1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Trac nghiem toa do trong khong gian

10 505 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 212,43 KB

Nội dung

TRẮC NGHIỆM TỌA ĐỘ TRONG KHÔNG GIAN r r r r r r r Câu Cho a = (2; –3; 3), b = (0; 2; –1), c = (1; 3; 2) Tìm tọa độ vector u = 2a + 3b − c A (0; B (3; 3; –1) r C (3; –3; 1) D r –3; 4) r (0; –3; 1) a c a Câu Cho = (2; –1; 2) Tìm y, z cho = (–2; y; z) phương với A y = –1; z = B y = 2; z = –1 C y = 1; z = –2 D y = –2; z = r r rr r r r u a b c Câu Cho = (1; –1; 1), = (3; 0; –1), = (3; 2; –1) Tìm tọa độ vector = (a.b).c A (2; 2; –1) B (6; 0; 1) C (5; 2; –2) D (6; 4; –2) r r Câu Tính góc hai vector a = (–2; –1; 2) b = (0; 1; –1) A 135° B 90° C 60° D 45° r r r Câu Cho a = (1; –3; 2), b = (m + 1, m – 2, – m), c = (0; m – 2; 2) Tìm m để ba vector đồng phẳng A m = V m = –2 B m = –1 V m = C m = V m = –1 D m = V m = Câu Cho bốn điểm A(1; 1; 0), B(0; 2; 1), C(1; 0; 2), D(1; 1; 1) Tính thể tích khối tứ diện ABCD A 1/6 B 1/3 C 1/2 D Câu Cho điểm S(3; 1; –2), A(5; 3; –1), B(2; 3; –4), C(1; 2; 0) Tìm tọa độ hình chiếu vuông góc H S mặt phẳng (ABC) A H(8/3; 8/3; –5/3) B H(9/4; 5/2; –5/4) C H(5/2; 11/4; –9/4) D H(5/3; 7/3; –1) Câu Xác định tọa độ tâm bán kính mặt cầu (S): x² + y² + z² – 8x + 2y + = A I(4; –1; 0), R = B I(–4; 1; 0), R = C I(4; –1; 0), R = D I(–4; 1; 0), R = Câu Viết phương trình mặt cầu có tâm I(0; 3; –2) qua điểm A(2; 1; –3) A (S): x² + (y – 3)² + (z + 2)² = B (S): x² + y² + z² – 6y + 4z + = C (S): x² + (y – 3)² + (z + 2)² = D (S): x² + y² + z² – 6y + 4z + 10 = Câu 10 Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD với A(1; 1; 0), B(0; 2; 1), C(1; 0; 2), D(1; 1; 1) A (S): x² + y² + z² + 3x + y – z + = B (S): x² + y² + z² + 3x + y – z – = C (S): x² + y² + z² + 6x + 2y – 2z + 24 = D (S): x² + y² + z² + 6x + 2y – 2z – 24 = Câu 11 Viết phương trình mặt cầu có tâm thuộc mặt phẳng Oxz qua điểm A(1; 2; 0), B(–1; 1; 3), C(2; 0; –1) A (S): (x + 3)² + y² + (z + 3)² = 17 B (S): (x – 3)² + y² + (z – 3)² = 11 C (S): (x + 3)² + y² + (z + 3)² = 11 D (S): (x – 3)² + y² + (z – 3)² = 17 Câu 12 Viết phương trình mặt phẳng (P) mặt phẳng trung trực AB với A(2; 1; 1) B(2; –1; 3) A (P): y – z – = B y – z + = C y + z + = D y + z – = r r Câu 13 Viết phương trình mặt phẳng (P) qua điểm M(1; 2; –3) có vectơ phương a = (2; 1; 2), b = (3; 2; –1) A –5x + 8y + z – = B –5x – 8y + z – 16 = C 5x – 8y + z – 14 = D 5x + 8y – z – 24 = Câu 14 Viết phương trình mặt phẳng (P) qua M(–1; 1; 0), song song với (α): x – 2y + z – 10 = A x – 2y + z – = B x – 2y + z + = C x – 2y + z – = D x – 2y + z + = Câu 15 Viết phương trình mặt phẳng (P) qua điểm A(3; 1; –1), B(1; 3; –2) vuông góc với mặt phẳng (α): 2x – y + 3z – = A 5x + 4y – 2z – 21 = B 5x + 4y – 2z + 21 = C 5x – 4y – 2z – 13 = D 5x – 4y – 2z + 13 = Câu 16 Viết phương trình mặt phẳng (P) qua ba điểm A(2; 0; 0), B(0; –1; 0), C(0; 0; –3) A –3x + 6y + 2z + = B –3x – 6y + 2z + = C –3x – 6y + 2z – = D –3x + 6y – 2z + = Câu 17 Viết phương trình mặt phẳng (P) qua M(1; 0; –2) đồng thời vuông góc với hai mặt phẳng (α): 2x + y – z – = (β): x – y – z – = A –2x + y – 3z + = B –2x + y – 3z – = C –2x + y + 3z – = D –2x – y + 3z + = Câu 18 Xác định m để hai mặt phẳng sau vuông góc: (P): (2m – 1)x – 3my + 2z – = (Q): mx + (m – 1)y + 4z – = A m = –2 V m = B m = –2 V m = C m = V m = D m = –4 V m = Câu 19 Cho mặt phẳng (P): 2x – y – 2z – = điểm M(–2; –4; 5) Tính khoảng cách từ M đến (P) A 18 B C D Câu 20 Cho hai mặt phẳng (P): 2x – 3y + 6z + = (Q): 4x – 6y + 12z + 18 = Tính khoảng cách hai mặt phẳng (P) (Q) A B C D Câu 21 Viết phương trình mặt phẳng (P) song song với (Q): x + 2y – 2z + = cách điểm A(2; –1; 4) đoạn A x + 2y – 2z + 20 = x + 2y – 2z – = B x + 2y – 2z + 12 = x + 2y – 2z – = C x + 2y – 2z + 20 = x + 2y – 2z – = D x + 2y – 2z + 12 = x + 2y – 2z + = Câu 22 Viết phương trình mặt cầu (S) có tâm I(1; 5; 2) tiếp xúc với mặt phẳng (P): 2x + y + 3z + = A (S): (x – 1)² + (y – 5)² + (z – 2)² = 16 B (S): (x – 1)² + (y – 5)² + (z – 2)² = 12 C (S): (x – 1)² + (y – 5)² + (z – 2)² = 14 D (S): (x – 1)² + (y – 5)² + (z – 2)² = 10 Câu 23 Viết phương trình mặt phẳng (P) tiếp xúc mặt cầu (S): x² + y² + z² – 2x – 2y – 2z – 22 = điểm M(4; –3; 1) A 3x – 4y – 20 = B 3x – 4y – 24 = C 4x – 3y – 25 = D 4x – 3y – 16 = Câu 24 Cho điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 6), D(2; 4; 6) Viết phương trình mặt phẳng qua A song song với mặt phẳng (BCD) A 6x – 3y – 2z – 12 = B 6x – 3y – 2z + 12 = C 3x + 2y – 6z + = D 3x – 2y + 6z – = Câu 25 Viết phương trình đường thẳng d qua điểm A(2; 1; 0), B(0; 1; 2) x = −t x = − t x = + t x = t     y = y = y = y = z = t z = t z = − t z = − t A (d):  B (d):  C (d):  D (d):  x +2 y−5 z−2 = = Câu 26 Viết phương trình đường thẳng d qua điểm A(4; –2; 2), song song với Δ: x+4 y−2 z+2 x+4 y+2 z−2 = = = = 3 A (d): B (d): x−4 y+2 z+2 x−4 y+2 z−2 = = = = 3 C (d): D (d): Câu 27 Viết phương trình đường thẳng (d) qua điểm A(–1; 0; 2), vuông góc với (P): 2x – 3y + 6z + = x −1 y z + x +1 y z − = = = = −6 −6 A (d): −2 B (d): −2 x +1 y z − x +1 y z + = = = = −6 −3 C (d): D (d): Câu 28 Viết phương trình giao tuyến mặt phẳng (P): 2x + y – z + = 0; (Q): x + y + z – = x y +1 z − x y −1 z + = = = = −1 −1 A (d): −2 B (d): −2 x y − z +1 x −1 y z −1 = = = = −3 −3 C (d): D (d): Câu 29 Viết phương trình đường thẳng (d) qua điểm A(1; 0; 5), đồng thời vuông góc với hai đường thẳng x −1 y − z −1 x −1 y − z − = = = = −2 (d2): −1 −3 (d1):  x = + 5t   y = 5t  z = + 4t  x = + t  y = t z =   x = −1 + t  y = t  z = −5  x = − t  y = t z =  A (d): B (d): C (d): D (d): Câu 30 Viết phương trình đường thẳng (d) qua điểm A(1; 2; –2), đồng thời vuông góc cắt đường thẳng x y −1 z = = Δ: x +1 y + z − = = −1 A x −1 y − z + = = −1 C x +1 = B x −1 = D y+2 = −1 y−2 = −1 z−2 −1 z+2 −1 TRẮC NGHIỆM TỌA ĐỘ TRONG KHÔNG GIAN (Phần 2) Câu Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1; 0; 0), B(0; –1; 3), C(1; 1; 1) Viết phương trình mặt phẳng (P) qua điểm C vuông góc với AB A x + y – 3z + = B x + y – 3z – = C x + y + 3z – = D x – y + 3z – = Câu Cho hai điểm A(1; –1; 2), B(2; 0; 1) mặt phẳng (P): x + 2y – 2z – = Tìm tọa độ giao điểm đường thẳng AB mặt phẳng (P) A (–2; –6; 8) B (–1; –3; 4) C (3; 1; 0) D (0; 2; –1) x − y z −1 = = −1 Viết phương trình mặt phẳng (P) qua Câu Cho điểm A(–2; 2; –1) đường thẳng d: −1 A chứa đường thẳng d A y + z – = B x + y + = C y + z – = D y + z – = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(2; 1; 1) mặt phẳng (P): 2x – y + 2z + = Phương trình mặt cầu (S) tâm A tiếp xúc với mặt phẳng (P) A (S): (x – 2)² + (y – 1)² + (z – 1)² = B (S): (x – 2)² + (y – 1)² + (z – 1)² = C (S): (x – 2)² + (y – 1)² + (z – 1)² = D (S): (x – 2)² + (y – 1)² + (z – 1)² = Câu Cho hai điểm A(1; –1; 5) B(0; 0; 1) Viết phương trình mặt phẳng (P) qua A, B song song với trục Oy A 4x + y – z + = B 2x + z – = C 4x – z + = D y + 4z – = Câu Trong mặt phẳng Oxyz, cho tứ diện ABCD có A(2; 3; 1), B(4; 1; –2), C(1; 3; 2), D(–2; 3; –1) Độ dài đường cao kẻ từ D tứ diện A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): 2x + y – z – = (Q): x + y + z – = Phương trình đường giao tuyến hai mặt phẳng (P) (Q) x y − z +1 x +1 y + z −1 = = = = −3 −1 A (d): B (d): −2 x −1 y + z +1 x y + z −1 = = = = −3 −3 −1 C (d): D (d): Câu Cho mặt phẳng (P): 3x – 2y + z + = điểm A(2; –1; 0) Tìm tọa độ hình chiếu A lên mặt phẳng (P) A (1; –1; 1) B (–1; 1; –1) C (3; –2; 1) D (5; –3; 1)  x = − 4t   y = −2 − t z = −1 + 2t Câu Cho điểm A(1; 1; 1) đường thẳng (d):  Tìm tọa độ hình chiếu vuông góc A lên đường thẳng (d) A (2; –3; –1) B (2; 3; 1) C (2; –3; 1) D (–2; 3; 1) Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; –4; 0), B(0; 2; 4), C(4; 2; 1) Tọa độ điểm D trục Ox, cho AD = BC A D(0; 0; 0), D(6; 0; 0) B D(–2; –4; 0), D(8; –4; 0) C D(3; 0; 0), D(0; 0; 3) D D(–2; 0; 0), D(8; 0; 0) Câu 11 Cho điểm A(1; 0; 1), B(0; 2; 3) C(0; 0; 2) Độ dài đường cao hạ từ C tam giác ABC A B C 1/2 D Câu 12 Cho bốn điểm A(2; 3; –4), B(1; 2; 3), C(–2; 1; 2), D(–1; 2; 3) Viết phương trình mặt cầu (S) tâm A tiếp xúc với mặt phẳng (BCD) A (x – 2)² + (y – 3)² + (z + 4)² = 16 B (x – 2)² + (y – 3)² + (z + 4)² = 32 C (x + 2)² + (y + 3)² + (z – 4)² = 16 D (x + 2)² + (y + 3)² + (z – 4)² = 32 x +1 y z + = = mặt phẳng (P): x + 2y + z – = Viết phương trình Câu 13 Cho đường thẳng (d): đường thẳng (Δ) nằm mặt phẳng (P), đồng thời cắt vuông góc với (d) x −1 y −1 z −1 x +1 y + z −1 = = = = −1 −3 −1 −3 A B x −1 y + z −1 x −1 y + z −1 = = = = −3 C D −5 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(2; –1; 1) mặt phẳng (P): 2x – y + 2z + = Tìm tọa độ điểm B đối xứng với A qua mặt phẳng (P) A B(–2; 0; –4) B B(–1; 3; –2) C B(–2; 1; –3) D B(–1; –2; 3) x − y +1 z = = −2 −1 điểm A(–1; 0; 1) Câu 15 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: Tìm tọa độ điểm B đối xứng với A qua đường thẳng d A (1; 2; 3) B (1; 2; 1) C (1; –2; 3) D (0; 1; 1) x −1 y − z + = = Tính khoảng cách từ A đến (Δ) Câu 16 Cho A(–2; 2; 3) đường thẳng (Δ): A B C D Câu 17 Cho hai điểm A(2; 4; 1), B(–2; 2; –3) Phương trình mặt cầu đường kính AB A x² + (y + 3)² + (z – 1)² = B x² + (y – 3)² + (z – 1)² = 36 C x² + (y + 3)² + (z + 1)² = D x² + (y – 3)² + (z + 1)² = 36 x − y + z −1 = = 3 mặt phẳng (P): 3x + 5y – 2z – = Tìm tọa độ giao Câu 18 Cho đường thẳng d: điểm d (P) A (4; 0; 4) B (0; 0; –2) C (2; 0; 1) D (–2; 2; 0) Câu 19 Mặt cầu tâm I(3; 2; –4) tiếp xúc với trục Oy có bán kính A B C D Câu 20 Cho mặt phẳng (P): 2x – 2y + z + = mặt cầu (S): x² + y² + z² – 2x + 4y + 6z + = Vị trí tương đối (P) (S) A cắt theo đường tròn có bán kính B cắt theo đường tròn có bán kính C cắt theo đường tròn có bán kính D chúng không cắt Câu 21 Cho mặt cầu (S): x² + y² + z² – 2x – 4y – 6z – = mặt phẳng (P): 4x + 3y – 12z + 10 = Viết phương trình mặt phẳng (Q) // (P) tiếp xúc với mặt cầu (S) A 4x + 3y – 12z + 78 = 4x + 3y – 12z – 26 = B 4x + 3y – 12z – 78 = 4x + 3y – 12z + 26 = C 4x + 3y – 12z + 62 = 4x + 3y – 12z – 20 = D 4x + 3y – 12z – 62 = 4x + 3y – 12z + 20 = x y z +1 = = cho khoảng cách từ A đến mặt phẳng Câu 22 Tìm tọa độ điểm A đường thẳng d: −1 (P): x – 2y – 2z + = Biết A có hoành độ dương A (2; –1; 0) B (4; –2; 1) C (–2; 1; –2) D (6; –3; 2) x+6 y+6 z+2 x −1 y + z + = = = = , d2: −1 Viết phương trình đường Câu 23 Cho hai đường thẳng d1: −2 thẳng đồng thời cắt vuông góc với hai đường thẳng d1, d2  x = −3 + t  x = −3 + 5t  x = + 5t x = + t      y = −8  y = −8 − t y = − t y = z = −1 + 2t  z = −1 + 10t z = + 10t  z = + 2t A d:  B d:  C d:  D d:  x −1 y − z − x +1 y − z − = = = = , d2: −1 Câu 24 Tính khoảng cách hai đường thẳng d1: A 14 B 14 C 14 D 14 x −1 y − z −1 = = −2 mặt phẳng (P): x Câu 25 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: −3 – 3y + z – = Phương trình hình chiếu vuông góc d mặt phẳng (P) x + y + z −1 x − y + z −1 = = = = −1 1 A B −2 x + y +1 z −1 = = −1 C x y + z −1 = = 1 D x − 10 y − z + = = 1 mặt phẳng Câu 26 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (Δ): (P): 10x + 2y + mz + 11 = 0, m tham số thực Tìm giá trị m để (P) vuông góc với (Δ) A m = –2 B m = C m = –52 D m = 52 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2; 1; 1) mặt phẳng (P): 2x + y + 2z + = Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến đường tròn có bán kính Phương trình mặt cầu (S) A (S): (x + 2)² + (y + 1)² + (z + 1)² = B (S): (x + 2)² + (y + 1)² + (z + 1)² = 10 C (S): (x – 2)² + (y – 1)² + (z – 1)² = D (S): (x – 2)² + (y – 1)² + (z – 1)² = 10 x −1 y z +1 = = Viết Câu 28 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 0; 2) đường thẳng d: phương trình đường thẳng (Δ) qua A, đồng thời vuông góc cắt đường thẳng d x −1 y z − x −1 y z − = = = = 1 −1 A (Δ): B (Δ): x −1 y z − x −1 y z − = = = = −3 C (Δ): D (Δ): Câu 29 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; –2; 0), B(0; –1; 1), C(2; 1; –1) D(3; 1; 4) Hỏi có tất mặt phẳng cách bốn điểm đó? A B C D Có vô số Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hình hành ABDC với A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tọa độ đỉnh D A (1; –1; 1) B (1; 1; 3) C (1; –1; 3) D (–1; 1; 1) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho hình hành ABCD với A(1; 1; 0), B(1; 1; 2), D(1; 0; 2) Diện tích hình bình hành ABCD A B C D Câu 32 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 4; 2), B(1; 0; –1), C(3; 2; 1) Cho phát biểu sau: (1) Hình chiếu vuông góc trung điểm BC mặt phẳng Oxy có tọa độ (1; 1; 0) (2) Các điểm A, B, C tạo thành ba đỉnh tam giác cân (3) Các điểm A, B, C tạo thành ba đỉnh tam giác có chu vi 10 + (4) Các điểm A, B, C tạo thành ba đỉnh tam giác có diện tích 26 Số câu phát biểu A B C D Câu 33 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 1; 2), B(1; 0; 3), C(2; 0; 1) Tìm tọa độ đỉnh D cho điểm A, B, C, D đỉnh hình chữ nhật A (2; 1; –2) B (2; 1; 0) C (–1; 1; 2) D (2; 2; 1) Câu 34 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 1; 2), B(3; 1; 4), C(0; 2; 3), D(2; 2; 5) Cho phát biểu: (1) Diện tích tam giác ABC diện tích tam giác BCD (2) Các điểm A, B, C, D nằm đường tròn (3) Hình chiếu vuông góc B đường thẳng qua hai điểm A, C có tọa độ (1; 2; 1) (4) Trung điểm đoạn thẳng AD trùng với trung điểm đoạn thẳng BC Số phát biểu A B C D Câu 35 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 1; 2) Tìm điểm N thuộc mặt phẳng Oxy cho độ dài đoạn thẳng MN ngắn A (1; 1; 0) B (1; 2; 2) C (2; 1; 0) D (2; 2; 0) Câu 36 Trong không gian với hệ tọa độuuu Oxyz, cho điểm A(1; 2; 3), B(3; 2; 1) Gọi M điểm thuộc mặt u r uuur phẳng Oxy Tìm tọa độ M để P = | MA + MB | đạt giá trị nhỏ A (1; 2; 1) B (1; 1; 0) C (2; 1; 0) D (2; 2; 0) Câu 37 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có điểm A(0; 1; 0), B(0; 1; 1), C(2; 1; 1), D(1; 2; 1) Thể tích tứ diện ABCD A 1/6 B 1/3 C 2/3 D 4/3 Câu 38 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 0), B(3; 1; 5), C(2; 2; 1) Gọi M điểm chạy mặt phẳng Oyz Giá trị P = MA² + MB² + MC² đạt giá trị nhỏ M có tọa độ A (0; 2; 1) B (0; 1; 3) C (0; 2; 3) D (0; 1; 2) Câu 39 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 0), B(0; 1; 5), C(2; 0; 1) Gọi M điểm chạy mặt phẳng Oyz Giá trị nhỏ P = MA² + MB² + MC² A 23 B 25 C 26 D 29 Câu 40 Viết phương trình mặt phẳng chứa trục Oy vuông góc mặt 2x – z – = A 2x + y – z = B 2x + z = C 2x – z = D 2x + z – = x − y −1 z x y−5 z−4 = = = = −1 ; d2: −2 Viết phương Câu 41 Cho điểm A(–3; 1; 2) hai đường thẳng d1: trình mặt phẳng (P) qua A, đồng thời song song với hai đường thẳng d1, d2 A x + 3y + 5z – 13 = B x – 3y – 5z + 13 = C x + 3y + 5z – 10 = D x – 3y – 5z + 10 = Câu 42 Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (Q1): 3x – y + 4z + = (Q2): 3x – y + 4z + = Phương trình mặt phẳng (P) song song cách hai mặt phẳng (Q1) (Q2) A (P): 3x – y + 4z + 10 = B (P): 3x – y + 4z + = C (P): 3x – y + 4z – 10 = D (P): 3x – y + 4z – = x = + t  x = + 2s   y = + t y = + s z = − t  z = + 3s Câu 43 Cho hai đường thẳng d1:  d2:  Viết phương trình mặt phẳng (P) song song cách hai đường thẳng d1, d2 A (P): 4x – 5y – z + 17 = B (P): 4x + 5y + z – 17 = C (P): 4x – 5y – z + = D (P): 4x + 5y + z – = x−2 y−2 z = = Câu 44 Trong không gian với hệ tọa độ Oxyz, cho điểm A(2; –2; –1) đường thẳng d: Viết phương trình mặt phẳng (P) chứa d cho khoảng cách từ A đến mặt phẳng (P) lớn A (P): x + y = B (P): x – y + = C (P): x – y + = D (P): x + y – = Câu 45 Trong không gian với hệ tọa độ Oxyz, gọi (P) mặt phẳng qua G(1; 2; –1) cắt Ox, Oy, Oz A, B, C cho G trọng tâm tam giác ABC Viết phương trình mặt phẳng (P) A (P): x + 2y – z – = B (P): 2x + y – 2z – = C (P): x + 2y – z – = D (P): 2x + y – 2z – = Câu 46 Trong không gian với hệ tọa độ Oxyz, gọi (P) mặt phẳng qua H(2; 1; 1) cắt Ox, Oy, Oz A, B, C cho H trực tâm tam giác ABC Viết phương trình mặt phẳng (P) A (P): 2x + y + z – = B (P): x + 2y + 2z – = C (P): 2x – y – z – = D (P): x – 2y – 2z + = Câu 47 Trong không gian với hệ tọa độ Oxyz, gọi (P) mặt phẳng qua M(2; 1; 2) cắt Ox, Oy, Oz A, B, C cho thể tích khối tứ diện OABC nhỏ Viết phương trình mặt phẳng (P) A (P): 2x + y + 2z – = B (P): x + 2y + z – = C (P): 2x – y + 2z – = D (P): x – 2y + z – = Câu 48 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 3y + 2z – = hai đường thẳng x −1 y −1 z x + y − z −1 = = = = 1 d2: −1 Viết phương trình đường thẳng d thuộc mặt phẳng (P) d1: cắt hai đường thẳng d1 d2 x + y −1 z +1 x + y −1 z = = = = −2 −1 A d: B d: x +1 y z −1 x +1 y −1 z − = = = = −1 −2 C d: D d: Câu 49 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 2)² + (y – 1)² + z² = đường thẳng x+2 y z−2 = = −1 −1 Tìm tọa độ giao điểm d (S) d: A (0, –1; 1) (2; 2; 0) B (0, 1; 1) (2; –2; 0) C (0, –1; 1) (2; –2; 0) D (0, 1; –1) (–2; 2; 0) Câu 50 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1) Tìm tọa độ điểm M thuộc mặt phẳng (α): 2x + 2y + z – = cho MA = MB = MC A (2; 1; 3) B (–2; 5; 7) C (2; 3; –7) D (1; 2; 5) Câu 51 Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 3; 0), B(3; 0; 3), C(0; 3; 3) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC A (3; 3; 3) B (1; 1; 1) C (1; 2; 3) D (2; 2; 2) Câu 52 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 1)² + (y – 2)² + (z – 2)² = 36 mặt phẳng (P): x + 2y + 2z + 18 = Đường thẳng d qua tâm mặt cầu vuông góc với mặt phẳng (P), cắt mặt cầu giao điểm A (–1; –2; –2) (2; 4; 4) B (3; 6; 6) (–2; –4; –4) C (4; 8; 8) (–3; –6; –6) D (3; 6; 6) (–1; –2; –2) x +1 y − z + = = −1 Câu 53 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –2; 3) đường thẳng d: Viết phương trình mặt cầu (S) tâm A tiếp xúc với d A (S): (x – 1)² + (y + 2)² + (z – 3)² = 49 B (S): (x – 1)² + (y + 2)² + (z – 3)² = C (S): (x – 1)² + (y + 2)² + (z – 3)² = 50 D (S): (x – 1)² + (y + 2)² + (z – 3)² = 25 Câu 54 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y – z – = mặt cầu (S): x² + y² + z² – 2x – 4y – 6z – 11 = Biết mặt phẳng (P) cắt mặt cầu (S) theo đường tròn (C) Xác định tọa độ tâm bán kính đường tròn (C) A (3; 0; 2) r = B (2; 3; 0) r = C (2; 3; 0) r = D (3; 0; 2) r = Câu 55 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – = hai đường thẳng x +1 y z + x −1 y − z +1 = = = = , d2: −2 Xác định tọa độ điểm M thuộc d1 cho khoảng cách từ M d1: đến d2 khoảng cách từ M đến mặt phẳng (P) Biết M có hoành độ nguyên A (–1; 0; –9) B (0; 1; –3) C (1; 2; 3) D (2; 3; 9) Câu 56 Cho tứ diện ABCD có đỉnh A(1; 2; 1), B(–2; 1; 3), C(2; –1; 1) D(0; 3; 1) Viết phương trình mặt phẳng (P) qua A, B cho (P) cách hai điểm C, D A (P): 2x + 3z – = (P): 4x + 2y + 7z – 15 = B (P): 2x – 3z + = (P): 4x + 2y + 7z – 15 = C (P): 2x + 3y – 10 = (P): 4x – 2y – 7z + = D (P): 2x – 3y + = (P): 4x – 2y – 7z + = Câu 57 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – = hai điểm A(–3; 0; 1), B(0; –1; 3) Viết phương trình đường thẳng d qua A song song với (P), cho khoảng cách từ B đến đường thẳng nhỏ  x = −3 + 2t  x = −3 + 2t  x = −3 + 2t  x = −3 + 2t     y = t  y = −t  y = −t y = t z = − t z = z = + t z = A d:  B d:  C d:  D d:  Câu 58 Trong không gian với hệ tọa độ Oxyz, cho điểm A (2; 1; 0), B(1; 2; 2), C(1; 1; 0) mặt phẳng (P): x + y + z – = Xác định tọa độ điểm D thuộc đường thẳng AB cho đường thẳng CD song song với mặt phẳng (P) A D(5/2; 1/2; –1) B D(3/2; –1/2; 0) C D(0; –1/2; 3/2) D (–1; 1/2; 5/2) x −1 y z + = = −1 mặt phẳng (P): x − 2y + 2z – = Gọi C giao điểm Câu 59 Cho đường thẳng Δ: Δ với (P), M điểm thuộc Δ Tính khoảng cách từ M đến (P), biết MC = A B C 2/3 D 4/3 x+2 y−2 z+3 = = điểm A(0; 0; –2) Viết phương trình mặt cầu (S) tâm Câu 60 Cho đường thẳng Δ: A, cắt đường thẳng Δ hai điểm B C cho BC = A (S): x² + y² + z² + 4z – 21 = B (S): x² + y² + z² + 4z – 25 = C (S): x² + y² + z² – 4z – 21 = D (S): x² + y² + z² – 4z – 25 = Câu 61 Cho điểm A (1; 0; 0), B (0; b; 0), C (0; 0; c), b > 0, c > mặt phẳng (P): y – z + = Xác định b c, biết mặt phẳng (ABC) vuông góc với (P) khoảng cách từ điểm O đến (ABC) 1/3 A b = c = B b = 1/2 c = 1/2 C b = c = D b = c = x y −1 z = = Xác định tọa độ điểm M trục hoành cho khoảng cách từ Câu 62 Cho đường thẳng Δ: M đến Δ OM với O gốc tọa độ A (–1; 0; 0) (1; 0; 0) B (2; 0; 0) (–2; 0; 0) C (1; 0; 0) (–2; 0; 0) D (2; 0; 0) (–1; 0; 0) Câu 63 Cho hai mặt phẳng (P): x + y + z − = (Q): x − y + z − = Viết phương trình mặt phẳng (R) vuông góc với (P) (Q) cho khoảng cách từ gốc tọa độ O đến (R) A x – z + = x – z – = B x – z + = x – z – = C x – y + = x – y – = D x – y + = x – y – = x = + t  y = t x − y −1 z = = z = t Câu 64 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng Δ1:  Δ2: Tìm tọa độ điểm M thuộc Δ1 cho khoảng cách từ M đến Δ2 A (3; 0; 0) B (4; 1; 1) C (2; –1; –1) D (5; 2; 2) Câu 65 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(–1; 2; 3), B(1; 0; –5) mặt phẳng (P): 2x + y – 3z – = Tìm tọa độ điểm M thuộc (P) cho điểm A, B, M thẳng hàng A (0; 1; 2) B, (–2; 1; –3) C (0; 1; –1) D (3; 1; 1) Câu 66 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng (P): 2x – y – z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = A (3; –2; 3) B (2; 0; 4) C (–1; 0; 2) D (0; 1; 3) Câu 67 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x² + y² + z² – 4x – 4y – 4z = điểm A(4; 4; 0) Viết phương trình mặt phẳng (OAB), biết B thuộc (S) cho tam giác OAB A (4; 0; 4) (0; 4; 4) B (2; 2; 4) (2; 4; 2) C (4; 0; 4) (8; 4; 4) D (0; 4; 4) (8; 0; 0) x − y +1 z = = −2 −1 mặt phẳng (P): x + Câu 68 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ: y + z – = Gọi I giao điểm Δ (P) Xác định tọa độ điểm M thuộc (P) cho MI vuông góc với Δ MI = 14 A M(–3; –7; 13) M(5; 9; –11) B M(–3; –7; 13) M(9; 5; –11) C M(–7; 13; –3) M(–11; 9; 5) D M(13; –3; –7) M(9; –11; 5) x + y −1 z + = = −2 hai điểm A(–2; 1; 1), B(–3; –1; 2) Tìm tọa độ điểm M Câu 69 Cho đường thẳng Δ: Δ cho tam giác MAB có diện tích A (–14; –35; 19) (–2; 1; –5) B (–2; 1; –5) (–8; –17; 11) C (–14; –35; 19) (–1; –2; –3) D (–1; –2; –3) (–8; –17; 11) x −1 y − z = = mặt phẳng (P): 2x – y + 2z = Viết phương trình mặt cầu Câu 70 Cho đường thẳng Δ: (S) có tâm thuộc Δ, có bán kính tiếp xúc với mặt phẳng (P) A (S): x² + y² + z² – 2x – 2y – 2z + = (S): x² + y² + z² – 10x – 22y – 4z + 149 = B (S): x² + y² + z² + 2x + 2y + 2z + = (S): x² + y² + z² – 10x – 22y – 4z + 149 = C (S): x² + y² + z² – 2x – 2y – 2z + = (S): x² + y² + z² + 10x + 22y + 4z + 149 = D (S): x² + y² + z² + 2x + 2y + 2z + = (S): x² + y² + z² + 10x + 22y + 4z + 149 = x +1 y z − = = điểm I(0; 0; 3) Viết Câu 71 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: phương trình mặt cầu (S) tâm I cắt d hai điểm A, B cho tam giác IAB vuông I A x² + y² + (z – 3)² = 16 B x² + y² + (z – 3)² = C x² + y² + (z – 3)² = D x² + y² + (z – 3)² = 32 x − y +1 z + = = −2 hai điểm A(2; 1; Câu 72 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: 0), B(–2; 3; 2) Tính bán kính mặt cầu (S) qua A, B có tâm thuộc đường thẳng d A 14 B C D ... −1 C x +1 = B x −1 = D y+2 = −1 y−2 = −1 z−2 −1 z+2 −1 TRẮC NGHIỆM TỌA ĐỘ TRONG KHÔNG GIAN (Phần 2) Câu Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1; 0; 0), B(0; –1; 3), C(1;... (Δ): Câu 29 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; –2; 0), B(0; –1; 1), C(2; 1; –1) D(3; 1; 4) Hỏi có tất mặt phẳng cách bốn điểm đó? A B C D Có vô số Câu 30 Trong không gian với... D (–1; 1; 1) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho hình hành ABCD với A(1; 1; 0), B(1; 1; 2), D(1; 0; 2) Diện tích hình bình hành ABCD A B C D Câu 32 Trong không gian với hệ tọa độ Oxyz,

Ngày đăng: 21/01/2017, 22:15

TỪ KHÓA LIÊN QUAN

w