1. Trang chủ
  2. » Giáo án - Bài giảng

BÀI TOÁN QUY HOẠCH TUYẾN TÍNH

87 470 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 1,33 MB

Nội dung

§ 0.06kg 0.08kg 0.04kg x1; x2 ; x3 xi  0, i  1,3 0.06 x1  0.04 x2  0.07 x3 0.08x1  0.x2  0.04 x3 x1  1.7 x2  1.8x3 1 f  x   x1  1.7 x2  1.8 x3  max 2 0.06 x1  0.04 x2  0.07 x3  500   0.08 x1  0.x2  0.04 x3  300 3 x j  0, j  1.3 0.06 0.04 0.07 A 0.04 0.08 -1- 0.07kg 0.04kg 500 B  300 x  x1; x2 ; x3  x  x1; x2 ; x3  x  x1; x2 ; x3  p2 p3 XN 3.5m 2.8m 20h 4m 10h 2.6m 16h 3.8m 12h 2.5m 1) x1; x2 ; x3 x j  0, j  1,3 2) 3) 35x1  40 x2  43x3 , 45x1  42 x2  30 x3 , 45x1  42 x2  30 x3  35x1  40 x2  43x3  10 x1  x2  13x3  35x1  40 x2  43x3 , 4) -2- 18h 15h 5) 3.5  35x1   40x2  3.8  43x3  2.8  45x1  2.6  42x2  2.5  30x3 248.5 x1  269.2 x2  238.4 x3 20  35x1  16  40x2  18  43x3  10  45x1  12  42x2  15  30x3 1150x1  1144x2  1224x3 x1  x2  x3 1 f x   x1  x2  x3  10 x1  x2  13x3    35 x1  40 x2  43x3  1500 2 248.5 x1  269.2 x2  238.4 x3  10000  1150 x1  1144 x2  1224 x3  52000 3x j  0, j  1,3  13   10    35  1500  40 43     A , B 248.5 269.2 238.4 10000       1150 1144 1224  52000 C2, C3 -3- 1, CT km Kho C1 C2 C3 15T 20T 25T km 5km K1 20T 4km x11 2km x12 3km 6km x13 K2 40T x22 x21 - x23 T  km xij i  1,2; j  1,2,3 Ki  C j xij  x11  x12  x13 x21  x22  x23 x11  x21 x12  x22 2 x13  x23 T  km : 5x11  x12  x13  x21  3x22  x23 -4- 1 f x   x11  x12  x13  x21  3x22  x23   x11  x12  x13  20  x  x  x  40 22 23  21 2 x11  x21  15  x  x  20 12 22   x13  x23  25 3xij  i  1,2; j  1,2,3 -5- § t: n 1 f x    c j x j  max  j 1  n   aij x j  bi  j 1  n 2  aij x j  bi  j 1  n   aij x j  bi  j 1 3x j   j  J1 ; x j   j  J ; x j tu  y - Vector x  x1; x2 ;; xn  - y   j  J ; J1  J  J  1;2;; n - 1 f x   3x1  x2  x3  x4  x5  max 2 x1  x2  x3  x4  x5  17  x1  x2  x3  20 2  x1  x2  x3  x5  18  x1  x2  x3  x4  100 3x1; x4  0; x2 ; x5  0; x3 tu  y y n 1 f x    c j x j  max  j 1 n 2  aij x j  bi j 1 i  1, m 3x j   j  1, n  -6- 1 f x   3x1  x2  x3  3x4  x5   x1  x2  x3  3x4  2 x2  x3  x4  x5  18  x  x  x  17  3x j  0; j  1,5 n 1 f x    c j x j  max  j 1  x1  2    a1m 1 xm 1   a1n xn  b1  a2m 1 xm 1   a2n xn  b2 x2  xm  amm 1 xm 1   amn xn  bm 3x j   j  1, n ; bi  0i  1, m  x1 x2 xm xm 1 xn  a1m 1 a1n    a a   m  n  A            0 a a  mm 1 mn      bi  i  1, m x1; x2 ;; xm - x1; x2 ;; xm ; xm1;; xn   b1; b2 ;; bm ;0;;0 -7- bi  0, i  1, m 1 f x   3x1  x2  x3  3x4  x5   x1  x4  x5  20 2 3x1  x2  x4  x6   x  x  x  x  28  3x j  0; j  1,6 x1 x2 x3 x4 x5 x6  0 0   A    1  0   x1, x2 , x3, x4 , x5 , x6,   0,0,28,0,20,0 -8- §3 n  aij x j  bi j 1 xi 1  n  aij x j  xn 1  bi j 1 n  aij x j  bi j 1 xi 1  - n  aij x j  xn 1  bi j 1 x j  ta thay x j  t j , t j  x j tu  y y ta thay x j  xj  xj , xj , xj  : 1 f x   x1  x2  x3  x4  x5   x1  x2  x3  x4  x5   x1  x2  x3  x4  x5  7a    x2  x3  x4  1  x2  x3  x4  1b    2  x3  x4  3x5  10 x3  x4  3x5  10c     x1  x2  x3  x4  20  x1  x2  x3  x4  20d  3x1; x5  0; x4  0; x2 ; x3 tu  y y  x6  x7    -1 x8   Thay x4  t4 ; t4   Thay x2  x2  x2 ; x2  x2   Thay x3  x3  x3 ; x3  x3  -9- 1 f x   x1  x2  x2   2x3  x3   t  x5  0.x6  x7  x8   x1  2 x2  x2    x3  x3   2t  x5  x6  7a     x2  x2   2 x3  x3   t  x7  1b  2 2 x3  x3   t  3x5  x8  10c    x1   x2  x2   2 x3  x3   t  20d  3x1; x5  0; t  0; x2 ; x2 ; x3 ; x3 ; x6 ; x7 ; x8  x10 , x20 , x20 , x30 , x30 ,t40 , x50 , x60 , x70 , x80  x10 , x20 , x30 , x40 , x50 with x20  x20  x20 , x30  x30  x30 , x40  t40 bi  0, i  1, m ) n 1 f x    c j x j  max  j 1 a11 x1    a1n x n  b1 a x    a x  b 11 2 11    a11 x1    a11 x1  bm 3x j   j  1, n  xn i    f x    f x   max - 10 - –M f x   1040 10 10 10 20 20 5 15 20 30 11 10 5 15 20 10 30 S=-5 10 10 4 1 20 7 -1 R=2 (+5) R=2 11 R=0 5(-5) 0 0 10 10 S=-5 S=-3 V  2,5, 2,4, 4,4, 4,5, 20,5  - 73 - 20 5(+5) S=-9 20(-5) S=-11 R=4 10 6 au: 2 R=1 R=0 11 R=0 0 0 10 10 S=0 S=-1 10 S=0 S=0 R=0 15 S=0 0 0 10 X  0  0 0 0 5  10 10   10 15 0 f x   435 sau: 30 15 15 25 15 40 - 74 - 30 25 15 5 40 15 2 20 -1 R=0 (+15) 3 15(-15) 25 S=-2 15 0(+15) S=-1 15(-15) S=-3 S=-1 - V  2,4, 2,2, 3,2, 3,4, 15,15  15 5 25 S=0 0 2 R=0 20 R=0 15 R=0 15 S=0 S=1 S=0 0  20  X   0 15   25 15 0  f x   150 - 75 - R=-1 R=0 6) 180 200 230 280 280 14 320 290 180 280 200 320 0 290 180 5 230 -1 200 S=-3 S=0 14 140 280 7 R=-3 280 R=-2 90 S=-4 - S=-4 V  2,2, 3,2, 3,3, 2,3, 200,140  140 0 180 S=-1 140 60 S=0 14 7 R=0 R=1 280 0 230 S=0 S=0 0 - 76 - R=0 R=0 0 280  X  180 140 0     60 230  f x   3980 12 15 10 12 19 11 9 10 19 11 (+6) 8(-6) S=-7 -3 12 6(-6) 1(+6) S=-8 12 15 12 6 S=-5 11 S=-5 V  2,1, 4,1, 4,2, 2,2, 6,8  au: - 77 - 0 0 R=0 R=4 R=6 S=0 R=0 4 9 2 S=3 12 12 7 S=3 11 S=0 S=0 0 R=0 0 R=0 R=0 R==-3 S=0 0 0 6 X  0  2 6 12 1  0 11 0  0 0 f x   131 8) 20 50 60 30 50 40 70 11 - 78 - 20 50 50 60 30 0 10 R=10 50 40 -1 R=4 70 20 20(-10) (+10) 11 0 30(+10) S=-7 S=-6 10(-10) S=-11 30 S=0 V  2,3, 2,2, 3,2, 3,3, 10,20  10 7 0 50 0 R=0 0 20 10 10 11 S=0 40 S=0 S=1  0 50  X  20 10 10     40 30 0 u: R=-1 30 S=0 f x   460 - 79 - R=0 R=0 9) 30 40 60 70 100 80 20 30 100 40 80 20 30 60 20 70(-30) -1 R=0 30(-30) (+30) S=-6 S=-5 V  2,4, 1,4, 1,3, 2,3, 70,30  30 (+30) -1 30(-30) 20 S=0 20 S=0 60 0 R=3 30(+30) 20 S=-3 S=-7 70 40(-30) R=0 30(+30) R=0 S=1 S=1 V  1,1, 2,1, 2,4, 1,4, 40,30  30 - 80 - R=-1 -1 R=1 30 20 S=1 60 0 20 S=0 S=0 30 60 10  X   20 60    20 0  R=0 10 R=0 60 R=0 S=0 0 f x   660 10 150 120 80 50 100 11 130 170 12 150 120 100 130 20(-20) 170 130 5 50 -2 11 R=3 80(+20) -1 R=5 12 0 R=0 -1 (+20) S=-6 80 40(-20) S=-8 80 S=-12 V  3,1, 3,2, 1,2, 1,1, - 81 - 50 S=-7 40,20  20 130 -2 11 R=0 100(-80) (+80) -2 R=-1 12 0 R=0 20 S=1 0 20(+80) S=0 80(-80) S=0 50 S=0 V  1,3, 1,2, 3,2, 3,3, 100,80  80 130 20 S=0 11 R=0 20 80 R=0 12 R=0 100 S=0 20 80   X  130 0 0    20 100 50 S=2 50 S=0 0 f x   2040 - 82 - 1) 25 40 20 10 40 20 35 25 15 0  X   0 20     25 10 f x   340 2) 220 310 200 250 300 500 12 11 13 180 10 15 18 14 50 250  X   40 260 200    180 0  f x   8690 - 83 - 3) 76 62 88 45 40 79 10 19 102 13 11 70 12 17 10 60 12 18 18  31 48 0   62 40 0   X   0 30 40   45 0 15  f x   2659 4) 85 75 60 105 16 10 50 14 65 10 18 12 20 55 14 18 45 8 12 85 0 20  0 60   X   55 0     20 25 f x   2080 - 84 - 5) 120 280 130 270 100 300 10 11 150 10 250 12 13 100    30 270  X  120 30 0      220 30 f x   5590 - 85 - -2003 -2004 2007 - 86 - Trang 1 15 15 20 26 41 41 44 47 59 59 61 66 68 86 87 § §2 § §1 § § § § § §3 : - 87 -

Ngày đăng: 24/10/2016, 14:47

TỪ KHÓA LIÊN QUAN

w