Thực hiện nhiệm vụ sau Dùng thước êke để kẻ đường vuông góc từ A đến đường thẳng a không đi qua A A Tiết 64 Sở GD&ĐT Thừa Thiên Huế Trường THCS Nguyễn Tri Phương - Huế Giáo viên thực hiện: Hoàng Đình Anh Tú -------------------------------------- Quan sát hình vẽ sau và có nhận xét gì về đoạn thẳng AH? A B C H Trong một tamgiác , đoạn vuông góc kẻ từ một đỉnh đến đường thẳng chứa cạnh đối diện gọi là đườngcao của tamgiác đó 1. Đườngcao của tam giác: Như vậy mỗi tamgiác có ba đườngcao Thực hiện nhiệm vụ Nhiệm vụ 1: Dùng thước êke để vẽ ba đườngcao của tamgiác nhọn ABC trên giấy , rồi nhận xét Nhiệm vụ 2: Dùng giấy có kẻ ô để vẽ tamgiác ABC vuông, xác định ba đườngcao của tamgiác rồi nhận xét Nhiệm vụ 3: Dùng phần mềm GSP vẽ 3đườngcao của tamgiác tù ABC, rồi nhận xét 4 A 2. Tính chất ba đườngcao của tam giác: Định lý: Ba đườngcao của một tamgiác cùng đi qua một điểm. Điểm đó gọi đó là trực tâm của tam giác. H nằm trong tamgiác H trùng với đỉnh A H nằm ngoài tamgiác H ≡ A B C N H A B C H A B C Quan sát bài toán sau Cho tamgiác ABC có AM vừa là đường trung tuyến vừa là đường cao. Chứng minh tamgiác ABC là tamgiác cân ( )ABM ACM c g c ∆ = ∆ − − Suy ra là tamgiác cân Nhận xét: H A B C Suy ra: AB = AC ABC ∆ Hướng dẫn Nhiệm vụ: Vẽ tamgiác đều ABC có trực tâm H, các em có nhận xét gì về điểm H? Kiểm tra lại bằng cách đó đạc? Trong tamgiác đều, trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm nằm trong tamgiác và cách đều ba cạnh là bốn điểm trùng nhau Bài 1: Các câu sau đây đúng hay sai? a)Giao điểm của ba đường trung trực gọi là trực tâm của tamgiác Sai Sai Đúng Vì trực tâm là giao điểm của ba đườngcao b) Trong một tamgiác cân, trọng tâm, trực tâm, điểm cách đều ba cạnh, điểm cách đều ba đỉnh của tamgiác nằm trên một đường thẳng c) Trong một tam giác cân đường trung tuyến nào cũng là đườngcao cũng là đường phân giác. Chỉ có đường trung tuyến thuộc cạnh đáy mới là đường cao, đường phân giác . Bài 61a/83-SGK: Cho tamgiác ABC không vuông. Gọi H là trực tâm của nó. Hãy chỉ ra các đườngcao của tamgiác HBC. Từ đó chỉ ra trực tâm của tamgiác đó Bài 2: Đườngcao của tamgiác đều cạnh a bằng A. B. D. 3a 2 a 3 . 2 a C N M P H A B C Các đườngcao của là BP, CN, HM. HBC ∆ HBC ∆ 3 2 a Nên trực tâm của là A Do ba đườngcao BP, CN, HM cắt nhau tại A Hướng dẫn về nhà Chứng minh nhận xét "Các đường cao, trung tuyến, đường phân giác, đường trung trực của một tamgiác đều thì bằng nhau. - Từ bài tập 61a) về nhà các em suy ra trực tâm của tamgiác BHA, CHA - Chứng minh bài toán trong trường hợp tamgiác ABC có một góc tù. Đặt vấn đề Làm bài tập 60,62/83-sgk . một tam giác , đoạn vuông góc kẻ từ một đỉnh đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó 1. Đường cao của tam giác: Như vậy mỗi tam. giấy có kẻ ô để vẽ tam giác ABC vuông, xác định ba đường cao của tam giác rồi nhận xét Nhiệm vụ 3: Dùng phần mềm GSP vẽ 3 đường cao của tam giác tù ABC, rồi