Giải tích cơ bản ôn thi thạc sĩ toán học dãy số và hàm số

4 482 4
Giải tích cơ bản ôn thi thạc sĩ toán học dãy số và hàm số

Đang tải... (xem toàn văn)

Thông tin tài liệu

Giải tích cơ bản ôn thi thạc sĩ toán học phần dãy số và hàm số

GIẢI TÍCH BẢN (ÔN THI THẠC TOÁN HỌC) GIỚI HẠN CỦA DÃY SỐ HÀM SỐ PGS. TS Lê Hoàn Hóa Ngày 11 tháng 10 năm 2004 1 Giới hạn của dãy số 1.1 Định nghĩa Cho (x n ) n là dãy số thực. Ta nói : • Dãy (x n ) n hội tụ về x (x hữu hạn) khi n → ∞, ký hiệu lim n→∞ x n = x hay lim x n = x nếu với mọi  > 0, tồn tại số tự nhiên n 0 ∈ N sao cho với mọi n ≥ n 0 thì |x n − x| < . lim x n = x ⇐⇒ ∀ > 0,∃n 0 ∈ N : ∀n ≥ n 0 =⇒ |x n − x| <  ⇐⇒ lim|x n − x| = 0 • Dãy (x n ) n tiến ra +∞ (theo tứ tự −∞) nếu với mọi A ∈ R, tồn tại n 0 ∈ N sao cho với mọi n ≥ n 0 thì x n > A (theo thứ tự x n < A). • Dãy (x n ) n phân kỳ nếu không lim x n hoặc lim x n = +∞ hoặc lim x n = −∞. Như vậy với một dãy (x n ) n chỉ hai trường hợp : hoặc (x n ) n hội tụ hoặc (x n ) n phân kỳ. 1.2 Định lý bản 1. Nếu(x n ) n là dãy tăng, bị chặn trên a = sup{x n } thì lim x n = a. Nếu (x n ) n là dãy giảm, bị chặn dưới b = inf{x n } thì lim x n = b. 2. Giới hạn kẹp : Giả sử : a n ≤ x n ≤ b n ,∀n ≥ n 0 lim a n = lim b n = a. Khi đó lim x n = a. 3. Tiêu chuẩn Cauchy : (x n ) n hội tụ ⇐⇒ ∀ > 0,∃n 0 ∈ N : ∀n ≥ n 0 ,∀p ∈ N =⇒ |x n+p − x n | <  1.3 Các giới hạn bản 1. lim 1 n α = 0,∀α > 0 2. lim q n = 0,∀q,|q| < 1 3. lim n √ a = 1, ∀a > 0 1 4. lim n √ n p = 1, ∀p ≥ 0 5. lim n p (1 + a) n = 0, ∀a > 0, ∀p 6. lim n p e n = 0, ∀p 7. lim(1 + 1 n ) n = e 8. lim(1 − 1 n ) n = e −1 9. lim ln p n n α = 0, ∀α > 0, ∀p 10. lim n n √ n! = e 1.4 Ví dụ 1.4.1 Ví dụ 1 Với a > 0, cho x n = (1 + a n ) n , y n = (1 + a n ) n+1 , n ∈ N. 1. Chứng minh : (x n ) n là dãy tăng, (y n ) n là dãy giảm. 2. Chứng minh :(x n ) n ,(y n ) n hội tụ lim x n = lim y n . Đặt lim x n = lim y n = e a Giải : 1. Trước tiên ta chứng minh : Với α ≥ −1, (1 + α) n ≥ 1 + nα, ∀n ∈ N. Bất đẳng thức đúng với n = 1. Giả sử đúng đến n. Khi đó, do 1 + α ≥ 0 : (1 + α) n+1 = (1 + α) n (1 + α) ≥ (1 + nα)(1 + α) = 1 + (n + 1)α + α 2 ≥ 1 + (n + 1)α Ta có, với mọi n ∈ N : x n+1 x n = (1 + a n + 1 ) n+1 (1 + a n ) n = (1 + a n + 1 )( 1 + a n + 1 1 + a n ) n = (1 + a n + 1 )(1 − a (n + 1)(n + a) ) n ≥ (1 + a n + 1 )[1 − na (n + 1)(n + a) ] = 1 + a 2 (n + 1) 2 (n + a) > 1 Vậy (x n ) n là dãy tăng. Tương tự : y n y n+1 = (1 + a n ) n+1 (1 + a n + 1 ) n+2 = (1 + a n + 1 ) −1 [1 + a n(n + 1 + a) ] n+1 ≥ (1 − a n + 1 + a )(1 + (n + 1)a n(n + 1 + a) ) ≥ 1 + (n + 1)a n(n + 1 + a) 2 > 1 Vậy (y n ) n là dãy giảm. 2 2. Ta : (1 + a) = x 1 ≤ x 2 ≤ . ≤ x n ≤ y n ≤ . ≤ y 1 = (1 + a) 2 Vậy (x n ) n là dãy tăng, bị chặn trên ; (y n ) n là dãy giảm, bị chặn dưới, chúng hội tụ. Đặt lim x n = lim y n = lim(1 + a n ) n = e a 1.4.2 Ví dụ 2 Cho (x n ) n định bởi : x 1 = √ 2, x n+1 = √ 2 + x n , ∀n ∈ N. Chứng minh (x n ) n là dãy tăng, bị chặn trên. Tính lim x n Giải : Ta : x n ≥ 0, ∀n x n+1 − x n = √ 2 + x n − x n = 2 + x n − x n 2 √ 2 + x n + x n Tam thức bậc hai 2 + x n − x n 2 ≥ 0 ⇐⇒ −2 ≤ x n ≤ 2, ∀n. Bằng quy nạp, ta : x 1 = √ 2 < 2. Giả sử x n ≤ 2. Khi đó : x n+1 = √ 2 + x n ≤ 2 Vậy (x n ) n là dãy tăng, bị chặn trên nên (x n ) n hội tụ. Đặt x = lim x n . Từ đẳng thức x n+1 = √ 2 + x n ,∀n ∈ N, cho n → ∞, ta : x = √ 2 + x hay x 2 − x− 2 = 0 Vậy x = 2. 1.4.3 Ví dụ 3 lim 3 n+1 + 2 n 3 n + 2 n = lim 3 n+1 [1 + (2 /3 ) n+1 ] 3 n [1 + (2 /3 ) n ] = 3 1.4.4 Ví dụ 4 Tính lim n √ a n + b n + c n , a, b, c > 0. Giả sử a = max{a, b, c}. Ta : a ≤ n √ a n + b n + c n = a n  1 + ( b a ) n + ( c a ) n ≤ a n √ 3 Vậy lim n √ a n + b n + c n = max{a, b, c} 1.4.5 Ví dụ 5 Tính lim n √ n 2 2 n + 3 n Do lim n 2 (3 /2 ) n = 0 nên n 0 ∈ N sao cho n 2 (3 /2 ) n < 1, ∀n ≥ n 0 . Với n ≥ n 0 , ta : 3 ≤ n √ n 2 2 n + 3 n = 3 n  1 + n 2 (3 /2 ) n ≤ 3 n √ 2 Do định lý giới hạn kẹp lim n √ n 2 2 n + 3 n = 3 3 1.4.6 Ví dụ 6 Tính lim sin(π √ n 2 + 1) 0 ≤ | sin(π √ n 2 + 1)| = | sin π( √ n 2 + 1 − n)| = | sin( π √ n 2 + 1 + n )| ≤ π √ n 2 + 1 + n Vậy lim sin(π √ n 2 + 1) = 0 BÀI TẬP Tính các giới hạn sau 1. lim( √ n 2 + 5 − √ n 2 + 3) 2. lim n sin n n 2 + 1 3. lim a n − b n a n + b n , ∀a, b > 0 4. lim nq n , |q| < 1 5. lim 2 n n! ( HD: 2 n n! = 2.2 .2.2 1.2 (n − 1).n ≤ 4 n ) 6. lim n 2 n! 7. Chứng minh : 1 2 + 2 2 + . + n 2 = n(n + 1)(2n + 1) 6 Tính 1 2 + 2 2 + . + n 2 n 3 8. Tính lim n( n √ e − 1) HD : Dùng thí dụ (1) bất đẳng thức : (1 + 1 n ) n < e < (1 − 1 n − 1 ) n , ∀n 9. Cho (x n ) n định bởi : x 1 = √ a, x n+1 = √ a + x n , ∀n(a > 0) Xét tính đơn điệu của (x n ) n tính lim x n (nếu có). 10. Tính lim n 2 √ n HD : n 2 √ n = exp[− √ n ln 2(1 − ln n √ n ln 2 )] Do lim lnn √ n ln 2 = 0 nên lim(ln n − √ n ln 2) = −∞. Suy ra với mọi A > 0, n 0 ∈ N sao cho với n ≥ n 0 thì n 2 √ n ≤ e −A . Vậy lim n 2 √ n = 0 4 . y n +1 = (1 + a n ) n +1 (1 + a n + 1 ) n+2 = (1 + a n + 1 ) 1 [1 + a n(n + 1 + a) ] n +1 ≥ (1 − a n + 1 + a ) (1 + (n + 1) a n(n + 1 + a) ) ≥ 1 + (n + 1) a. n + 1 )( 1 + a n + 1 1 + a n ) n = (1 + a n + 1 ) (1 − a (n + 1) (n + a) ) n ≥ (1 + a n + 1 ) [1 − na (n + 1) (n + a) ] = 1 + a 2 (n + 1) 2 (n + a) > 1 Vậy

Ngày đăng: 21/06/2013, 09:54

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan