1. Trang chủ
  2. » Giáo án - Bài giảng

Tính đơn điệu của hàm số và các dạng toán thường gặp

5 571 5

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 54,56 KB

Nội dung

Tính đơn điệu của hàm số và các dạng toán thường gặp Tính đơn điệu đồng biến - nghịch biến hay tăng - giảm là một tính chất quan trong của hàm số.. Tính chất này được áp dụng để giải rất

Trang 1

Tính đơn điệu của hàm số và các dạng toán thường gặp

Tính đơn điệu (đồng biến - nghịch biến hay tăng - giảm) là một tính chất quan trong của hàm số Tính chất này được áp dụng để giải rất nhiều bài toán như chứng minh bất đẳng thức, giải phương trình, hệ phương trình Trong bài viết này chúng ta cùng tìm hiểu về tính đơn điệu của hàm số và các dạng toán cơ bản cần nắm vững

Định nghĩa tính đơn điệu của hàm số

Cho hàm số y = f(x) xác định trên một miền D.

f(x) được gọi là đồng biến (hay tăng) trên D nếu thì

f(x) được gọi là nghịch biến (hay giảm) trên D nếu thì

Ta có thể hiểu đơn giản: hàm số đồng biến là hàm số mà x và f(x) cùng tăng, cùng giảm; hàm số nghịch biến là hàm số mà nếu x tăng thì f(x) giảm và ngược lại

Đồ thị của hàm số đồng biến và nghịch biến

Nếu hàm số f(x) đồng biến trên khoảng (a;b) thì đồ thị của f(x) trên khoảng đó là một đường thẳng đi lên từ trái sang phải

Nếu hàm số f(x) nghịch biến trên khoảng (a;b) thì đồ thị của f(x) trên khoảng đó là một đường thẳng đi xuống từ trái sang phải

Trang 2

Quan sát đồ thị ở hình trên, ta thấy trên các khoảng đồ thị đi lên từ trái sang phải nghĩa làm trên các khoảng này hàm số đồng biến Trên khoảng (-1; 1) đồ thị đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng này

Điều kiện cần và đủ để hàm số đơn điệu

Ở đây ta có một định lý quan trong được sử dụng để tìm các khoảng đơn điệu của hàm số

và áp dụng vào một số dạng bài tập

Cho hàm số f(x) có đạo hàm trên D, khi đó:

f(x) đồng biến trên D

f(x) nghịch biến trên D

Ở đây ta có điều kiện f(x) chỉ bằng 0 tại một số hữu hạn điểm trên D

Nếu thì f(x) = C là hằng số nên f(x) là hàm không đổi (không tăng, không giảm)

Trang 3

Các dạng bài tập về tính đơn điệu của hàm số

Dạng 1: Xét tính đơn điệu của hàm số

Nghĩa là tìm các khoảng mà hàm số đồng biến hay nghịch biến Để làm được dạng toán này, ta thực hiện theo các bước sau:

- Tìm tập xác định của hàm số (TXĐ)

- Tìm đạo hàm f'(x) và giải phương trình f'(x) = 0.

- Lập bảng xét dấu f'(x) rồi dựa vào định lý bên trên để kết luận (ta thường gọi là lập bảng biến thiên

vì có thêm chiều biến thiên của y)

Ví dụ 1: Xét tính đơn điệu của hàm số

Gi

ả i

TXĐ: D = R

Bảng biến thiên:

Kết luận:

Hàm số đồng biến trên các khoảng và

Hàm số nghịch biến trên khoảng

Lưu ý: Trong bảng biến thiên, nếu y' mang dấu + nghĩa là hàm số đồng biến thì ở dòng y

ta biểu diễn bằng mũi tên đi lên, nếu y' mang dấu - nghĩa là hàm số nghịch biến thì ở dòng y ta biểu diễn bằng mũi tên đi xuống

Ví dụ 2: xét tính đơn điệu của hàm số

Gi

ả i

TXĐ:

Bảng biến thiên:

Trang 4

Vậy hàm số đồng biến trên các khoảng và

Nhận xét: Trong ví dụ trên, ta có thể kết luận hàm số đồng biến trên các khoảng của tập xác định vì (do cả tử và mẫu đều dương) mà không cần dùng tới bảng biến thiên Tuy nhiên, ta nên lập bảng biến thiên để có thể áp dụng cho các dạng bài tập khác sau này

Lưu ý: Quy tắc để tính nhanh đạo hàm của hàm số là

Dạng 2: Tìm điều kiện để hàm số đồng biến hoặc nghịch

biến trên TXĐ

Với dạng toán này, ta chỉ cần sử dụng định lý bên trên, đồng thời áp dụng một kiến thức

mà ta đã biết về tam thức bậc hai:

Gi

ả i

TXĐ: D = R

Để hàm số đồng biến trên R thì

Trang 5

Lưu ý: trong dạng toán trên, nếu hệ số a của hàm số có chứa tham số m thì ta phải xét hai trường hợp a = 0 và

Trên đây là hai dạng toán cơ bản về tính đơn điệu của hàm số mà học sinh phải nắm vững Ngoài ra một số dạng toán nâng cao về tính đơn điệu như: tìm điều kiện để hàm số đơn điệu trên một khoảng, vận dụng tính đơn điệu để chứng minh bất đăng thức, giải phương trình, hệ phương trình sẽ được đề cập trong bài viết khác

Ngày đăng: 31/08/2016, 21:08

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w