Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 133 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
133
Dung lượng
1,28 MB
Nội dung
Header Page of 123 VIN HN LM KHOA HC V CễNG NGH VIT NAM VIN C HC -o0o - DNG NGC HO PHN TCH DAO NG PHI TUYN TRONG H CHU KCH NG NGU NHIấN V TUN HON LUN N TIN S K THUT H Ni - 2015 Footer Page of 123 Header Page of 123 ii VIN HN LM KHOA HC V CễNG NGH VIT NAM VIN C HC -o0o - DNG NGC HO PHN TCH DAO NG PHI TUYN TRONG H CHU KCH NG NGU NHIấN V TUN HON LUN N TIN S K THUT Chuyờn ngnh: C k thut Mó s: 62 52 01 01 Ngi hng dn khoa hc: GS TSKH Nguyn ụng Anh H Ni - 2015 Footer Page of 123 Header Page of 123 iii LI CM N Tỏc gi chõn thnh cỏm n thy hng dn GS.TSKH Nguyn ụng Anh ó tn tõm hng dn khoa hc, luụn ng viờn v giỳp tỏc gi c v vt cht ln tinh thn tỏc gi hon thnh lun ỏn ny Tỏc gi xin gi li cỏm n n Khoa o to sau i hc v cỏn b Vin C hc, bn bố v ng nghip ti trng i hc Cụng ngh thụng tin, HQG Tp HCM, ó ng viờn, giỳp v to iu kin thun li cho tỏc gi quỏ trỡnh lm lun ỏn Nhõn õy, tỏc gi cng gi li cỏm n n NCS Nguyn Nh Hiu, ngi ó lng nghe v chia s rt nhiu vi tỏc gi v chuyờn mụn, v c bit l PGS.TS Dng Anh c, ngi ó to iu kin tt nht tỏc gi an tõm thc hin nghiờn cu ca mỡnh Sau ht, tỏc gi chõn thnh cỏm n b m, v con, v gi li cỏm n n ngi thõn ó rt kiờn nhn ng viờn tỏc gi thi gian lm lun ỏn Tỏc gi lun ỏn, Dng Ngc Ho Footer Page of 123 Header Page of 123 iv LI CAM OAN Tụi cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi, di s hng dn trc tip ca GS TSKH Nguyn ụng Anh Cỏc s liu, kt qu nờu lun ỏn l trung thc v cha tng c cụng b bt k cụng trỡnh no khỏc Tỏc gi lun ỏn, Dng Ngc Ho Footer Page of 123 Header Page of 123 v MC LC LI CM N iii LI CAM OAN iv MC LC v DANH MC HèNH V, TH viii DANH MC BNG x CC Kí HIU DNG TRONG LUN N xii M U .1 CHNG 1.TNG QUAN 1.1 Gii thiu 1.2 Cỏc phng phỏp nghiờn cu h dao ng ngu nhiờn phi tuyn 1.3 H dao ng chu kớch ng tun hon v ngu nhiờn 13 1.4 Mc tiờu ca lun ỏn 15 CHNG C S Lí THUYT 16 2.1 Cỏc khỏi nim c bn gii tớch ngu nhiờn 16 2.1.1 S lc v lý thuyt xỏc sut 16 2.1.1.1 Khụng gian xỏc sut 16 2.1.1.2 Bin ngu nhiờn 17 2.1.2 Quỏ trỡnh ngu nhiờn 21 2.1.2.1 nh ngha 21 2.1.2.2 Mt s quỏ trỡnh ngu nhiờn thng gp 22 2.1.3 Tớch phõn ngu nhiờn 26 2.1.3.1 M u 26 Footer Page of 123 Header Page of 123 vi 2.1.3.2 Tớch phõn Ito Tớch phõn Stratonovich 28 2.1.3.3 Tớnh cht ca tớch phõn Ito 29 2.1.4 Phng trỡnh vi phõn ngu nhiờn 31 2.2 C s lý thuyt nghiờn cu h dao ng ngu nhiờn 34 2.2.1 Phng phỏp trung bỡnh ngu nhiờn theo biờn v pha 34 2.2.2 Phng phỏp trung bỡnh ngu nhiờn h ta -cỏc 36 2.2.3 Phng phỏp hm b tr v li gii phng trỡnh Fokker-Planck (FP) 39 2.2.3.1 Phng phỏp hm b tr 39 2.2.3.2 Nghim ca phng trỡnh FP vi cỏc h s dch chuyn tuyn tớnh 40 2.2.3.3 Tuyn tớnh húa tng ng- gii xp x phng trỡnh FP 46 2.2.4 Phng phỏp mụ phng s 50 2.3 Kt lun chng 52 CHNG PHN TCH DAO NG TRONG H PHI TUYN CHU KCH NG NGU NHIấN V TUN HON 53 3.1 H dao ng Van der Pol 55 3.1.1 Tớnh toỏn lý thuyt 56 3.1.2 Kt qu v tho lun 58 3.1.3 So sỏnh vi phng phỏp phi tuyn tng ng 65 3.2 H dao ng Duffing 67 3.2.1 Tớnh toỏn lý thuyt 67 3.2.2 Kt qu v tho lun 69 3.3 Dao ng Van der Pol Duffing 74 3.3.1 Tớnh toỏn lý thuyt 74 3.3.2 Kt qu v tho lun 75 3.4 H dao ng Mathieu-Duffing 79 Footer Page of 123 Header Page of 123 vii 3.4.1 Tớnh toỏn lý thuyt 79 3.4.2 Kt qu v tho lun 82 3.5 Kt lun chng 87 CHNG PHN TCH BAN U P NG TH IU HềA TRONG H DAO NG PHI TUYN CHU KCH NG NGU NHIấN V TUN HON 89 4.1 Gii thiu 89 4.2 K thut phõn tớch 90 4.3 Kt qu v tho lun 97 4.4 Kt lun chng 100 KT LUN 102 DANH SCH CễNG TRèNH CA TC GI C CễNG B LIấN QUAN N LUN N 105 TI LIU THAM KHO 106 PH LC 112 Ph lc A 112 Ph lc B 116 Footer Page of 123 Header Page of 123 viii DANH MC HèNH V, TH Hỡnh 1.1 H mt bc t a) Kt cu to nh tng b) Mụ hỡnh tng ng Hỡnh 2.1 Mt qu o ca chuyn ng Brown (quỏ trỡnh Wiener) 23 Hỡnh 2.2 Qu o ca phng trỡnh vi phõn thng 27 Hỡnh 2.3 Qu o ca mt quỏ trỡnh ngu nhiờn 27 Hỡnh 3.1.1 th trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng theo tham s Q 61 Hỡnh 3.1.2 th trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng theo tham s Q so sỏnh vi kt qu mụ phng s 62 Hỡnh 3.1.3 th hm mt xỏc sut ng thi p ( x, x& ) ca h dao ng Van der Pol ti thi im t = 294s 63 Hỡnh 3.1.4 th ca hm mt xỏc sut ca dch chuyn x theo cỏc thi gian khỏc 64 Hỡnh 3.1.5 th ca hm mt xỏc sut ca dch chuyn x ti thi im t = 294 (s) 64 ( ) Hỡnh 3.1.6 th ng cong E x ca h Van der Pol theo n lõn cn w 65 Hỡnh 3.2.1 Kt qu tớnh toỏn E ộở x ( t ) ựỷ v E ộở x ( t ) ựỷ bng phng phỏp gii tớch v so vi kt qu mụ phng s 71 Hỡnh 3.2.2 th bỡnh phng biờn ca ỏp ng trung bỡnh theo tham s Q 71 Hỡnh 3.2.3 th bỡnh phng biờn ca ỏp ng trung bỡnh theo tham s s 72 Footer Page of 123 Header Page of 123 ix Hỡnh 3.2.4 th trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ( x ) theo tham s s 72 Hỡnh 3.2.5 th ng cong cng hng ca h Duffing 73 Hỡnh 3.3.1 th trung bỡnh theo thi gian ca E ộở x ( t ) ựỷ theo tham s phi tuyn g 78 Hỡnh 3.3.2 th trung bỡnh theo thi gian ca E ộở x ( t ) ựỷ theo biờn lc kớch ng tun hon Q 78 Hỡnh 3.4.1 Kt qu gii tớch E ộở x ( t ) ựỷ c so sỏnh vi cỏc kt qu s 84 Hỡnh 3.4.2 Kt qu gii tớch E ộở x ( t ) ựỷ c so sỏnh vi cỏc kt qu s 84 Hỡnh 3.4.3 th hm mt xỏc sut ng thi ca h Mathieu-Dufing ti thi im t = 294 s 85 Hỡnh 3.4.4 th hm mt xỏc sut ca x ti thi im t = 294 (s) 86 Hỡnh 3.4.5 th hm mt xỏc sut ca x ti vi thi im (s) 86 Hỡnh 4.1 th trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng th iu hũa theo tham s s 99 Hỡnh 4.2 nh hng ca s v Q0 lờn trung bỡnh bỡnh phng ỏp ng th iu hũa 99 Hỡnh 4.3 nh hng s v h lờn trung bỡnh bỡnh phng ỏp ng th iu hũa 100 Footer Page of 123 Header Page 10 of 123 x DANH MC BNG Bng 3.1.1 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s e 58 Bng 3.1.2 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s n 59 Bng 3.1.3 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s Q 60 Bng 3.1.4 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s s 61 Bng 3.1.5 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo k thut ca lun ỏn v phng phỏp phi tuyn tng ng theo tham s 66 Bng 3.2.1 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s g 69 Bng 3.2.2 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s s 69 Bng 3.2.3 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s s vi cỏc giỏ tr e khỏc 70 Bng 3.3.1 Sai s gia kt qu mụ phng v cỏc giỏ tr xp x ca trung bỡnh theo thi gian ca trung bỡnh bỡnh phng ỏp ng E ộở x ( t ) ựỷ theo tham s e 75 Footer Page 10 of 123 Header Page 119 of 123 106 TI LIU THAM KHO Ting Vit: [1] Nguyn ụng Anh (1999), Mt s kt qu nghiờn cu lnh vc dao ng ngu nhiờn thc hin ti Vin C hc, Mt s thnh tu ca Vin C hc sau 20 nm thnh lp, Trung tõm Khoa hc t nhiờn v cụng ngh Quc gia, tr 18-23 [2] Nguyn Vn o, Trn Kim Chi, Nguyn Dng (2005), Nhp mụn ng lc hc phi tuyn v chuyn ng hn n, NXB i Hc Quc Gia H Ni [3] Trn Hựng Thao (2000), Tớch phõn ngu nhiờn v phng trỡnh vi phõn ngu nhiờn, NXB Khoa hc v K thut Ting nc ngoi: [4] Anh ND (1986), Two methods of integration of the Kolmogorov-FokkerPlanck equations, (English) Ukr Math J 38, pp 331-334; translation from Ukr Mat Zh 1986; 38(3), pp 381-385 [5] Anh ND (1995), Higher order random averaging method of coefficients in Fokker-Planck equation, In special volume Advance in Non-linear structural dynamics of Sódhanó, Indian Academy of Science, pp 373-378 [6] Anh ND, Di Paola M (1995), Some extensions of Gaussian equivalent linearization, In Conference on Nonlinear Stochastic Dynamics, Hanoi, Vietnam, pp 5-16 [7] Anh ND, Schiehlen W (1997), An extension to the mean square criterion of Gaussian equivalent linearization, Vietnam J Math 25(2), pp 115-123 [8] Anh ND, Hai NQ (2000), A technique of closure using a polynomial function of Gaussian process, Probabilistic Engineering Mechanics, 15, pp 191197 [9] Anh ND (2010), Duality in the analysis of responses to nonlinear systems Vietnam J Mech Vast 32, pp 263266 [10] Anh ND (2012), Dual approach to averaged values of functions: Advanced formulas, Vietnam J Mech Vast, 34 (4), pp 15 [11] Anh ND, Hieu NN, Linh NN (2012), A dual criterion of equivalent linearization method for nonlinear systems subjected to random excitation Acta Mech., 223, pp 645654 [12] Anh ND, Hieu NN (2012), The Duffing oscillator under combined periodic and random excitations, Probabilistic Engineering Mechanics, 30, pp 27-36 Footer Page 119 of 123 Header Page 120 of 123 107 [13] Arnold L (1974), Stochastic Differential Equations: Theory and Applications, New York: Wiley [14] Atalik TS, Utku S (1976), Stochastic of linearization of multi-degree of freedom nonlinear, Earth Eng Struct Dynamics, 4, pp 411-20 [15] Bogoliubov NN, Mitropolskii YA (1963), A symtotic methods in the theory of nonlinear oscillations, Moscow: Nauka [16] Brucker A, Lin YK (1987), Application of complex stochastic averaging to nonlinear random vibration problems, Int J Nonlinear Mech 22, pp 237250 [17] Cai GQ, Lin YK (1988), A new approximate solution technique for randomly excited nonlinear oscillators Int J Nonlinear Mech 23, pp 409-420 [18] Cai GQ, Lin YK (1996), Exact and approximate solution for randomly excited MDOF nonlinear systems Int J Nonlinear Mechanics, 31, pp 647655 [19] Cai GQ, Lin YK (1994), Nonlinearly damped systems under simultaneous broad-band and harmonic excitations, Nonlinear Dynamics, 6, pp 163-177 [20] Casciati F, Faravelli L (1986), Equivalent linearization in nonliear random vibration problems, In Conference on Vibration problems in Eng, Xian, China, pp 986-991 [21] Caughey TK (1959), Response of a nonlinear string to random loading, ASME J Applied Mechanics, 26, pp.341-4 [22] Caughey TK (1963), Equivalent Linearization techniques, J the Acoustical Society of America, 35(11) pp 1706-1711 [23] Caughey TK, Ma F (1982), The exact steady-state solution of a class of nonlinear stochastic systems, Int J Nonlinear Mechanics, 17 pp 137-142 [24] Caughey TK (1986), On the response of nonlinear oscillators to stochastic excitation, Probab Eng Mech 1, pp 2-10 [25] Chambers RP (1967), Random number generation on digital computers, IEEE Spectrum (February), pp 48-56 [26] Chen LC, Zhu WQ (2009), Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations, Nonlinear Dynamics, 56, pp.231-241 [27] Clarkson BL and Mead DJ (1973), High Frequency Vibration of Aircraft Structures, Sound and Vibration, 28, pp 487-504 [28] Crandall SH (1963), Perturbation techniques for random vibration of nonlinear systems, J Acoust Soc Am 35, pp 1700-1705 [29] Daniel JI (2008), Engineering vibration, New Jersy: Prentice Hall Footer Page 120 of 123 Header Page 121 of 123 108 [30] Davies HG, Rajan S (1988), Random superharmonic and subharmonic response: Multiple time scaling of a Duffing oscillator, Sound and Vibration, 126(2), pp 195-208 [31] Dimentberg MF, Iourtchenko DV, Ewijk OV (1998), Subharmonic response of a quasi-isochronous vibroimpact system to a randomly disordered periodic excitation, Nonlinear Dynamics, 17, pp 173-186 [32] Dimentberg MF (1976), Response of a non-linearly damped oscillator to combined periodic parametric and random external excitation, Int J Nonlinear Mechanics, 11 pp 83-87 [33] Dimentberg MF (1982), An exact solution to a certain non-linear random vibration problem, Int J Nonlinear Mechanics, 17, pp 231-236 [34] Domany E, Gendelman OV (2013), Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink, Sound and Vibration, 332, pp 5489-5507 [35] Elishakoff I, Andrimasy L, Dolley M (2008), Application and extension of the stochastic linearization by Anh and Di Paola, Acta Mech., 204 pp 89-98 [36] Fuller AT (1969), Analysis of nonlinear stochastic systems by means of the Fokker Planck Equation, Int J Control, pp 603-655 [37] Francesco B, Daniele Z, Marcello V (2006), Nonlinear response of SDOF systems under combined deterministic and random excitations, Nonlinear Dynamics, 46, pp 375-385 [38] Haiwu R, Wei X, Guang M, Tong F (2001), Response of a Duffing oscillator to combined deterministic harmonic and random excitation, Sound and Vibration, 242(2), pp 362-368 [39] Haiwu R, Xiangdong W, Wei X, Tong F (2009), Subharmonic response of a single-degree-of-freedom nonlinear vibroimpact system to a randomly disordered periodic excitation, Sound and Vibration, 327, pp.173-182 [40] Hao DN, Ngoan NT, Van LHM (2013), Mechanical approach to nonautonomous linear second order stochastic differential equations, SoutheastAsian J of Sciences Vol 2, No 2(2013) pp 171-177 [41] Huang ZL, Zhu WQ, Suzuki Y (2000), Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations, Sound and Vibration, 238, pp 233-256 [42] Iwan WD, Spanos P (1978), Response envelope statistics for nonlinear oscillators with random excitation, J Appl Mech 45, pp 170-174 [43] Kazakov IE (1954), An approximate method for the statistical investigation for nonlinear systems, Trudy VVIA im Prof N E Zhukovskogo, 394, pp 1-52 Footer Page 121 of 123 Header Page 122 of 123 109 [in Russian] [44] Kelly SG (2012), Mechanical vibrations: Theory and applications, Cengage Learning [45] Khasminskii RZ (1966), A limit theorem for the solutions of differential equations with random right-hand sides, Theory Probab Applic., 11, pp 390405 [46] Khiem NT (1990), Spectral analysis of non-linear stochastic systems, The 12th Int Conference on Non-linear Oscillation, Cracow 2-7 September 1990, Abstracts, pp 51-52 [47] Khiem NT (1991), General solution of FPK equation of vibratory systems in amplitude and phase, Reports of USSR Acad Sci., V 293(4), pp 875-880 [48] Krylov NM, Bogoliubov NN (1937), Introduction to nonlinear mechanics Ukraine: Academy of Sciences [49] Kumar P, Narayanan S (2006), Solution of FokkerPlanck equation by finite element and finite difference methods for nonlinear system, Sódhanó, 31(04), pp 45573 [50] Kumar P, Narayanan S (2010), Response statistics and reliability analysis of a mistuned and frictionally damped bladed disk assembly subjected to white noise excitation, ASME Gas Turbo Expo; GT-2010-22736 [51] Li FM, Yao G (2013), 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow, Composite Structures, 100, pp 249-256 [52] Lutes L, Sarkani S (2004), Random vibration: Analysis of Structural and Mechanical Systems, Elsevier ButterworthHeinemann [53] Masud A, Bergman LA (2005), Application of multi-scale finite element methods to the solution of the FokkerPlanck equations, J Comput Methods Appl Mech Engrg,194, pp 151326 [54] Manohar CS, Iyengar RN (1991), Entrainment in Van der Pol's oscillator in the presence of noise, Int J Nonlinear Mechanics, 26(5), pp 679-686 [55] Manohar CS (1995), Methods of nonlinear random vibration analysis, Sódhanó, 20, pp 345-371 [56] Menh NC (1993), Response spectra of random multi-degree-of-freedom nonlinear mechanical systems, Non-linear Vibration Problems, 25, pp 267274 [57] Mitropolskii YA (1967), Averaging method in non-linear mechanics, Nonlinear Mechanics Pergamoa Press Ltd., 2, pp 69-96 [58] Mitropolskii YA, Dao NV, Anh ND (1992), Nonlinear oscillations in systems Footer Page 122 of 123 Header Page 123 of 123 110 of arbitrary order, Kiev: Naukova- Dumka (in Russian) [59] Mitropolski IA, Dao NV (1997), Applied asymptotic methods in nonlinear oscillations, Springer- Science +Business Media, B.V Doi 10.1007/978-94015-8847-8 [60] Muscolino G, Riccardi G, Vasta M (1997), Stationary and non-stationary probability density function for non-linear oscillator, Int J Non-Linear Mechanics, 32(6), pp 105164 [61] Narayanan S, Kumar P (2012), Numerical solutions of Fokker-Planck equation of nonlinear systems subjected to random and harmonic excitations, Probabilistic Engineering Mechanics, 27, pp 35-46 [62] Nayfeh AH, Serhan SJ (1990), Response statistics of nonlinear systems to combined deterministic and random excitations Int J Nonlinear Mechanics, 25 (5), pp 493-509 [63] Nayfeh AH, Mook DT (1995), Nonlinear oscillations, Wiley-Interscience [64] Oksendal B (2000), Stochastic Differential Equations - An introduction with Application, Springer [65] Ramakrishnan V, Brian FF (2012), Resonances of a forced Mathieu equation with reference to wind turbine blades, J Vib Acoust., 134(6) [66] Rayleigh JWS (1877), The Theory of Sound, reprinted by Dover, New York 1945 [67] Roberts J B (1986), First passage probabilities for randomly excited systems: Diffusion methods, Probab Eng Mech 1, pp 66-81 [68] Roberts JB, Spanos PD (1999), Random Vibration and Statistical Linearization, Dover Publications, Inc., Mineola, New York [69] Roberts JB, Spanos PD (1986), Stochastic averaging: An approximate method of solving random vibration problems, Int J Nonlinear mechanics; 21(2), pp 111-134 [70] Ruby L (1996), Applications of the Mathieu equation, Am J Phys., Vol 64, No 1, pp 39-44 [71] Socha L, Soong TT (1991), Linearization in analysis of nonlinear stochastic systems, Appl Mech Rev., 44, pp 399-422 [72] Socha L (1998), Probability density equivalent linearization technique for nonlinear oscillator with stochastic excitations, Z Angew Math Mech., 78, pp 1087-1088 [73] Socha L (2008), Linearization Methods for Stochastic Dynamic System, Lecture Notes in Physics Springer, Berlin [74] Spanos P (1981), Monte Carlo simulations of response of nonsymmetric Footer Page 123 of 123 Header Page 124 of 123 111 dynamic system to random excitations, Comput Struct 13, pp.371-376 [75] Spanos P, Lutes LD (1987), A primer of random vibration techniques in structural Engineering, Shock Vib Dig., 19(4), pp 3-9 [76] Stratonovich RL(1963), Topics in the Theory of Random Noise Vol I, II (1967), New York: Gordon and Breach [77] Von Wagner U, Wedig WV (2000), On the calculation of stationary solution of multi-dimensional Fokker-Planck equations by orthogonal functions, Nonlinear Dynamics, 21, pp 289-306 [78] Xie WX, Xu W, Cai L (2006), Study of the Duffing-Rayleigh oscillator subject to harmonic and stochastic excitations by path integration, Applied Mathematics and Computation, 172, pp 1212-1224 [79] Yu JS, Lin YK (2004), Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations, Int J Non-Linear Mechanics, 37, pp 1493-1500 [80] Zhu WQ, Yu JS (1987), On the response of the Van der Pol Oscillator to white noise excitation, J Sound and Vibration, 117(3) 421-431 [81] Zhu WQ (1988), Stochastic averaging methods in random vibrations, Appl Mech Rev 41, pp 189-199 [82] Zhu WQ, Huang ZL, Suzuki Y (2001), Response and stability of strongly non-linear oscillators under wide-band random excitation, Non-Linear Mechanics, 36, pp 1235-1250 [83] Zhu WQ, Wu YJ (2003), First passage time of Duffing oscillator under combined harmonic and white noise excitations, Nonlinear Dynamics, 32, pp 291-305 Trang web v phn mm: [84] John MC (2010), Probability Density Functions , www.mne.psu.edu/me345/ Lectures/Probability_density_functions.pdf [85] Laurence CE (2002), An introduction to stochastic differential equations (version 1.2), Department of Mathematics, UC Berkeley (math.berkeley.edu/ ~evans/SDE.course.pdf) [86] Jonathan MB, Matthew PS (2011), An Introduction to Modern Mathematical Computing With Maple, Springer [87] Jaan Kiusalaas (2010), Numerical methods in engineering with Matlab (Second Edition), Cambridge University Press Footer Page 124 of 123 Header Page 125 of 123 112 PH LC Ph lc A Xõy dng v gii h phng trỡnh phi tuyn cho cỏc h s tuyn tớnh hoỏ Chng trỡnh Maple tớnh cỏc h s tuyn tớnh hoỏ theo cỏc mụ men ca a1 v a2 ( trỏnh nhiu ch s, cỏc chng trỡnh di õy lun ỏn dựng ký hiu b v d thay cho a1 v a2 ) on chng trỡnh tớnh cỏc mụ men bc cao ca a1 v a2 theo trung bỡnh, phng sai v hip phng sai ca a1 v a2 Footer Page 125 of 123 Header Page 126 of 123 113 Tớnh cỏc h s ca hm mt dng Chng trỡnh Matlab tớnh cỏc h s tuyn tớnh hoỏ function tuyentinhhoa_vanderpol % chuong trinh tim cac he so tuyen tinh hoa phan Pol global a B sig2 P nu Delta omega epsilon; % clear all clc a = 1; % alpha B = 4; % beta epsilon = 0.2; omega = 1; nu = 1.01; Delta = (omega^2-nu^2)/epsilon; val=[1] % co the dua nhieu gia tri vao day de co day num=length(val); sig2=1; X2=zeros(num,1); for m=1:1:num P=val(m); x0=[-2,-0.5,2,1.5,-1,2]; L1b=x0(1); L1d=x0(2); L10=x0(3); % he so eta11, L2b=x0(4); L2d=x0(5); L20=x0(6); % he so eta21, alpha1 = (1/2)*a+L1b; Footer Page 126 of 123 tich he Van der tinh 12, 13 22, 23 Header Page 127 of 123 114 beta1 = Delta/(2*nu)+L1d; lambda1 = L10; alpha2 = -Delta/(2*nu)+L2b; beta2 = (1/2)*a+L2d; lambda2 = P/(2*nu)+L20; Ab2= -(2*(alpha1^2+alpha1*beta2+alpha2^2- alpha2*beta1))*nu^2*(alpha1+beta2)/(sig2*(alpha2^2- 2*alpha2*beta1+beta1^2+alpha1^2+2*alpha1*beta2+beta2^2)); % he so tau1 Ab1 = ((2*(2*lambda1*alpha1+2*lambda1*beta2+2*alpha2* lambda2-2*beta1*lambda2))*nu^2*(alpha1+beta2)/ (sig2*(alpha2^2- 2*alpha2*beta1+beta1^2+alpha1^2+ 2*alpha1* beta2+beta2^2))); % he so tau4 Abd = ((2*(2*alpha2*beta2+2*beta1*alpha1))*nu^2* (alpha1+beta2)/(sig2*(alpha2^2-2*alpha2*b eta1+beta1^2+alpha1^2+2*alpha1*beta2+beta2^2))); % he so tau3 Ad2 = (-(2*(alpha1*beta2+beta2^2-alpha2*beta1+beta1^2))* nu^2*(alpha1+beta2)/(sig2*(alpha2^2-2*alpha2* beta1+beta1^2+alpha1^2+2*alpha1*beta2+beta2^2))); % he so tau2 Ad1 = ((2*(-2*alpha2*lambda1+2*lambda2*alpha1+ 2*lambda2*beta2+2*beta1*lambda1))*nu^2* (alpha1+beta2)/(sig2*(alpha2^2-2*alpha2*beta1+ beta1^2+alpha1^2+2*alpha1*beta2+beta2^2))); % he so tau5 psb = 2*Ad2/(4*Ab2*Ad2-Abd^2); % phuong sai cua b if ((Ab2