện T= 270K; V/m; ( ) =10-12s, dải tần ω từ 10^8 – 10^13 Từ đồ thị cho thấy: + Ở trường hợp không kể đến ảnhhưởngphonongiamcầmcó xét ảnhhưởngphonongiamcầm thành phần E0x phụ thuộc phi tuyến vào tần số ω trường điệntừ phân cực thẳng có biến đổi đáng kể vùng tần số từ 10^12 – 0,3.10^12 + Tuy nhiên, ω tăng E0x biến đổi theo trường hợp có xét ảnhhưởngphonongiamcầm biến đổi nhanh hơn, điều lại gây thành phần qm yếu tố gây nhiễu 43 KẾT LUẬN Trên sở giải toán hiệuứngradiođiện bán dẫn khối, toán: “Ảnh hưởngphonongiamcầmlênhiệuứngradio - điệnhốlượngtử theo chếtánxạđiệntử - phonon âm” giải thành công thu kết quan trọng sau: Xuất phát từ Hamiltonian hệ điệntử - phononâmgiamcầmhốlượng tử, thu phương trình động lượngtử cho điệntửhốlượngtửTừ đó, xây dựng biểu thức mật độ dòng toàn phần qua hốlượngtử thu biểu thức giải tích thành phần E0x, E0y, E0z, phụ thuộc vào , Từ biểu thức giải tích thành phần E0x, E0y, E0z thu luận văn cho ta thấy: cường độ trường rađiođiện phụ thuộc phức tạp không tuyến tính vào tần số sóng điện từ, nhiệt độ T hệ, tham số hốlượngtử Đặc biệt trường đio điện phụ thuộc vào số m đặc trưng cho giamcầmphonon Các kết lý thuyết tính toán số vẽ đồ thị hốlượngtửvớihố cao vô hạn cho thấy khác biệt lớn so vớihiệuứngradiođiện bán dẫn khối khác biệt hiệuứngradiođiệnhốlượngtửphonon không giamcầmphonongiamcầm 44 TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt Nguyễn Quang Báu (chủ biên), Đỗ Quốc Hùng, Lê Tuấn (2011), “Lý thuyết bán dẫn đại”, Nhà xuất Đại học Quốc gia Hà Nội Nguyễn Quang Báu (chủ biên), Nguyễn Vũ Nhân, Phạm Văn Bền (2010), “Vật lý bán dẫn thấp chiều”, Nhà xuất Đại học Quốc gia Hà Nội Trần Minh Hiếu (2011), “Hiệu ứng quang kích thích lượngtử bán dẫn”, chuyên đề nghiên cứu sinh, trường Đại học khoa học tự nhiên, Đại học Quốc Gia Hà Nội Nguyễn Văn Hùng (1999), “Lý thuyết chất rắn”, Nhà xuất Đại học Quốc gia Hà Nội Tài liệu tiếng Anh Bau N.Q, N.V Nhan and T.C.Phong (2002), “Calculations of the absorption coefficient of weak Electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori Method”, J.Korean Phys Soc., Vol 41, 149-154 Bau N.Q, N.V.Nhan and T.C.Phong (2003), “Parametric resonance of acoustic and optical phonons in a quantum well”, J Kor Phys Soc., Vol 42, No 5, 647651 Bau N.Q and T.C.Phong (1998), “Calulations of the absorption coefficient of weak electromagnetic wave by free carrers in quantum wells by the Kubo-Mori method”, J.Phys.Soc.Jpn Vol.67, 3875 Bau N.Q, D.M.Hung (2010), “The influences phonons on the non-linear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices”, PIER Letters, Vol 15, 175-185 Bau N.Q and H.D.Trien (2011), “The nonlinear absorption of a strong electromagnetic wave in low-dimensional systems”, Wave propagation, Ch.22, 461-482, Intech 45 PHỤ LỤC Chƣơng trình Matlab mô phụ thuộc thành phần E0x vào tần số Ω xạ clc;close all;clear all; syms z m=.6097*10^(-31); ne=1e14; H=1e6; Xinf=10.9;X0=12.9; eps0=8.86e-12; e=1.60219e-19;kb=1.3807e-23;h=1.05459e-34; c=3e8; hnu=3.625e-2*1.60219e-19;ome0=hnu/h;%omega L0 omez=0.51*ome0;%omega0 Omega=linspace(5e13,10e15); ef=30e-3*e; L=90.10e-9; Tau=1e-12; T=270; bt=1./(kb.*T); Eo=1e6; Ey=0.5e6;Ex=0.25e6 ; omegah=e.*H./(m.*c); ome=Omega.^4; F=5e11; nn1=2;nn2=2; mm1=[0 3]; for n1=0:nn1 hsa=0; hsb=0; en=(h^2)*(pi^2)*(n1)^2/(2*m*(L^2)); hsa=hsa+e^2/pi/h^2/(kb*T).*(ef- en)*Tau; hsb=hsb+e^2/pi/h^2/(kb*T).*(ef-en)*2*omegah*Tau^2/(1+omez^2*Tau^2); 46 end; for k=1:length(mm1) mm=mm1(k); qm=mm*pi/L; J10=0;J11=0;J12=0;J13=0;J14=0;J15=0; J20=0;J21=0;J22=0;J23=0;J24=0;J25=0; K10=0;K11=0;K12=0;K13=0;K14=0;K15=0; K20=0;K21=0;K22=0;K23=0;K24=0;K25=0; f1=0; A=e^6*ome0*F^2/(4*m*eps0*h^4*kb*T) exp(h*ome0/(kb*T)-1)*Tau^2; for n1=0:nn1 for n2=0:nn2 for m1=0:mm I1=tinhI(m1,n1,n2,L); en1=(h^2)*(pi^2)*(n1)^2/(2*m*(L^2)); en2=(h^2)*(pi^2)*(n2)^2/(2*m*(L^2)); a10=en1-en2+h*ome0;b10=(ef-en1)+(ef-en2)-a10; a11=en1-en2-h*ome0;b11=(ef-en1)+(ef-en2)-a11; a12=en1-en2+h*ome0+h*Omega;b12=(ef-en1)+(ef-en2)-a12; a13=en1-en2+h*ome0-h*Omega;b13=(ef-en1)+(ef-en2)-a13; a14=en1-en2-h*ome0+h*Omega;b14=(ef-en1)+(ef-en2)-a14; a15=en1-en2-h*ome0-h*Omega;b15=(ef-en1)+(ef-en2)-a15; J10=J10+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b10.*qm.^2+4*m^2/h^4.*a10.^2)).*(ef-en1+ef-en2); J11=J11+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b11.*qm.^2+4*m^2/h^4.*a11.^2)).*(ef-en1+ef-en2); J12=J12+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b12.*qm.^2+4*m^2/h^4.*a12.^2)).*(ef-en1+ef-en2); J13=J13+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b13.*qm.^2+4*m^2/h^4.*a13.^2)).*(ef-en1+ef-en2); 47 J14=J14+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b14.*qm.^2+4*m^2/h^4.*a14.^2)).*(ef-en1+ef-en2); J15=J15+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b15.*qm.^2+4*m^2/h^4.*a15.^2)).*(ef-en1+ef-en2); A1=e^6*ome0*F^2/(8*eps0*m*h^4*kb*T).* exp(h*ome0/(kb*T)-1)*Tau; Tau10=Tau*sqrt(ef./(ef-h*ome0)).*exp(h*ome0/(kb*T)); Tau11=Tau*sqrt(ef./(ef+h*ome0)).*exp(-h*ome0/(kb*T)); Tau12=Tau*sqrt(ef./(ef-h*ome0-h*Omega)).*exp((h*ome0+h*Omega)/(kb*T)); Tau13=Tau*sqrt(ef./(ef-h*ome0+h*Omega)).*exp((h*ome0-h*Omega)/(kb*T)); Tau14=Tau*sqrt(ef./(ef+h*ome0-h*Omega)).*exp((-h*ome0+h*Omega)/(kb*T)); Tau15=Tau*sqrt(ef./(ef+h*ome0+h*Omega)).*exp((-h*ome0-h*Omega)/(kb*T)); J20=J20+A1./ome.*I1.*(2*b10-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b10.*qm.^2+4*m^2/h^4.*a10.^2)).*Tau 10; J21=J21+A1./ome.*I1.*(2*b11-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b11.*qm.^2+4*m^2/h^4.*a11.^2)).*Tau 11; J22=J22+A1./ome.*I1.*(2*b12-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b12.*qm.^2+4*m^2/h^4.*a12.^2)).*Tau 12; J23=J23+A1./ome.*I1.*(2*b13-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b13.*qm.^2+4*m^2/h^4.*a13.^2)).*Tau 13; J24=J24+A1./ome.*I1.*(2*b14-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b14.*qm.^2+4*m^2/h^4.*a14.^2)).*Tau 14; J25=J25+A1./ome.*I1.*(2*b15-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b15.*qm.^2+4*m^2/h^4.*a15.^2)).*Tau 15; J1122=2*J10+2*J11-J12-J13-J14-J15-(2*J20+2*J21-J22-J23-J24-J25); K10=K10+omegah*Tau*2/(1+omez^2*Tau^2)*J10; 48 K11=K11+omegah*Tau*2/(1+omez^2*Tau^2)*J11; K12=K12+omegah*Tau*2/(1+omez^2*Tau^2)*J12; K13=K13+omegah*Tau*2/(1+omez^2*Tau^2)*J13; K14=K14+omegah*Tau*2/(1+omez^2*Tau^2)*J14; K15=K15+omegah*Tau*2/(1+omez^2*Tau^2)*J15; K20=K20+omegah*Tau*2/(1+omez^2*Tau^2)*J20; K21=K21+omegah*Tau*2/(1+omez^2*Tau^2)*J21; K22=K22+omegah*Tau*2/(1+omez^2*Tau^2)*J22; K23=K23+omegah*Tau*2/(1+omez^2*Tau^2)*J23; K24=K24+omegah*Tau*2/(1+omez^2*Tau^2)*J24; K25=K25+omegah*Tau*2/(1+omez^2*Tau^2)*J25; K1122=2*K10+2*K11-K12-K13-K14-K15-(2*K20+2*K21-K22-K23-K24-K25); end; end; end; E0x(:,k)=-(hsb+K1122)./(hsa+J1122).*Ey; end; plot(Omega,E0x(:,2),'-b'); legend('confined phonons'); xlabel('The frequency \Omega of the laser radiation (s^{-1})'); ylabel('E_{0x} (V/m)'); Chƣơng trình Matlab mô phụ thuộc thành phần E0x vào tần số ω trƣờng điệntừ phân cực thẳng clc;close all;clear all; syms z m=.6097*10^(-31); ne=1e14;H=1e6; Xinf=10.9;X0=12.9; eps0=8.86e-12; e=1.60219e-19;kb=1.3807e-23;h=1.05459e-34; c=3e8; 49 hnu=3.625e-2*1.60219e-19;ome0=hnu/h; Omega=5e14; omez=linspace(1e8,1e13,100); ef=30e-3*e; L=10e-9; Tau=1e-12; T=270; bt=1./(kb.*T); Eo=1e6; Ey=0.5e6;Ex=0.25e6 ; omegah=e.*H./(m.*c); ome=Omega.^4; F=5e11; nn1=2; nn2=2; mm1=[0 3]; for n1=0:nn1 hsa=0;hsb=0; en=(h^2)*(pi^2)*(n1)^2/(2*m*(L^2)); hsa=hsa+e^2/pi/h^2/(kb*T).*(ef-en)*Tau; hsb=hsb+e^2/pi/h^2/(kb*T).*(ef-en)*2*omegah*Tau^2./(1+omez.^2*Tau^2); end; for k=1:length(mm1) mm=mm1(k); qm=mm*pi/L; J10=0;J11=0;J12=0;J13=0;J14=0;J15=0; J20=0;J21=0;J22=0;J23=0;J24=0;J25=0; K10=0;K11=0;K12=0;K13=0;K14=0;K15=0; K20=0;K21=0;K22=0;K23=0;K24=0;K25=0; f1=0; A=e^6*ome0*F^2/(4*m*eps0*h^4*kb*T).*( exp(h*ome0/(kb*T)-1)*Tau^2; for n1=0:nn1 for n2=0:nn2 50 for m1=0:mm I1=tinhI(m1,n1,n2,L); en1=(h^2)*(pi^2)*(n1)^2/(2*m*(L^2)); en2=(h^2)*(pi^2)*(n2)^2/(2*m*(L^2)); a10=en1-en2+h*ome0;b10=(ef-en1)+(ef-en2)-a10; a11=en1-en2-h*ome0;b11=(ef-en1)+(ef-en2)-a11; a12=en1-en2+h*ome0+h*Omega;b12=(ef-en1)+(ef-en2)-a12; a13=en1-en2+h*ome0-h*Omega;b13=(ef-en1)+(ef-en2)-a13; a14=en1-en2-h*ome0+h*Omega;b14=(ef-en1)+(ef-en2)-a14; a15=en1-en2-h*ome0-h*Omega;b15=(ef-en1)+(ef-en2)-a15; J10=J10+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b10.*qm.^2+4*m^2/h^4.*a10.^2)).*(ef-en1+ef-en2); J11=J11+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b11.*qm.^2+4*m^2/h^4.*a11.^2)).*(ef-en1+ef-en2); J12=J12+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b12.*qm.^2+4*m^2/h^4.*a12.^2)).*(ef-en1+ef-en2); J13=J13+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b13.*qm.^2+4*m^2/h^4.*a13.^2)).*(ef-en1+ef-en2); J14=J14+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b14.*qm.^2+4*m^2/h^4.*a14.^2)).*(ef-en1+ef-en2); J15=J15+A./ome.*I1.*(1qm.^2./sqrt(qm.^4+4*m/h^2.*b15.*qm.^2+4*m^2/h^4.*a15.^2)).*(ef-en1+ef-en2); A1=e^6*ome0*F^2/(8*eps0*m*h^4*kb*T)*(1/Xinf-1/X0)*exp(h*ome0/(kb*T)1)*Tau; Tau10=Tau*sqrt(ef./(ef-h*ome0)).*exp(h*ome0/(kb*T)); Tau11=Tau*sqrt(ef./(ef+h*ome0)).*exp(-h*ome0/(kb*T)); Tau12=Tau*sqrt(ef./(ef-h*ome0-h*Omega)).*exp((h*ome0+h*Omega)/(kb*T)); Tau13=Tau*sqrt(ef./(ef-h*ome0+h*Omega)).*exp((h*ome0-h*Omega)/(kb*T)); Tau14=Tau*sqrt(ef./(ef+h*ome0-h*Omega)).*exp((-h*ome0+h*Omega)/(kb*T)); Tau15=Tau*sqrt(ef./(ef+h*ome0+h*Omega)).*exp((-h*ome0-h*Omega)/(kb*T)); 51 J20=J20+A1./ome.*I1.*(2*b10-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b10.*qm.^2+4*m^2/h^4.*a10.^2)).*Tau 10; J21=J21+A1./ome.*I1.*(2*b11-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b11.*qm.^2+4*m^2/h^4.*a11.^2)).*Tau 11; J22=J22+A1./ome.*I1.*(2*b12-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b12.*qm.^2+4*m^2/h^4.*a12.^2)).*Tau 12; J23=J23+A1./ome.*I1.*(2*b13-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b13.*qm.^2+4*m^2/h^4.*a13.^2)).*Tau 13; J24=J24+A1./ome.*I1.*(2*b15-h^2/(2*m).*qm^2h^2/(2*m).*qm.^4./sqrt(qm.^4+4*m/h^2.*b15.*qm.^2+4*m^2/h^4.*a15.^2)).*Tau 15; J1122=2*J10+2*J11-J12-J13-J14-J15-(2*J20+2*J21-J22-J23-J24-J25); K10=K10+omegah*Tau*2./(1+omez.^2*Tau^2).*J10; K11=K11+omegah*Tau*2./(1+omez.^2*Tau^2).*J11; K12=K12+omegah*Tau*2./(1+omez.^2*Tau^2).*J12; K13=K13+omegah*Tau*2./(1+omez.^2*Tau^2).*J13; K14=K14+omegah*Tau*2./(1+omez.^2*Tau^2).*J14; K15=K15+omegah*Tau*2./(1+omez.^2*Tau^2).*J15; K20=K20+omegah*Tau*2./(1+omez.^2*Tau^2).*J20; K21=K21+omegah*Tau*2./(1+omez.^2*Tau^2).*J21; K22=K22+omegah*Tau*2./(1+omez.^2*Tau^2).*J22; K23=K23+omegah*Tau*2./(1+omez.^2*Tau^2).*J23; K24=K24+omegah*Tau*2./(1+omez.^2*Tau^2).*J24; K25=K25+omegah*Tau*2./(1+omez.^2*Tau^2).*J25; K1122=2*K10+2*K11-K12-K13-K14-K15-(2*K20+2*K21-K22-K23-K24-K25); end; end; 52 end; E0x(:,k)=-(hsb+K1122)./(hsa+J1122).*Ey; end; plot(omez,E0x(:,1),'m',omez,E0x(:,2),'-g');grid on; legend('unconfined phonon','confined phonons'); xlabel('The frequency \omega of electmagnetic field (s^{-1})'); ylabel('E_{0x} (V/m)'); 53 ... điện từ hố lượng tử (cơ chế tán xạ điện tử – phonon âm) có kể đến ảnh hưởng phonon giam cầm Các kết thu chứng tỏ ảnh hưởng phonon giam cầm lên hiệu ứng radio điện hố lượng tử (cơ chế tán xạ điện. .. TRÌNH ĐỘNG LƢỢNG TỬ CHO ĐIỆN TỬ VÀ HIỆU ỨNG RADIO ĐIỆN TRONG HỐ LƢỢNG TỬ VỚI HỐ THẾ CAO VÔ HẠN DƢỚI ẢNH HƢỞNG CỦA PHONON ÂM GIAM CẦM 2.1 Hamiltonion điện tử - phonon hố lƣợng tử với hố cao vô hạn... thuyết lượng tử hiệu ứng radio điện bán dẫn khối Chƣơng 2: PHƢƠNG TRÌNH ĐỘNG LƢỢNG TỬ CHO ĐIỆN TỬ VÀ HIỆU ỨNG RADIO ĐIỆN TRONG HỐ LƢỢNG TỬ VỚI HỐ THẾ CAO VÔ HẠN DƢỚI ẢNH HƢỞNG CỦA PHONON ÂM GIAM