1. Trang chủ
  2. » Giáo án - Bài giảng

trắc nghiệm hàm số, nguyên hàm tham khảo

26 281 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 1,33 MB

Nội dung

tài liệu word trắc nghiệm hàm số, nguyên hàm tham khảo

TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ PHƯƠNG PHÁP GIẢI TỐN DẠNG 1: Xét tính đồng biến, nghịch biến (tính đơn điệu hay biến thiên hàm số) - Hàm f đồng biến (hay tăng) K ⇔ f’(x) ≥ 0, x ∈ K - Hàm f nghịch biến (hay giảm) K ⇔ f’(x) ≤ 0, x ∈ K Nhận xét: - Hàm số đồng biến K , đồ thị có hướng lên kể từ trái sang phải - Hàm số nghịch biến K , đồ thị có hướng xuống kể từ trái sang phải Phương pháp : Cho hàm số y = f ( x) : - Tìm TXĐ hàm số - Tính y’( hay f '( x) ) giải phương trình f '( x) = (nếu có) - Lập bảng biến thiên - Kết luận : Đặc biệt: Đối với tam thức bậc hai f ( x) = ax + bx + c ( a ≠ ) a > f ( x ) ≥ ∀x ∈ ¡ ⇔  ∆ ≤ + a < f ( x ) ≤ ∀x ∈ ¡ ⇔  ∆ ≤ + + x1 < α < x2 ⇔ af (α ) < DẠNG 2: Tìm điều kiện m để hàm số đơn điệu khoảng cho trước Phương pháp: + f(x) đồng biến K ⇔ f ' ( x ) ≥ 0, ∀x ∈ K ( ) + f(x) nghịch biến K (chỉ xét trường hợp f(x) = số hữu hạn điểm miền K) BÀI TẬP VẬN DỤNG Bài 1: Tìm khoảng đồng biến nghịch biến hàm số ⇔ f ' x ≤ 0, ∀x ∈ K a) y = y= x − x +1 3x + 1− 2x b) y= y= x − 2x + 3 x2 − x + 2x −1 e) f) Bài 2: Tìm giá trị tham số m để c) y=− x3 + x − 3x g) y = x − − 3x − d) y = − x + x − h) y = 25 − x x + mx + ( m + 6) x − 2m − a) đồng biến R x y = − + (m − 2) x + (m − 8) x + b) nghịch biến R mx + y= x + m đồng biến khoảng xác định c) y= CÂU HỎI TRẮC NGHIỆM Câu Hàm số y = − x + x − x có khoảng nghịch biến là: A (−∞; +∞ ) B (−∞; −4) vµ (0; +∞) Câu Các khoảng nghịch biến hàm số A ( −∞;1) va ( 2; +∞ ) Câu Hàm số A B y = − x + 3x − D y = − x3 + x − C ( 0; ) ( −∞;1) vµ (3; +∞) là: ( 2; +∞ ) D ¡ đồng biến khoảng: B ( −∞;1) C ( 0; ) Câu Các khoảng nghịch biến hàm số A C 1;3 ( ) B ( −∞; −1) y = x − 3x − C ( 1; +∞ ) ( 2; +∞ ) D ¡ là: ( −1;1) D ( 0;1) Câu Cho sàm số y = −2 x − (C) Chọn phát biểu : x +1 A Hàm số ln nghịch biến khoảng xác định B Hàm số ln đồng biến ¡ C Hàm số có tập xác định ¡ \ { 1} D Hàm số ln đồng biến khoảng xác định Câu Cho sàm số y= 2x +1 − x + (C) Chọn phát biểu đúng? ¡ \ { 1} A Hàm số nghịch biến ¡ \ { 1} ; B Hàm số đồng biến ; C Hàm số nghịch biến khoảng (–∞; 1) (1; +∞); D Hàm số đồng biến khoảng (–∞; 1) (1; +∞) Câu Hàm số nghịch biến khoảng: y= A ( −∞;1) x+2 x −1 va ( 1; +∞ ) B Câu Các khoảng đồng biến hàm số A ( −∞; −1) va ( 1; +∞ ) B ( −∞; ) va ( 1; +∞ ) B y = x3 − x y = x3 − 3x + C ( 0;1) Câu 10 Các khoảng nghịch biến hàm số A ( −∞;0 ) va ( 2; +∞ ) B ( 0; ) Câu 11 Các khoảng đồng biến hàm số ( −1; +∞ ) D ¡ \ { 1} là: C ( −1;1) Câu Các khoảng đồng biến hàm số A C ( 1; +∞ ) [ −1;1] ( 0;1) là: [ −1;1] y = − x + 3x + C D D ¡ là: D [ 0; 2] y = x3 − 5x + x − ¡ là: A B ( −∞;1) va  ; +∞ ÷ 3  C  7 1; ÷  3 Câu 12 Các khoảng đồng biến hàm số y = x − 3x + x là: A B C  3  −∞;1 − ÷ va ÷     ; +∞ ÷ 1 + ÷    3 ;1 + 1 − ÷ 2 ÷   Câu 13 Các khoảng nghịch biến hàm số A B 1  1   −∞; − ÷ va  ; +∞ ÷ 2  2  y = 3x − x D [ −5;7] ( 7;3)  3 ; −   2  D ( −1;1) là: C  1 − ; ÷  2 D 1   −∞; − ÷ 2  1   ; +∞ ÷ 2  Câu 14 Trong hàm số sau, hàm số nghịch biến khoảng (1; 3): A B y= C x − 4x2 + 6x + A Câu 16 Hàm số A B y= 2x − x −1 đồng biến (1;2) m thuộc tập sau đây: y = − x + mx − m [ 3; +∞ ) x − 2x + D x2 + x − y= x −1 Câu 15 Hàm số y= C ( −∞; 3) 3   ; 3÷ 2  m y = x − ( m − 1) x + ( m − ) x + 3 B 2  m ∈  ; +∞ ÷ 3   −2 −  m ∈  −∞; ÷   C đồng biến 2  m ∈  −∞; ÷  3 Câu 17 Trong hàm số sau, hàm số đồng biến khoảng A y = x3 − x − 3x Câu 18 Hàm số A y= B x − + 4− x B [ 3; 4) C y = ln x y=e x2 + 2x D 3   −∞; ÷  2 ( 2;+∞ ) D m thuộc tập nào: m ∈ ( −∞; −1) ( −1; +∞ ) D y = − x4 − x nghịch biến trên: C ( 2; 3) ( 2; 3) D ( 2; 4) Câu 19 Cho Hàm số y = x + x + (C) Chọn phát biểu : x −1 A Hs Nghịch biến ( −∞; −2 ) ( 4; +∞ ) C Hs Nghịch biến Câu 20 Hàm số y= ( −2;1) x − ln x ( 1; ) B Điểm cực đại I ( 4;11) D Hs Nghịch biến ( −2; ) nghịch biến trên: A B ( e; +∞ ) Câu 21 Hàm số y = C ( 0; 4] 2x − đồng biến x+3 B ( −∞;3) A ¡ ( 4;+∞ ) D ( 0;e ) C ( −3; +∞ ) D ¡ \ { −3} Câu 22: Giá trị m để hàm số y = x + 3x + mx + m giảm đoạn có độ dài là: − 9 d m = a m = b m = c m ≤ Câu 23: Cho K khoảng nửa khoảng đoạn Mệnh đề khơng đúng? a Nếu hàm số y = f ( x) đồng biến K f '( x) ≥ 0, ∀ x ∈ K b Nếu f '( x) ≥ 0, ∀ x ∈ K hàm số y = f ( x) đồng biến K c Nếu hàm số y = f ( x) hàm số K f '( x) = 0, ∀ x ∈ K d Nếu f '( x) = 0, ∀ x ∈ K hàm số y = f ( x) khơng đổi K Câu 24: Hàm số sau đồng biến ¡ ? A Câu 25: y = x− x b y = x c y = x + x + x + d y= x −1 x +1 y = − x3 + x − mx + Với giá trị m hàm số nghịch biến tập xác định nó? m ≥ m ≤ m > a b c d m < mx + x + m nghịch biến khoảng xác định là: Câu 26: Giá trị m để hàm số A −2 < m < b −2 < m ≤ −1 c −2 ≤ m ≤ d −2 ≤ m ≤ y= Tuần 2: Tiết 4,5,6 ( tuần khóa) Từ 19/9 - 24/9 CỰC TRỊ CỦA HÀM SỐ(3 TIẾT) A PHƯƠNG PHÁP GIẢI TỐN DẠNG 1: Tìm cực trị hàm số: Phương pháp: Sử dụng quy tắc tìm cực trị: 1/ Quy tắc 1: B1: Tìm tập xác định D B2: Tính đạo hàm y' = f'(x) B3: Tìm điểm xi thoả mãn điều kiện: xi ∈ D nghiệm y' làm cho y' khơng xác định B4: Lập bảng biến thiên hàm số D kết luận 2/ Quy tắc 2: B1: Tìm tập xác định D B2: Tính đạo hàm y' = f'(x) B3: Giải phương trình y' = để tìm nghiệm xi B4: Tính đạo hàm cấp hai y'' = f''(x) ; tính f''(xi) nhận xét dấu : + Nếu f''(x0) < hàm số f đạt cực đại điểm x0 yCĐ = f(x0) + Nếu f''(x0) > hàm số f đạt cực đại điểm x0 yCT = f(x0) DẠNG 2: Tìm điều kiện để hàm số đạt cực trị điểm: Phương pháp: Giả sử hàm số f(x) có đạo hàm cấp (a;b) chứa x f(x) có đạo hàm cấp hai khác điểm x0  f '( x0 ) =  f '( x0 ) ≠ Nếu  x0 điểm cực trị Nếu Nếu  f '( x0 ) =   f ''( x0 ) <  f '( x0 ) =   f ''( x0 ) > x0 điểm cực đại x0 điểm cực tiểu B BÀI TẬP VẬN DỤNG Bài 1: Tìm cực trị hàm số − x + 4x b) y = − x4 − x2 d) y = 3x + y= − 2x f) a) y = 2x3 + 3x2 – 36x – 10 x − 4x − c) y = x − 2x + x −1 e) y = Bài 2: x − mx + (m − m + 1) x + a) Xác định m để hàm số đạt cực đại điểm x = b) Xác định m để hàm số y = x − x + mx + đạt cực tiểu x = c) Xác định m để hàm số y = x − 2mx nhận điểm x = làm điểm cực tiểu y= d) Chứng minh hàm số y= y= x2 − m2 + x−m ln có cực đại cực tiểu x2 + 2x (1) x −1 e) Cho hàm số Tính khoảng cách hai điểm cực trị đồ thị hàm số (1) Viết phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số (1) Lưu ý: Với tốn cực trị, số kiến thức ta cần lưu ý để thích ứng nhanh với u cầu số câu hỏi trắc nghiệm : Hàm đa thức y = P(x) đạt cực trị nghiệm đơn P’(x) = Hàm số y = ax + bx + cx + d ( a ≠ ) có cưc đại cực tiểu phương trình y’ = có hai nghiệm phân biệt ax + bx + c y= a'x +b' Hàm số có cưc đại cực tiểu phương trình y’ = có hai nghiệm phân biệt khác nghiệm mẫu Hàm số y= P( x) Q( x) đạt cực trị x0 giá trị hàm số điểm cực trị x0 với P’(x0) Q’(x0) đạo hàm P(x) Q(x) x0 Phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số y= 2ax + b a' y0 = y= P '( x0 ) Q '( x0 ) ax + bx + c a ' x + b ' Phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số y = ax + bx + cx + d ( a ≠ ) Thực phép chia y cho y’ ta y = y’(x).g(x) + Ax + B, điểm cực trị y’(x) = nên đường thẳng qua hai điểm cực trị y = Ax + B CÂU HỎI TRẮC NGHIỆM Câu Điểm cực đại đồ thị hàm số y = x − x + x − là:  −32   ; ÷ A B C  27  Câu Điểm cực tiểu đồ thị hàm số y = x − x + x − là:  −32   ; ÷ 1; 0;1 A ( ) B ( ) C  27  ( 1;0 ) ( 0;1)  32   ; ÷ D  27   32   ; ÷ D  27  Câu Điểm cực đại đồ thị hàm số y = x − 3x + x là:  3 ;  − ÷ ÷ 1;0 ) 0;1 (   A B C ( ) Câu Điểm cực tiểu đồ thị hàm số y = x − 3x + x là:  3 ;− 1 + ÷ ÷   D  3 ;  − ÷ ÷ 1; ) 0;1 (   A B C ( ) Câu Điểm cực đại đồ thị hàm số y = x − x + x là:  3 ;− 1 + ÷ ÷   D A ( 1; ) B ( 3;0 ) C ( 0;3) D ( 4;1) D ( 4;1) Câu Điểm cực tiểu đồ thị hàm số y = x − x + x là: A ( 1; ) B ( 3;0 ) C ( 0;3) Câu Điểm cực đại đồ thị hàm số y = x − x + là: A ( 2;0 )  50   ; ÷ B  27  C ( 0; )  50   ; ÷ D  27  Câu Điểm cực tiểu đồ thị hàm số y = x − x + là: A ( 2;0 )  50   ; ÷ B  27  C ( 0; )  50   ; ÷ D  27  Câu Điểm cực đại đồ thị hàm số y = x − x là: 1   ; −1÷  A     − ;1÷ B      − ; −1 ÷ C   1   ;1 ÷ D   Câu 10 Điểm cực tiểu đồ thị hàm số y = x − x là: 1   ; −1÷  A     − ;1÷ B      − ; −1 ÷ C   Câu 11 Điểm cực đại đồ thị hàm số y = x − 12 x + 12 là: ( −2; 28 ) ( 2; −4 ) ( 4; 28) A B C 1   ;1 ÷ D   D ( −2; ) Câu 12 Điểm cực tiểu đồ thị hàm số y = x − 12 x + 12 là: ) ) ) ) A ( B ( C ( D ( Câu 13: Cho hàm số y = –x3 + 3x2 – 3x + 1, mệnh đề sau đúng? A Hàm số ln nghịch biến; B Hàm số ln đồng biến; C Hàm số đạt cực đại x = 1; D Hàm số đạt cực tiểu x = −2;28 2; −4 −2; 4; 28 y= 2x − x − , tìm khẳng định đúng? Câu 14: Trong khẳng định sau hàm số A Hàm số có điểm cực trị; B Hàm số có điểm cực đại điểm cực tiểu; C Hàm số đồng biến khoảng xác định; D Hàm số nghịch biến khoảng xác định 1 y = − x4 + x2 − Câu 15 : Trong khẳng định sau hàm số , khẳng định đúng? A Hàm số đạt cực tiểu x = 0; C Hàm số đạt cực đại x = -1; y= B Hàm số đạt cực đại x = 1; D Cả câu x + mx + (2m − 1) x − Mệnh đề sau sai? Câu 16: Cho hàm số A ∀m ≠ hàm số có cực đại cực tiểu; B ∀m < hàm số có hai điểm cực trị; C ∀m > hàm số có cực trị; D Hàm số ln có cực đại cực tiểu Câu 17: Hàm số: y = − x + x + đạt cực tiểu x = A -1 B C - y = x4 − x2 − Câu 18: Hàm số: đạt cực đại x = A B ± C − y = x4 − x2 + Câu 19: Cho hàm số Hàm số có D D A Một cực đại hai cực tiểu B Một cực tiểu hai cực đại C Một cực đại khơng có cực tiểu D Một cực tiểu cực đại Câu 20: Cho hàm số y = x - 3x + Tích giá trị cực đại cực tiểu hàm số A B -3 C D 3 Câu 21: Cho hàm số y = f(x) = ax + bx + cx + d, a ≠ Khẳng định sau sai ? A Đồ thị hàm số ln cắt trục hồnh B Hàm số ln có cực trị C lim f ( x) = ∞ D Đồ thị hàm số ln có tâm đối xứng x →∞ Câu 22: Hàm số y = x − mx + có cực trị : A m > B m < C m = D m ≠ Câu 23: Đồ thị hàm số y = x − x + có điểm cực tiểu là: A ( -1 ; -1 ) B ( -1 ; ) C ( -1 ; ) Câu 24: Đồ thị hàm số sau có điểm cực trị: A y = x − x − B y = x + x − D ( ; ) C y = x + x + D y = −2 x − x + Câu 25: Hàm số y = x − 3x + mx đạt cực tiểu x = khi: A m = B m ≠ C m > D m < Câu 26: Khẳng định sau hàm số y = x + x + : A Đạt cực tiểu x = B Có cực đại cực tiểu C Có cực đại khơng có cực tiểu D Khơng có cực trị Câu 27: Khẳng định sau đồ thị hàm số A yCD + yCT = B yCT = −4 Câu 28: Đồ thị hàm số: A B y= y= C xCD = −1 − x2 + 2x − x −1 : D xCD + xCT = 3 x + x − x − 17 có tích hồnh độ điểm cực trị C -5 D -8 Câu 29: Số điểm cực trị hàm số y = − x − x − A B C Câu 30: Số điểm cực đại hàm số y = x + 100 A B C Câu 31: Hàm số y = x − mx + có cực trị A m > B m < D D 3 C m = Câu 32: Số cực trị hàm số y = x + x − là: A B C D m ≠ D Câu 33: Khoảng cách điểm cực trị đồ thị hàm số y = x + 3x − là: A B C D Câu 34: Hàm số y = x − 3mx + x − 2m − khơng có cực đại, cực tiểu với m A m ≤ B m ≥ C −1 ≤ m ≤ D m ≤ −1 ∨ m ≥ Câu 35: Hàm số A m > Câu 36: Hàm số A m = - y = mx + ( m + 3) x + 2m − có cực đại mà khơng có cực tiểu với m: D m ≤ ∨ m > B m≤0 C −3 < m < y = x − mx + ( m + 1) x − B m > −3 đạt cực đại x = với m : C m < −3 D m = - Tuần 3: Tiết 7,8,9 ( tuần khóa) Từ 26/9 - 1/10 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ ( TIẾT) Kiến thức phương pháp giải ♦ Để chứng minh M giá trị lớn hàm số f tập xác định D, ta cần chứng tỏ : a) f(x) ≤ M, x ∈ D ; b) ∃x0 ∈ D để f(x0) = M ♦ Để chứng minh m giá trị nhỏ hàm số f tập xác định D, ta cần chứng tỏ : a) f(x) ≥ m, x ∈ D ; b) ∃x0 ∈ D để f(x0) = m ♦ Phương pháp tổng qt để xác định giá trị lớn giá trị nhỏ hàm số f tập xác định D lập bảng biến thiên hàm số f D suy GTLN, GTNN hàm số f D Ghi chú: f(x) biểu thức lượng giác Ta biến đổi để biểu thức chứa y = sin(ax + b) hay y = cos(ax + b) áp dụng : -1 ≤ sin( ax + b)≤ 1, x ∈ R ; -1 ≤ cos( ax + b)≤ 1, x ∈ R Trường hợp f(x) chứa sin(ax + b), cos(ax + b) ta biến đổi dạng: Asin(ax + b) + Bcos(ax + b) = C áp dụng điều kiện phương trình có nghiệm : A2 + B2 ≥ C2 Trường hợp y = f(x) liên tục đoạn [a ; b], ta tiến hành bước: - Tìm giá trị x cho f'(x) = hay f'(x) khơng xác định đoạn [a ; b], giả sử giá trị x1, x2, x3 - Tính giá trị hàm số điểm có giá trị x nói f(x1), f(x2), f(x3), - Tính giá trị hàm số hai đầu mút f(a), f(b) - So sánh giá trị f(a), f(b), f(x1), f(x2), f(x3), ta suy giá trị nhỏ lớn f(x) đoạn [a ; b] Nếu miền D có f(x) → +∞ hàm số khơng có giá trị lớn D Nếu miền D có f(x) → -∞ hàm số khơng có giá trị nhỏ D Nếu hàm số f liên tục đạt cực trị khoảng (a ; b) x0 thì: max f ( x ) = f(x ) ( a ;b ) cực trị cực đại ; f ( x) = f(x ) ( a ;b ) cực trị cực tiểu BÀI TẬP Tìm GTLN GTNN hàm số sau: x4 y = − x2 + −1 ; 2] a) đoạn [ ; b) y = x + − x c) y = x − x ; d) y = (3 − x) x + đoạn [ 0;2] ; −1;3] e) y = x − x đoạn [ ; mx + x − m đạt GTLN -1 đoạn [2; 4] f) Tìm m để hàm số: x−m y= mx + đạt GTNN đoạn [1; 5] g) Tìm m để hàm số: y= h) y = − x + x + ; CÂU HỎI TRẮC NGHIỆM Câu : Giá trị lớn nhỏ hàm số y = x3 - 3x2 - 9x + đoạn [- ; 4] (A) -1 ; -19 ; (B) ; -26 ; (C) ; -19 ; (D)10;-26 Câu 2: Kết luận giá trị lớn giá trị nhỏ hàm số y = x − x ? A Có giá trị lớn có giá trị nhỏ nhất; B Có giá trị nhỏ khơng có giá trị lớn nhất; C Có giá trị lớn khơng có giá trị nhỏ nhất; D Khơng có giá trị lớn giá trị nhỏ Câu 3: Trên khoảng (0; +∞) hàm số y = −x + 3x + : A Có giá trị nhỏ Min y = –1; B Có giá trị lớn Max y = 3; C Có giá trị nhỏ Min y = 3; D Có giá trị lớn Max y = –1  π π − ; ÷ Câu 4: Cho hàm số y = 3sinx - 4sin3x Giá trị lớn hàm số khoảng  2  A -1 B Câu 5: Cho hàm số A C y = x+ D x Giá trị nhỏ hàm số ( 0; +∞ ) B C 2 D Câu 6: Cho hàm số y = x − x Giá trị lớn hàm số A B C D Câu : Giá trị lớn hàm số y = −3 − x A -3 B C -1 y = 3sin x − cos x Câu : Giá trị nhỏ hàm số A B -5 C -4 D D -3 −1; 2] Câu : Giá trị lớn hàm số y = x + x − 12 x + đoạn [ A B 10 C 15 D 11 2 Câu 10 : Giá trị lớn hàm số y = − x − x + A B C Câu 11: Giá trị lớn hàm số A B y= C x − x +1 x2 + x + D là: D -1  π 0;  Câu 8: Giá trị lớn hàm số f ( x ) = x + cos x đoạn   là: 10 y= Câu 4: Tiệm cận đứng đồ thị hàm số A y = B y = -1 1− x 1+ x là: C.x=1 y= D x = -1 x+2 x − cho tổng khoảng cách từ M Câu 5: Tìm M có hồnh độ dương thuộc đồ thị hàm số đến tiệm cận nhỏ A M(1;-3) B M(2;2) C M(4;3) Câu 6: Cho hàm số y= D M(0;-1) 3x + x − Khẳng định sau đúng? A Đồ thị hàm số có tiệm cận ngang B Đồ thị hàm số có tiệm cận đứng y= y= C Đồ thị hàm số khơng có tiệm cận D Đồ thị hàm số có tiệm cận đứng x= Câu 7: Chọn phát biểu phát biểu sau đây: x + khơng có tiệm cận ngang A Hàm số B Hàm số y = x − x khơng có giao điểm với đường thẳng y = -1 y= C Hàm số y = x + có tập xác định D = R \ { − 1} D Đồ thị hàm số y = x + x − x cắt trục tung điểm y= 2x + lim y = ; x − , x →−∞ Câu 8: Cho hàm số cận lim y = x →+∞ đồ thị hàm số có tiệm Câu 9: Chọn đáp án sai y= ax + b cx + d nhận giao điểm hai tiệm cận làm tâm đối xứng A Đồ thị hàm số B Số giao điểm đồ thị hàm số y = f(x) với đường thẳng d: y = g(x) số nghiệm phương trình f(x) = g(x) C Bất kỳ đồ thị hàm số phải cắt trục tung trục hồnh D Số cực trị tối đa hàm trùng phương ba Câu 10: Nhìn hình vẽ sau chọn đáp án sai 12 y x -2222 -222222222 A B C D Đồ thị hàm số có tiệm cận đứng x = Đồ thị hàm số có tiệm cận ngang y = -2 Đồ thị cho thấy hàm số ln nghịch biến khoảng xác định Đồ thị cho thấy hàm số ln đồng biến khoảng xác định y= 2x + lim y = ; x − , x →−∞ lim y = x →+∞ Câu 11: Cho hàm số cận đồ thị hàm số có tiệm Câu 12: Chọn đáp án sai y= ax + b cx + d nhận giao điểm hai tiệm cận làm tâm đối xứng A Đồ thị hàm số B Số giao điểm đồ thị hàm số y = f(x) với đường thẳng d: y = g(x) số nghiệm phương trình f(x) = g(x) C Bất kỳ đồ thị hàm số phải cắt trục tung trục hồnh D Số cực trị tối đa hàm trùng phương ba Câu 13: Cho hàm số y= 2x − x +1 (C ) Các phát biểu sau, phát biểu Sai ? A Hàm số ln đồng biến khoảng tập xác định nó; B Đồ thị hàm số có tiệm cận đứng đường thẳng x = −1 ; C Đồ thị hàm số (C) có giao điểm với Oy điểm có hồnh độ D Đồ thị hàm số có tiệm cận ngang đường thẳng y = x= 2; Câu 14 Trong hàm số sau, đồ thị hàm số có tiệm cận đứng x = −3 A y= −3x + x−3 B y= −4 x + x+3 13 C y= x+3 x2 − D Câu 15 Cho hàm số A y= lim y = −∞ Câu 16 Cho hàm số A I(-5;-2) y= 3x + x −3 x −1 x + Trong câu sau, câu sai B x → 2+ y= lim y = +∞ x → 2− C TCĐ x = D TCN y= −2 x + x + , giao điểm hai tiệm cận B I(-2;-5) C I(-2;1) D I(1;-2) Tuần 4,5: Tiết 12- 15 ( tuần khóa) Từ 10/10 – 15/10 KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ SỰ TƯƠNG GIAO PHƯƠNG TRÌNH TIẾP TUYẾN 1/ Kiến thức cần nhớ: - Sơ đồ khảo sát vẽ đồ thị hàm số - Các kiến thức để giải số tốn liên quan đến đồ thị hàm số (Phương trình tiếp tuyến, biện luận số nghiệm số phương trình đồ thị, biện luận vị trí tương đối đường cong đường thẳng, ) 2/Kĩ cần đạt: - Biết cách khảo sát vẽ đồ thị hàm số: y = ax + bx + cx + d (a ≠ 0); y = ax + bx + c (a ≠ 0); ax + b y= (c ≠ 0, ad-bc ≠ 0); cx + d - Sự tương giao hai đồ thị + Tìm tọa độ giao điểm hai đồ thị + Dùng đồ thị biện luận số nghiệm phương trình + Biện luận theo tham m số giao điểm hai đồ thị - Viết phương trình tiếp tuyến đồ thị hàm số: + Tại điểm cho trước + Biết hệ số góc cho trước BÀI TẬP: Bài Cho hàm số y = − x + 3x + a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Viết phương trình tiếp tuyến (C) biết tiếp tuyến song song đường thẳng y = −9 x c) Dựa vào đồ thị (C), biện luận theo m số nghiệm phương trình x − 3x + m = Bài Cho hàm số y = x − x + x 14 a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Tiếp tuyến (C) gốc tọa độ O lại cắt (C) điểm A khác O Tìm tọa độ điểm A Bài Cho hàm số y = x − x + a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Dựa vào đồ thị (C), tìm m để phương trình x − 3x + m = có ba nghiệm phân biệt Bài Cho hàm số y = − x + mx (1) a) Khảo sát biến thiên vẽ đồ thị (C) hàm số m = b) Viết phương trình tiếp tuyến (C) cho tiếp tuyến song song đường thẳng y = −9 x + c) Tìm m để hàm số (1) đạt cực đại x = C Bài Cho hàm số y = x + mx − (m + 1) có đồ thị ( m ) (m tham số) a) Khảo sát biến thiên vẽ đồ thị (C) hàm số m = −2 b) Tìm m để hàm số có ba cực trị Bài 6: Cho hàm số y = x − x a) Khảo sát biến thiên vẽ đồ thị hàm số b) Viết phương trình tiếp tuyến ( C ) điểm có tung độ – c)Dùng đồ thị ( C ) biện luận theo m số nghiệm phương trình x − x − m + = x+3 y= x +1 Bài Cho hàm số a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Chứng minh với giá trị m , đường thẳng (d): y = x + m ln cắt (C) điểm phân biệt M, N y= 2x +1 x +1 Bài Cho hàm số a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Viết phương trình tiếp tuyến (C) giao điểm (C) với trục hồnh 2x + y= x −1 Bài Cho hàm số a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Viết phương trình tiếp tuyến (C) giao điểm (C) với trục tung Bài 10:Cho hàm số y = x − 3x + a) Khảo sát biến thiên vẽ đồ thò (C) hàm số b) Dùng đồ thò (C) biện luận theo m số nghiệm PT x − 3x + m = c) Viết PTTT đồ thò (C ) biết tiếp tuyến vng góc với đường thẳng x + 9y - 1=0 d) Viết PTTT đồ thò (C ) điểm có hồnh độ nghiệm phương trình y’’ = x4 y = 1+ 2x − Bài 11:Cho hàm số a) b) c) d) Khảo sát biến thiên vẽ đồ thò (C) hàm số Dùng đồ thò (C) biện luận theo m số nghiệm PT x − x + − m = Viết PTTT đồ thò (C ) điểm có tung độ Viết PTTT đồ thò (C ) điểm có hoành độ 15 y= x+3 x +1 Bài 12: Cho hàm số a) Khảo sát biến thiên vẽ đồ thò (C) hàm số b) Chứng minh đường thẳng d : y = 2x+m cắt (C ) hai điểm phân biệt MvàN CÂU HỎI TRẮC NGHIỆM Câu 1: Cho hàm số y = - x4 + 2x2 - Số giao điểm đồ thị hàm số với trục Ox A B C D Câu : Cho hàm số y = - x + 3x + 9x + Đồ thị hàm số có tâm đối xứng điểm A (1;12) B (1;0) C (1;13) D(1;14) Câu 3: Cho hàm số y = x - 4x Số giao điểm đồ thị hàm số trục Ox A B C D Câu 4: Số giao điểm đường cong y = x - 2x + 2x + đường thẳng y = - x A B C D Câu 5: Gọi M, N giao điểm đường thẳng y = x + đường cong Khi hồnh độ trung điểm I đoạn thẳng MN A.- 2x + x −1 y= D B C Câu 6: Cho hàm số y = f(x) = ax + bx + cx + d, a ≠ Khẳng định sau sai ? A Đồ thị hàm số ln cắt trục hồnh B Hàm số ln có cực trị C lim f ( x) = ∞ x →∞ D Đồ thị hàm số ln có tâm đối xứng y = x3 − x + 3x + Câu 7: Cho hàm số Tiếp tuyến tâm đối xứng đồ thị hàm số có pt: 11 11 y = −x + y = −x − y = x+ y = x+ 3 3 A B C D Câu 8: Cho hàm số y = x3- 3x2 + Đồ thị hàm số cắt đường thẳng y = m điểm phân biệt A -3 < m < B −3 ≤ m ≤ C m > D m < -3 Câu 9: Đồ thị hàm số sau có hình dạng hình vẽ bên y A y = x + x + B y = x3 − x + C y = − x − x + D y = − x3 + x + 1 O x 16 Câu 10: Hàm số sau có bảng biến thiên hình bên: A C 2x − 2x − B y = x−2 x+2 x+3 2x −1 y= D y = x−2 x−2 y= x +∞ y' − − y +∞ −∞ −∞ Câu 11: Trong tiếp tuyến điểm đồ thị hàm số y = x − 3x + , tiếp tuyến có hệ số góc nhỏ bằng: A B - C - D Câu 12: Gọi M giao điểm đồ thị hàm số đồ thị điểm M là: y =− x+ 2 A y= 2x −1 x − với trục Oy Phương trình tiếp tuyến với 3 y =− x+ y = x− 2 B C D Câu 13: Đường thẳng y = m cắt đồ thị hàm số y = x − 3x + điểm phân biệt khi: A < m < B ≤ m < C < m ≤ D m > y= x+ 2 Câu 14: Đường thẳng y = m khơng cắt đồ thị hàm số y = −2 x + x + khi: A < m < B m > C m ≤ D m ≥ y= Câu 15:Hệ số góc tiếp tuyến đồ thị hàm số x0 = -1 là: A -2 B C Câu 16: Hệ số góc tiếp tuyến đồ thị hàm số với trục tung bằng: A -2 B C x4 x2 + −1 điểm có hồnh độ y= D Đáp số khác x −1 x + điểm giao điểm đồ thị hàm số D -1 y= x −1 điểm có hồnh đo x = - có phương trình là: Câu 17 : Tiếp tuyến đồ thị hàm số A y = -x - B y = -x + C y = x -1 y= Câu 18: Tiếp tuyến đồ thị hàm số A 2x – 2y = - B 2x – 2y = D y = x + 1 x điểm A( ; 1) có phương trình là: C 2x +2 y = D 2x + 2y = -3 17 Câu 19: Hồnh độ tiếp điểm tiếp tuyến song song với trục hồnh đồ thị hàm số y = x − x + : A -1 B C A B y= D Đáp số khác x + 3x2 − có hệ số góc k = - 9,có phương trình là: Câu 20: Tiếp tuyến đồ thị hàm số A y +16 = - 9(x + 3) B y -16 = - 9(x – 3) C y – 16 = -9(x +3) D y = -9(x + 3) Câu 21 Tiếp tuyến điểm cực tiểu hàm số y = x − x + 3x − A) Song song với đường thẳng x = B) Song song với trục hồnh C) Có hệ số góc dương D) có hệ số góc – Câu 22: Trong tiếp tuyến điểm đồ thị hàm số y = x − 3x + , tiếp tuyến có hệ số góc nhỏ bằng: A B -3 C D -1 y= 2x + x − Khi tọa độ Câu 23: Gọi M, N giao điểm đường thẳng y = x + đường cong trung điểm I đoạn MN : A I(1;2) B I(-1;2) C I(1;-2) D I(-1;-2) y= 2x −1 x − có đồ thị (C), đường thẳng y = x – m cắt đồ thị (C) hai điểm Câu 24: Cho hàm số phân biệt với m A m ≠ B m ≤1 C m > Câu 25: Giá trị m để phương trình x − 3x + m = có nghiệm phân biệt D ∀m 13 − [...]... = 2 4 2 C Bài 5 Cho hàm số y = x + mx − (m + 1) có đồ thị ( m ) (m là tham số) a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = −2 b) Tìm m để hàm số có ba cực trị 3 2 Bài 6: Cho hàm số y = 2 x − 4 x a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số b) Viết phương trình tiếp tuyến của ( C ) tại điểm có tung độ bằng – 2 4 2 c)Dùng đồ thị ( C ) biện luận theo m số nghiệm của phương trình... thị của hàm số B Số giao điểm của đồ thị hàm số y = f(x) với đường thẳng d: y = g(x) là số nghiệm của phương trình f(x) = g(x) C Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hồnh D Số cực trị tối đa của hàm trùng phương là ba Câu 13: Cho hàm số y= 2x − 1 x +1 (C ) Các phát biểu sau, phát biểu nào Sai ? A Hàm số ln đồng biến trên từng khoảng của tập xác định của nó; B Đồ thị hàm số có... A 3 2 Bài 3 Cho hàm số y = x − 3 x + 2 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 3 2 b) Dựa vào đồ thị (C), tìm m để phương trình x − 3x + m = 0 có ba nghiệm phân biệt Bài 4 Cho hàm số y = − x + mx (1) a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 3 b) Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến song song đường thẳng y = −9 x + 1 c) Tìm m để hàm số (1) đạt cực... Đồ thị hàm số có tiệm cận ngang là B Đồ thị hàm số có tiệm cận đứng là y= 3 2 y= 3 2 C Đồ thị hàm số khơng có tiệm cận D Đồ thị hàm số có tiệm cận đứng là x= 1 Câu 7: Chọn phát biểu đúng trong các phát biểu sau đây: 1 2 x + 1 khơng có tiệm cận ngang A Hàm số 4 2 B Hàm số y = x − x khơng có giao điểm với đường thẳng y = -1 y= C Hàm số y = x + 1 có tập xác định là D = R \ { − 1} 3 2 D Đồ thị hàm số y... +1 Bài 7 Cho hàm số a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số b) Chứng minh rằng với mọi giá trị của m , đường thẳng (d): y = 2 x + m ln cắt (C) tại 2 điểm phân biệt M, N 4 y= 2 2x +1 x +1 Bài 8 Cho hàm số a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số b) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hồnh 2x + 2 y= x −1 Bài 9 Cho hàm số a) Khảo sát sự biến... = 2x+m luôn cắt (C ) tại hai điểm phân biệt MvàN CÂU HỎI TRẮC NGHIỆM Câu 1: Cho hàm số y = - x4 + 2x2 - 1 Số giao điểm của đồ thị hàm số với trục Ox bằng A 1 B 2 C 3 D 4 3 2 Câu 2 : Cho hàm số y = - x + 3x + 9x + 2 Đồ thị hàm số có tâm đối xứng là điểm A (1;12) B (1;0) C (1;13) D(1;14) 3 Câu 3: Cho hàm số y = x - 4x Số giao điểm của đồ thị hàm số và trục Ox bằng A 0 B 2 C 3 D 1 3 2 Câu 4: Số giao... Câu 6: Cho hàm số y = f(x) = ax + bx + cx + d, a ≠ 0 Khẳng định nào sau đây sai ? A Đồ thị hàm số ln cắt trục hồnh B Hàm số ln có cực trị C lim f ( x) = ∞ x →∞ D Đồ thị hàm số ln có tâm đối xứng 1 y = x3 − 2 x 2 + 3x + 1 3 Câu 7: Cho hàm số Tiếp tuyến tại tâm đối xứng của đồ thị hàm số có pt: 11 1 11 1 y = −x + y = −x − y = x+ y = x+ 3 3 3 3 A B C D Câu 8: Cho hàm số y = x3- 3x2 + 1 Đồ thị hàm số cắt... + C 2 D −1 +C 2x − 1 1 Ngun hàm của hàm số 1 +C 2 − 4x Câu 9 : Họ ngun hàm A F ( x ) = − C F ( x ) = Câu 10 : x Họ các ngun hàm của hàm số y = sin 2 x là: A − cos 2x + C A C ln B F( x) ( 2 x − 1) 2 là −1 ( 2 x − 1) 3 của hàm số +C f ( x) = C 1 +C 4x − 2 cos x 1 − cos 2 x là: cos x +C sin x B F ( x ) = − 1 +C sin x D F ( x ) = 1 +C sin x 1 +C sin 2 x Ngun hàm F(x) của hàm số f (x) = x + sin x thỏa... 10/10 – 15/10 KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ SỰ TƯƠNG GIAO PHƯƠNG TRÌNH TIẾP TUYẾN 1/ Kiến thức cần nhớ: - Sơ đồ khảo sát và vẽ đồ thị của hàm số - Các kiến thức để giải một số bài tốn liên quan đến đồ thị của hàm số (Phương trình tiếp tuyến, biện luận số nghiệm số của phương trình bằng đồ thị, biện luận vị trí tương đối của đường cong và đường thẳng, ) 2/Kĩ năng cần đạt: - Biết cách khảo sát và vẽ... 3 2 x4 y = 1+ 2x − 4 Bài 11:Cho hàm số 2 a) b) c) d) Khảo sát sự biến thiên và vẽ đồ thò (C) của hàm số 4 2 Dùng đồ thò (C) biện luận theo m số nghiệm của PT x − 8 x + 4 − m = 0 Viết PTTT của đồ thò (C ) tại điểm có tung độ bằng 1 Viết PTTT của đồ thò (C ) tại điểm có hoành độ bằng 2 15 y= x+3 x +1 Bài 12: Cho hàm số a) Khảo sát sự biến thiên và vẽ đồ thò (C) của hàm số b) Chứng minh rằng đường

Ngày đăng: 10/10/2016, 20:13

TỪ KHÓA LIÊN QUAN

w