Biến cố độc lập : +/ Hai biến cố A và B đợc gọi là độc lập với nhau nếu việc xảy ra hay không xảy ra biến cố này không ảnh hởng đến xác suất việc xảy ra biến cố kia.. Quy tắc nhân xác s
Trang 1Chủ đề 8: Các quy tắc tính xác xuất I/ kiến thức cơ bản
1.Quy tắc cộng xác suất
a Biến cố hợp: Cho hai biến cố Avsf B.Biến cố “ A hoặc B xảy ra”,kí hiệu là
A∪B,đợc gọi là hợp của 2 biến cố Avà B
Tập hợp các kết quả thuận lợi cho A và B là WA ∪WB
b Biến cố xung khắc: cho 2 biến cố A và B Hai biến cố A và B đợc gọi là xung khắc với nhau nếu biến cố này xảy ra thì biến cố kia không xay ra
Hai biến cố A và B xung khắc ⇔WA ∩WB = ∅
c Quy tắc cộng xác xuất:
+/ Nếu 2 biến cố đối A và B xung khắc thì xác suất để A hoặc B xảy ra là :
P(A∪B) P(A) P(B)= ∪
+/ Mở rộng : Cho k biến cố A ,A A đôi 1 xung khắc 1 2, k
khi đó
P(A ∪A ∪ A )P(A ) P(A ) P(A )+ + +
d Biến cố đối :
+/ Cho A là một biến cố khi đó biến cố không xảy ra A kí hiệu là A , đợc gọi là 1 biến cố của A
Ta có tập các kết quả thuận lợi cho A là :
WA =W W\ A .
+/ Định lí :
Cho biến cố A,xac suất của biến cố đối A là :
P A( ) = −1 P(A)
2.Quy tắc nhân xác suất :
a Biến cố giao:
+/ Cho 2 biến cố Avà B “Biến cố cả A và B cùng xảy ra”, kí hiệu là AB,đợc gọi là giao của 2 biến cố A và B
+/ Tập hợp các kết quả thuận lợi cho AB:
WAB =WA ∪WB
b Biến cố độc lập :
+/ Hai biến cố A và B đợc gọi là độc lập với nhau nếu việc xảy ra hay
không xảy ra biến cố này không ảnh hởng đến xác suất việc xảy ra biến cố kia
+/ Nếu A và B là độc lập thì Avà B ; A và B ; A và B cũng độc lập
với nhau
c Quy tắc nhân xác suất
+/ Nếu hai biến cố A và B độc lập với nhau thì
Trang 2P(AB) P(A).P(B)=
+/ Nếu P(AB)≠P(A).P(B) thì A và b không độc lập với nhau
II Kĩ Năng cơ bản:
+/ Diễn đạt đợc nội dung các biến cố hợp,biến cố giao biến cố đối +/ Vận dụng các quy tắc cộng,nhân để giải toán
III Một số ví dụ
Ví dụ 1: Hai khẩu cao xạ cùng bắn vào 1 chiếc máy bay 1 cách độc lập với nhau xác suất trúng đích của khẩu thứ nhất là 0.75, khẩu thứ 2 là 0.65 Máy bay bắn rơi nếu đồng thời cả 2 khẩu bắn chúng Tính xác suất để máy bay bắn rơi
Giải:
+/ Ta kí hiệu biến cố:
T : “Khẩu thứ nhất bắn trỳng mỏy bay”.1
T : “Khẩu thứ hai bắn trỳng mỏy bay” 2
R : “Máy bay rơi”
+/ Ta có:
P(T ) = 0.751
P(T ) = 0.652
R= T1∩ T 2
+/ Vì T ,1 T là hai biến cố độc lập nên xác suất để máy bay bắn rơi 2 là:
P(R)=P(T1∩T )= P(2 T ).P(1 T )=0.75ì2 0.65=0.4875
Ví dụ 2: Một nhóm học sinh giỏi gồm 60 học sinh trong đó có 40 học sinh giỏi toán,30 học sinh giỏi lý và 20 học sinh giỏi toán và lý.Chọn ngẫu
nhiên 1 học sinh Tính xác suất để :
1/ Học sinh đợc chọn là học sinh giỏi toán
2/ Học sinh đợc chọn là học sinh giỏi lí
3/ Học sinh đợc chọn là học sinh giỏi cả toán và lý
Giải:
Gọi A,B,C,D là các biến cố ứng với 4 câu hỏi trong bài toán
Ta có :
1/ P(A)= 40 2
60 = 3 2/ P(B)= 30 1
60 = 2 3/ P(C)=P(A B) 20 1
60 3
∩ = = 4/ Từ
Trang 3
= + − =
Ta có :
= − ∪ = − =
Ví dụ 3 : Một hộp chứa 10 quả cầu đợc đánh số từ 1 đến 10,đồng thời các quả
từ 1 đến 6 đợc tô màu xanh.Lấy ra ngẫu nhiên 1 quả
Kí hiệu biến cố A : “Quả lấy ra màu xanh”
B : “Quả lấy ra ghi số chẵn”
Hỏi 2 biến cố A,B độc lập hay không
Giải:
+/ Ta có | | 10W =
|WA | 6=
P(A) 6 3
A B
/ Mặt khác | | 5
W
W∩
= P(B) 5 1
⇒ = = ,P(A B) 3
10
∩ = +/ Nhận thấy P(A∩B) P(A).P(B)=
Vậy hai biến cố A,B độc lập
Ví dụ 4: Trong kì thi kiểm tra chất lợng ở 2 lớp thuộc khối 11,môi lớp có 25% học sinh trợt mônVăn ,15%học sinh trợt môn Sử và 10% học sinh trợt môn
Địa Từ mỗi lớp trọn ngẫu nhiên một học sinh.Tính xác suất sao cho :
1 Hai học sinh trợt môn Văn
2 Hai học sinh đó đều bị trợt một môn nào đó
3 Hai hoc sinh đó không bị trợt môn nào
4 Có ít nhất một học sinh bị trợt ít nhất một môn
Giải:
Ta kí hiệu biến cố:
A : “Học sinh đợc chọn từ lớp thứ nhất trợt Văn” 1
A :“Học sinh đợc chọn từ lớp thứ nhất trợt Sử” 2
A :“Học sinh đợc chọn từ lớp thứ nhất trợt Địa” 3
B :“Học sinh đợc chọn từ lớp thứ hai trợt Văn” 1
B :“Học sinh đợc chọn từ lớp thứ hai trợt Sử” 2
Trang 4B :“Học sinh đợc chọn từ lớp thứ hai trợt Địa” 3
Khi đó các biến A ,B ,(i,j 1,2,3) là độc lậpi j = .
1/ Ta cần tính P(A B ) ,1 1 P(A B ) P(A )P(B )1 1 1 1 1 1 1
4 4 16
2/ Biến cố “Hai học sinh đó đều bị trợt một môn nào đó”, là
(A1∪A2∪A3) (∩ B1∪B2∪B3)
Đặt A=(A1∪A2∪A3),B=(B1∪B2∪B3)
P(A) 1 , P(B) 1
P(A B) P(A).P(B) 1
4
3/ Biến cố “Hai học sinh đó không bị trợt môn nào”,là A B∩
P A B P(A).P(B)
∩ = = ữ = ì
4/ +/ Biến cố “Có ít nhất một trong hai học sinh bị trợt ít nhất một môn”., là A∪B
III bài tập
Bài 1: Trong một hộp kín có 15 quả cầu kích thớc nh nhau.Trong đó có
5 viên màu xanh ,10 viên màu đỏ.Lấy ngẫu nhiên từ hộp 3 quả
Tìm xác suất để
1 Ba quả cầu lấy ra không cùng màu
2 Ba quả cầu lấy ra có ít nhất một quả màu xanh
Bài 2: Trong một phân xởng có 10 máy hoạt động.Xác suất để trong 1 ca có 1
máy phải sửa là 0,2 ; xác suất để có 2 máy phải sửa là 0,3 ; vấc suất để
có nhiều hơn hai máy phải sửa là 0,07 Tìm xác suất để trong 1 ca phân xởng đó không có máy phải sửa
Bài 3: Trong 1 phân xởng có 3 máy làm việc độc lập với nhau.Trong 1 ca sản
xuất xác suất để máy 1 phải sửa là 0,12 ; máy 2 phải sửa là 0,18 ; máy 3 phải sa là 0,1 Giả sử 3 máy không đồng thời phải sửa
Tính xác suất để trong ca đó phải sửa máy
Trang 5Bài 4: Trong hộp kín có 7 quả cầu màu xanh và 5 quả cầu màu đỏ.Lờy ngẫu
nhiên từ trong hộp mỗi lần 1 quả(không hoàn lại) cho đến khi đợc quả màu xanh thì dừng lại
Tính xác suất để ngời đó dừng lại ở lần thứ 4
Bài 5 :
Một xạ thủ bắn liên tiếp vào 1 mục tiêu cho đến khi trúng đích thì ngừng
Tìm xác suất để bắn đến viên thứ 3 thì ngừng.Biết xác suất bắn trúng
đích cho mỗi lần bắn là 0,85
Bài 6 : Chọn ngẫu nhiên một vé xổ số có 5 chữ số Tính xác suất để :
1 Số vé không có số 1 hoặc không có số 5
2 Số vé có chữ số 5và chữ số chẵn
Bài 7: Trong một lớp học có 6 bóng đèn , mỗi bóng có xác suất bị cháy là 0,25 Lớp học đủ ánh sáng nếu có ít nhất 4 bóng đèn sáng
Tính xác suất để lớp học không đủ sáng
Bài 8: Một bài thi trắc nhiệm gôm 12 câu hỏi mỗi câu hỏi cho 4 câu trẩ lời
trong đó chỉ có 1 câu đúng
Giả sử mỗi câu trả lời đúng đợc 1 điểm và mỗi câu trả ,lời sai không bi
trừ điểm Một học sinh học kém làm bài bằng cách chọn tùy ý câu trả lời Tính xác suất để anh ta đợc 6 điểm
Bài 9: Gieo đồng thời 3 con súc sắc.Ngời thắng cuộc nếu có xuất hiện ít nhất
2 mặt 6 chân.Tính xác suất để ttrong 5 ván chơi,thắng ít nhất là 3 ván Bài 10 : Một ngời bắn 3 viên đạn xác suất để 3 viên trúng vòng 10 là 0,008; xác suất để 1 viên trúng vòng 8 là 0,15;và xác suất để 1 viên trúng
vòng dới 8 là 0,4
Tính xác suất để xạ thủ đạt ít nhất là 28 điểm
Bài 11: Một máy bay có 5 động cơ, trong 2 động cơ ở cánh phải, hai động cơ ở nhánh trái và 1 động cơ ở thân đuôi.Mỗi động cơ ở cánh phải và ở thân đuôi có xác suất bị hỏng là 0,1 ; còn mỗi động cơ ở cánh trái có xác suất bị hỏng là 0,05 Các động cơ hoạt động độc lập Tính xác suất để máy bay thực hiện chuyến bay an toàn trong các trờng hợp
1/ Máy bay chỉ bay đợc nếu có ít nhất 2 động cơ làm việc
2/ Máy bay chỉ bay đợc khi trên mỗi cánh của nó có ít nhất một động cơ làm việc
Trang 6Bài 12 : Một xí nghiệp xản suất bóng đèn có 4 phân xởng Khi xuất xởng, tỉ lệ chính phẩm của mỗi phân xởng nh sau:
Phân xởng I đạt 99,7% ; phân xởng II đạt 99,85% ; phân xởng III đạt 99,65% và phân xởng IV đạt 99,9% Lấy ngẫu nhiên mỗi phân xởng 1 sản phẩm.Tìm xác suất để trong số lấy ra
1/ Có 4 sản phẩm đều là phế phẩm
2/ Có đúng 2 chính phẩm
Bài 13: Tỷ lệ thí sinh trúng tuyển vào đại học là 20% Rút ngẫu nhiên một hồ sơ trong số hồ sơ của thí sinh dự thi cho đến khi đợc hồ sơ của thí sinh trúng tuyển thì dừng lại Tìm xác suất để phải rút đến lần thứ t
Bài 14: Hai xạ thủ bắn vào mục tiêu độc lập với nhau
Xác suất trúng đích của xạ thủ thứ nhất là 0,85 ,xạthủ thứ 2 là 0,75
Tìm xác suất để :
1/ Ngời thứ nhất bắn 3 phát đầu, có 1 phát trúng đích
2/ Ngời thứ 2 bắn 3 phát đầu, có hai phát trúng đích
3/ Cả 2 ngời bắn trúng ngay từ phát đầu tiên
4/ ít nhất một ngời bắn trúng đích khi mỗi ngời bắn 1 phát
Bài 15: Kết quả kiểm tra chất lợng học kì I của K11 nh sau:
Lớp 11A tỉ lệ khá giỏi 92%
Lớp 11B tỉ lệ khá giỏi 80%
Lớp 11C tỉ lệ khá giỏi 85%
Lớp 11D tỉ lệ khá giỏi 78%
Lớp 11E tỉ lệ khá giỏi 65%
Rút ngẫu nhiên mỗi lớp 1 bài kiểm tra.Tìm xác suất để trong 5 bài đó 1/ Đều đạt khá trở lên
2/ Có 3 bài đạt điểm khá trở lên
3/ Không có bài nào đạt điểm khá giỏi