1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tuyển chọn 410 HỆ PHƯƠNG TRÌNH đại số cực hay

227 174 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 227
Dung lượng 1,55 MB

Nội dung

Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác c om Nguyễn Minh Tuấn Sinh viên K62CLC - Khoa Toán Tin ĐHSPHN oc u oc TUYỂN CHỌN 410 BÀI HỆ PHƯƠNG TRÌNH ĐẠI SỐ kh on gb BỒI DƯỠNG HỌC SINH GIỎI VÀ LUYỆN THI ĐẠI HỌC - CAO ĐẲNG kh on gb oc u oc c om Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác Hà Nội, ngày tháng 10 năm 2013 Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác Một số phương pháp loại hệ c Lời nói đầu om Mục lục Các phương pháp để giải hệ phương trình 1.2 Một số loại hệ Tuyển tập hệ đặc sắc oc 1.1 Câu đến câu 30 2.2 Câu 31 đến câu 60 23 2.3 Câu 61 đến câu 90 38 2.4 Câu 91 đến câu 120 50 2.5 Câu 121 đến câu 150 65 2.6 Câu 151 đến câu 180 82 2.7 Câu 181 đến câu 210 99 2.8 Câu 211 đến câu 240 114 on gb oc u 2.1 2.9 Câu 241 đến câu 270 131 2.10 Câu 271 đến câu 300 149 kh 2.11 Câu 301 đến câu 330 168 2.12 Câu 331 đến câu 360 185 2.13 Câu 361 đến câu 390 201 2.14 Câu 391 đến câu 410 218 Tài liệu tham khảo 228 Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác om Lời nói đầu Hệ phương trình Đại số nói chung hệ phương trình Đại số hai ẩn nói riêng phần quan trọng phần Đại số giảng dạy THPT Nó thường hay xuất kì thi học sinh giỏi kì thi tuyển sinh Đại học - Cao đẳng .c Tất nhiên để giải tốt hệ phương trình hai ẩn đơn giản Cần phải vận dụng tốt phương pháp, hình thành kĩ trình làm Trong kì thi Đại học, câu hệ thường câu lấy điểm oc u oc Đây tài liệu tuyển tập dày nên trình bày dạng sách có mục lục rõ ràng cho bạn đọc dễ tra cứu Cuốn sách tuyển tập khoảng 400 câu hệ đặc sắc, từ đơn giản, bình thường, khó, chí đến đánh đố kinh điển Đặc biệt, hoàn toàn hệ Đại số ẩn Tôi muốn khai thác thật sâu khía cạnh Đại số Nếu coi Bất đẳng thức biến phần đẹp Bất đẳng thức, mang uy nghi ông hoàng Hệ phương trình Đại số ẩn lại mang vẻ đẹp giản dị, sáng cô gái thôn quê làm say đắm gã si tình gb Xin cảm ơn bạn, anh, chị, thầy cô diễn đàn toán, facebook đóng góp cung cấp nhiều hệ hay Trong sách việc đưa hệ lồng thêm số phương pháp tốt để giải Ngoài giới thiệu cho bạn phương pháp đặc sắc tác giả khác Mong nguồn cung cấp tốt hệ hay cho giáo viên học sinh kh on Trong trình biên soạn sách tất nhiên không tránh khỏi sai sót.Thứ nhất, nhiều toán nêu rõ nguồn gốc tác giả Thứ hai : số lỗi sinh trình biên soạn, lỗi đánh máy, cách làm chưa chuẩn, trình bày chưa đẹp kiến thức LATEX hạn chế Tác giả xin bạn đọc lượng thứ Mong sách hoàn chỉnh thêm phần đồ sộ Mọi ý kiến đóng góp sửa đổi xin gửi theo địa sau : Nguyễn Minh Tuấn Sinh Viên Lớp K62CLC Khoa Toán Tin Trường ĐHSP Hà Nội Facebook :https://www.facebook.com/popeye.nguyen.5 Số điện thoại : 01687773876 Nick k2pi, BoxMath : Popeye Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác om Chương Các phương pháp để giải hệ phương trình oc 1.1 c Một số phương pháp loại hệ I Rút x theo y ngược lại từ phương trình oc u II Phương pháp Thế số từ phương trình vào phương trình lại Thế biểu thức từ phương trình vào phương trình lại Sử dụng phép phương trình nhiều lần gb III Phương pháp hệ số bất định Cộng trừ phương trình cho Nhân số vào phương trình đem cộng trừ cho Nhân biểu thức biến vào phương trình cộng trừ cho IV Phương pháp đặt ẩn phụ on V Phương pháp sử dụng tính đơn điệu hàm số VI Phương pháp lượng giác hóa VII Phương pháp nhân chia phương trình cho kh VIII Phương pháp đánh giá Biến đổi tổng đại lượng không âm Đánh giá ràng buộc trái ngược ẩn, biểu thức, phương trình Đánh giá dựa vào tam thức bậc Sử dụng bất đẳng thức thông dụng để đánh giá IX Phương pháp phức hóa X Kết hợp phương pháp Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác Một số phương pháp loại hệ 1.2 Một số loại hệ A Hệ phương trình bậc ẩn ax + by = c (a2 + b2 = 0) I Dạng a x + b y = c (a + b = 0) om II Cách giải Thế Cộng đại số Dùng đồ thị Phương pháp định thức cấp c B Hệ phương trình gồm phương trình bậc phương trình bậc hai ax2 + by + cxy + dx + ey + f = I Dạng ax+by =c oc II Cách giải: Thế từ phương trình bậc vào phương trình bậc hai oc u C Hệ phương trình đối xứng loại I I Dấu hiệu Đổi vai trò x y cho hệ cho không đổi II Cách giải: Thường ta đặt ẩn phụ tổng tích x + y = S, xy = P (S ≥ 4P ) gb D Hệ phương trình đối xứng loại II I Dấu hiệu Đổi vai trò x y cho phương trình biến thành phương trình II Cách giải: Thường ta trừ hai phương trình cho E Hệ đẳng cấp I Dấu hiệu ax2 + bxy + cy = d a x2 + b xy + c y = d on Đẳng cấp bậc Đẳng cấp bậc ax3 + bx2 y + cxy + dy = e a x3 + b x2 y + c xy + d y = e kh II Cách giải: Thường ta đặt x = ty y = tx Ngoài loại hệ tạm gọi bán đẳng cấp, tức hoàn toàn đưa dạng đẳng cấp Loại hệ không khó làm, nhìn nhận cần phải khéo léo xếp hạng tử phương trình lại Tôi lấy ví dụ đơn giản cho bạn đọc x3 − y = 8x + 2y Giải hệ : x2 − 3y = Với hệ ta việc nhân chéo vế với vế tạo thành đẳng cấp Và ta có quyền chọn lựa chia vế cho y đặt x = ty Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác om Chương Tuyển tập hệ đặc sắc Câu đến câu 30 (x − y) (x2 + y ) = 13 (x + y) (x2 − y ) = 25 oc Câu c 2.1 Giải oc u Dễ dàng nhận thấy hệ đẳng cấp bậc 3, bình thường ta nhân chéo lên chia vế cho x3 y Nhưng xem cách giải tinh tế sau đây: Lấy (2) − (1) ta : 2xy(x − y) = 12 (3) Lấy (1) − (3) ta : (x − y)3 = ⇔ x = y + Vì có hướng ? Xin thưa dựa vào hình thức đối xứng hệ Ngon lành Thay vào phương trình đầu ta y=2 y = −3 gb (y + 1)2 + y = 13 ⇔ on Vậy hệ cho có nghiệm (x; y) = (3; 2), (−2; −3) x3 − 8x = y + 2y x2 − = (y + 1) Giải kh Câu Để ý sau : Phương trình gồm bậc ba bậc Phương trình gồm bậc bậc (hằng số) Rõ ràng hệ dạng nửa đẳng cấp Ta viết lại để đưa đẳng cấp Hệ cho tương đương : x3 − y = 8x + 2y x2 − 3y = Giờ ta nhân chéo hai vế để đưa dạng đẳng cấp ⇔ x3 − y = (8x + 2y) x2 − 3y ⇔ 2x (3y − x) (4y + x) = Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác Tuyển tập hệ đặc sắc TH1 : x = thay vào (2) vô nghiệm TH2 : x = 3y thay vào (2) ta có: y = 1, x = y = −1, x = −3 TH3 : x = −4y thay vào (2) ta có:  x2 + y − 3x + 4y = 3x2 − 2y − 9x − 8y = 13 , ;− 13 13 oc u Câu ; 13 oc Vậy hệ cho có nghiệm :(x; y) = (3; 1), (−3; −1), −4 13 13 c y= , x = −4  13  13y = ⇔  y=− ,x = 13 om 6y = ⇔ Giải Để ý nhân vào PT(1) trừ PT(2) y Vậy √ 3±  y=0⇔x= √ 3.P T (1) − P T (2) ⇔ y + 4y = ⇔  3± y = −4 ⇔ x = √ √ 3± 3± Vậy hệ cho có nghiệm : (x; y) = ;0 , ; −4 2 on gb  kh Câu x2 + xy + y = 19(x − y)2 x2 − xy + y = (x − y) Giải Nhận xét vế trái có dạng bình phương thiếu, ta thử thêm bớt để đưa dạng bình phương xem Nên đưa (x − y)2 hay (x + y)2 Hiển nhiên nhìn sang vế phải ta chọn phương án đầu (x − y)2 + 3xy = 19(x − y)2 Hệ cho tương đương (x − y)2 + xy = (x − y) Đặt x − y = a xy = b ta có hệ Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.1 Câu đến câu 30  b = 6a ⇔ a2 + b = 7a  a = 0, b = ⇔  a = 1, b = x−y =0 xy = x−y =1 xy =  x = 0, y = ⇔  x = 3, y = x = −2, y = −3 Câu oMc uinoh cT cuoấ n m Vậy hệ cho có nghiệm :(x; y) = (0; 0) , (3; 2) (−2; −3) x3 + x3 y + y = 17 x + xy + y = Giải Hệ đối xứng loại I No problem!!! (x + y)3 − 3xy(x + y) + (xy)3 = 17 Hệ cho tương đương (x + y) + xy = Đặt x + y = a xy = b ta có hệ  x+y =2 3  a − 3ab + b = 17 a = 2, b = xy = ⇔ ⇔  x+y =3 a+b=5 a = 3, b = xy = ⇔ x = 2, y = x = 1, y = Vậy hệ cho có nghiệm (x; y) = (1; 2), (2; 1) x(x + 2)(2x + y) = x2 + 4x + y = kNh ogun ygễ bn Câu Giải Đây loại hệ đặt ẩn tổng tích quen thuộc (x2 + 2x) (2x + y) = Hệ cho tương đương (x2 + 2x) + (2x + y) = Đặt x2 + 2x = a 2x + y = b ta có hệ ab = ⇔a=b=3⇔ a+b=6 x2 + 2x = ⇔ 2x + y = x = 1, y = x = −3, y = Vậy hệ cho có nghiệm (x; y) = (1; 1), (−3; 9) Câu √ x + y − xy = √ √ x+1+ y+1=4 Giải Không làm ăn phương trình, trực giác ta bình phương để phá khó chịu thức Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 10 Tuyển tập hệ đặc sắc (2) ⇔ x + y + + xy + x + y + = 16 √ Mà từ (1) ta có x + y = + xy nên (2) ⇔ + √ √ √ xy + + xy + xy + = 16 ⇔ xy = ⇔ xy = ⇔x=y=3 x+y =6 oMc uinoh cT cuoấ n m Vậy hệ cho có nghiệm (x; y) = (3; 3) √ √ x + + √ √y − = x−2+ y+5=7 Câu Giải Đối xứng loại II Không để nói Cho phương trình bình phương tung tóe để phá khó chịu thức Điều kiện : x, y ≥ Từ phương trình ta có √ x+5+ y−2= √ x−2+ y−5 ⇔ x + y + + (x + 5)(y − 2) = x + y + + (x − 2)(y + 5) ⇔ Thay lại ta có (x + 5)(y − 2) = x+5+ kNh ogun ygễ bn √ (x − 2)(y + 5) ⇔ x = y √ x − = ⇔ x = 11 Vậy hệ cho có nghiệm : (x; y) = (11; 11) Câu √ √ + y2 + x 2xy = √ √ x+ y =4 Giải Hệ cho nửa đối xứng nửa đẳng cấp, để ý bậc PT(2) nhỏ PT(1) chút Chỉ cần phép biến đổi bình phương (2) vừa biến hệ trở thành đẳng cấp vừa phá bỏ bớt Điều kiện : x, y ≥ Hệ cho ⇔ √ 2(x2 + y ) + xy = 16 ⇔ √ x + y + xy = 16 (x2 + y ) = x + y ⇔ x = y √ Thay lại ta có : x = ⇔ x = Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.13 Câu 361 đến câu 390 213 ⇔ (x2 + + 2x)(y + + 2y) = −9xy (x2 + 1)(y + 1) = −10xy Đặt oMc uinoh cT cuoấ n m Vì x, y = không nghiệm hệ nên tương đương  x +1 y2 +   +2 + = −9  x y x2 + y2 +   = −10  x y y2 + x2 + = a, = b ta có hệ x y  (a + 2)(b + 2) = −9 ab = −10  a = −4, b = ⇔ a = , b = −4 TH1 :   √ x2 + = −4x x = −2 ± ⇔ y + = y y = ∨ y = 2 Trường hợp tương tự hoán đổi giá trị nghiệm Như hệ có tất cặp nghiệm √ x + x2 + = y + x2 + y − xy = y2 − kNh ogun ygễ bn Câu 383 Giải Điều kiện :|y| ≥ Phương trình thứ hệ viết lại sau: x− y2 − = y − √ x2 + Bình phương vế ta thu được: √ √ −1 − 2x y − = − 2y x2 + ⇔ y x2 + = + x y − ⇔ x2 y + y = + x2 y − x2 + 2x ⇔ (x − Chú ý x2 − xy + y = y2 − y − 1)2 = ⇔ x2 − y = −1 3(x − y)2 (x + y)2 + 4 Như hệ  (x − y)(x + y) = ⇔ 3(x − y)2 (x + y)2  + =1 4 a = −1, b =  a = 1, b = −1  √  ⇔  a = −√ , b =   √ a = √ ,b = − 3  ⇔ ab = −1 3a2 + b2 = Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 214 Tuyển tập hệ đặc sắc  x − y = −1 x+y =1 x−y =1 x + y = −1  x − y = − √1 √  x + y = x − y = √1 √  x+y =− x = 0, y =  x = 0, y = −1  2  ⇔  x = √ ,y = √  3  x = −√ , y = −√ 3  oMc uinoh cT cuoấ n m         ⇔         Tất nhiên ta phải đối chiếu điều kiện bình phương Vậy hệ cho có nghiệm : (x; y) = (0; 1), √ ; √ 3 Câu 384 x3 + y x + 3x2 + y = 2y − 3x − 2y + xy + y − 3x − = Giải Hệ cho biến đổi thành ⇔ (x + 1)3 + y (x + 1) = 2y 2y + y (x + 1) = (x + 1) kNh ogun ygễ bn Để ý kĩ hoàn toàn đưa đẳng cấp Nhân chéo phát ta (x + 1)4 + (x + 1)2 y = 4y + 2y (x + 1) ⇒ (x + 1)4 + (x + 1)2 y − (x + 1) y − 4y = Xét y = ⇒ x = −1 nghiệm hệ Xét y = 0, chia vế cho y ta x+1 y +3 x+1 y x+1 =1  y ⇔ x+1 √ ⇔ =1− y −2 x+1 −4=0 y  y =x+1 √ x = y(1 − 3) − Đến việc thay lại xin nhường cho bạn đọc :brick: Vậy hệ cho có nghiệm : (x; y) = (−2; −1), (−1; 0), (0; 1) Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.13 Câu 361 đến câu 390 Câu 385 215 (x − y)(x2 + y ) = x4 − (x + y)(x4 + y ) = x4 + Giải oMc uinoh cT cuoấ n m Để ý kĩ nhân vế với vế rút gọn hàng loạt Như nhân vế với vế suy x8 − y = x8 − ⇒ y = ∨ y = −1 Với y = Thay vào phương trình (2) ta (x + 1)(x4 + 1) = x4 + ⇔ x = Với y = −1 Thay vào phương trình (1) ta (x + 1)(x2 + 1) = x4 − ⇔ x = −1 ∨ x = Vậy hệ cho có nghiệm : (x; y) = (0; 1), (−1; −1), (2; −1) Câu 386 x2 y + 2y + 16 = 11xy x2 + 2y + 12y = 3xy Giải kNh ogun ygễ bn Nhận thấy y = không nghiệm hệ Chia phương trình (1) cho y , phương trình (2) cho y ta   11x 16 x     + = x + +2=3  x−  y2 y y y ⇔ x 12   x   +2+ = 3x   +2=3 x− y y y y ⇔ a2 − 3b = −2 b2 − 3a = −2 ⇔ a=b=1 a=b=2 Đến dễ dàng thay lại tìm nghiệm Vậy hệ cho có nghiệm : (x; y) = (−2; −1), (4; 2), Câu 387 1− √ √ 17 − 17 ; 2 , 1+ √ √ 17 + 17 ; 2   x + 2y + 3xy + = √ x − y + 18  = x−y (x + y) Giải Nhìn hình thức có lẽ đưa đặt ẩn tổng hiệu tốt Điều kiện : x − y ≥ 0, x + y = Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 216 Đặt Tuyển tập hệ đặc sắc √ x − y = a (a ≥ 0) ; b = x + y(b = 0) ⇒⇒ x − y = a2 ⇒ x+y =b 2x = a2 + b 2y = b − a2 Suy : 2 a2 + b b − a2 a2 + b b − a2 +2 +3 2 2 2 2 4 6b − 2ba2 a + 2a b + b + (b − 2ba + a ) + (b − a ) = = 4 oMc uinoh cT cuoấ n m x2 + 2y + 3xy = Từ ta có hệ phương trình : 3b2 − ba2 + = ⇔ a2 + 18 = 9b2 a 9b2 − 3ba2 + 18 = (1) a2 − 9b2 a + 18 = (2) Trừ (1) cho (2) theo vế có : 9b2 − a2 + 3ba (3b − a) = ⇔ (3b − a) (3b + a + 3ba) = ⇔ 3b − a = 3b + a + 3ba = Ta xét trường hợp khó trước, mong cho vô lý Với 3b + a + 3ba = thay vào (1) ta 9b2 + 3a (3b + a) + 18 = ⇔ 3b2 + 3ba + a2 + = Rõ ràng vế trái dương Vậy a = 3b thay vào (1) tìm a=3 b=1 x−y =9 x+y =1 ⇔ ⇔ x = 5, y = −4 kNh ogun ygễ bn Vậy hệ cho có nghiệm : (x; y) = (5; −4) Câu 388 x3 y + xy + y = 4xy − x2 y + x2 + y = 4xy − Giải Phương trình thứ (2) biến đổi thành x2 y + x2 + y = 4xy − ⇔ (xy − 1)2 + (x − y)2 = ⇔ x=y=1 x = y = −1 Thay lên phương trình (1) có cặp thứ thỏa mãn Vậy hệ cho có nghiệm : (x; y) = (1; 1) Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.13 Câu 361 đến câu 390 217 √ Câu 389 x2 − + y − = + y12 = x2 √ xy + Giải oMc uinoh cT cuoấ n m Điều kiện : |x|, |y| ≥ Phương trình thứ tương đương x2 + y − − xy + x2 y − (x2 + y ) + = Đặt a = xy, b = x2 + y ta thu hệ √ a = −1, b = b − − a + a2 − b + = ⇔ a = 2, b = b=a  xy = −1  √  x2 + y = x = y = √ ⇔ ⇔  xy = x=y=−  2 x +y =4 √ √ √ √ Vậy hệ cho có nghiệm : (x; y) = 2; , − 2; − kNh ogun ygễ bn Câu 390 √ x(y − 9) + y − + = y(18x2 + 1) = 3x + 22 + (xy + 1)2 Giải Điều kiện y ≥ Phương trình thứ suy (x(y − 9) + 1)2 − y + = ⇔ x2 y − 18yx2 + 2xy + 81x2 − 18x + − y = Phương trình thứ hai : 18yx2 + y − 3x − 23 − x2 y − 2xy = Cộng lại ta 81x − 21x − 21 = ⇔ x = Thay lại tìm y (khá lẻ) Vậy hệ cho có nghiệm : (x; y) = 7+ √ 7± √ 805 54 √ 805 327 − 805 − ; 54 √ √ √ − 805 327 + 805 + 36782 + 842 805 ; 54 28 √ 36782 − 842 805 28 Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 218 2.14 Tuyển tập hệ đặc sắc Câu 391 đến câu 410 Câu 391 x = (y − 1) (y + 2) + xy (xy − 1)2 + x2 y = (x + 1) (x2 + x + 1) oMc uinoh cT cuoấ n m Giải Biến đổi phương trình (2) trở thành xy(x2 y − xy + 1) = (x + 1)[(x + 1)2 − (x + 1) + 1] ⇔ f (xy) = f (x + 1) Với f (t) = t3 − t2 + t đơn điệu tăng, từ ta có xy = x + ⇔ x = thay lên (1) ta y−1  y=0 √ = (y − 1)(y + 2) + ⇔  −1 ± 13 y−1 y= Từ trả lại biến x Vậy hệ cho có nghiệm : (x; y) = (−1; 0), Câu 392 3− √ √ 13 −1 − 13 ; ; 2 , 3+ √ 13 √ ; 13 − x3 − x2 y = x2 − x + y + √ x3 − 9y + 6(x − 3y) − 15 = 3 6x2 + kNh ogun ygễ bn Giải Phương trình thứ tương đương (x2 + 1)(x − y − 1) = ⇔ y = x − Thay vào (2) ta √ (x − 1)3 + 3(x − 1) = 6x2 + + 6x2 + Do f (t) = t3 + 3t đơn điệu tăng nên suy √ x − = 6x2 + ⇔ x3 − 9x + − = Phương trình nghiệm lẻ, ta làm đặt ẩn kiểu Hypebolic giới thiệu câu 215 Tuy nhiên, tinh tế ta biến đổi √ √ 2+1 3 √ (x + 1) = 2(x − 1) ⇔ x + = 2(x − 1) ⇔ x = 2−1 √ 2+1 Vậy hệ cho có nghiệm : (x; y) = √ ;√ 3 2−1 2−1 Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.14 Câu 391 đến câu 410 Câu 393 219  2y  y + 3x = x 2x  x + y = − y Điều kiện :x, y = Hệ cho tương đương oMc uinoh cT cuoấ n m Giải   y(y − ) = −3x x  x(x + ) = −y y (1) (2) Nhận (1) với (2) vế với vế ta =3⇔ (y − )(x + ) = ⇔ xy − x y xy Đến đơn giản ! xy = xy = −1 √ ; −2 3 Vậy hệ cho có nghiệm : (x; y) = (−1; 1), − √ 3 kNh ogun ygễ bn Câu 394  √  + (5x2 + 2y − 1) x y = 5x2 + y (2 + 3x2 ) (3x2 + 5) 5x √ =√ √  4x + y + y y Giải Điều kiện :y > Phương trình thứ hệ tương đương √ 3x2 y − (5x2 + 2y − 1)x y + 5x2 + 2y − = 0, (1) 2 ∆x√y = (5x2 + 2y − 1) −12(5x2 +2y−4) = (5x2 + 2y − 1) −12(5x2 +2y−1)+36 = (5x2 + 2y − 7) √ √ √ 3x y − 5x2 − 2y + = (2) √ Do (1) ⇔ 3x y − 5x − 2y + x y − = ⇔ x y−1=0 (3) Phương trình thứ hai hệ tương đương √ 4x y + 5y + 6x2 + 10 = 5x, (4) Thực 4.(2) − 3.(4) −38x2 + 15x − 14 = 23y > vô lý ∆x = −1903 < √ Xét (3) ⇔ y = x1 thay vào (4), f (x) = 6x4 − 5x3 + 14x2 + = Dễ thấy phương trình vô nghiệm Vậy hệ cho vô nghiệm Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 220 Câu 395 Tuyển tập hệ đặc sắc √ √ 2x + − 2y + = y − x 16x2 y + = 4x2 y + x Giải oMc uinoh cT cuoấ n m Nhiều người nhận xét câu chẳng có đặc biệt từ phương trình (1) rút x = y Tuy nhiên hay sau Điều kiện : x, y ≥ Phương trình thứ tương đương (1) ⇔ (x − y) Thay vào (2) ta √ +1 √ 2x + + 2y + =0⇔x=y √ 16x4 + = 4x3 + x Đối với hình thức hệ đánh giá công cụ tốt Nhẩm nghiệm x = ta tiến hành tách ghép phù hợp Để phương trình có nghiệm hiển nhiên x > Ta có √ 4x3 + x = 3 2.4x (4x2 + 1) ≤ + 4x + 4x2 + ⇔ 16x4 + ≤ 4x2 + 4x + ⇔ (2x − 1)2 (2x2 + 2x + 1) ≤ ⇔ x = 1 ; 2 kNh ogun ygễ bn Vậy hệ cho có nghiệm : (x; y) = Câu 396 √ 3x2 − 2x − + 2x x2 + = 2(y + 1) x2 + 2y = 2x − 4y + y + 2y + Giải Trừ hai phương trình vế với vế ta √ x2 +1+x Dễ thấy hàm số cần xét f (t) = x = y + thay vào (2) ta √ 2 = (y + 1) + + y + t2 + + t 2 hàm đơn điệu tăng Từ suy (y + 1) + 2y = 2(y + 1) − 4y + ⇔ Vậy hệ cho có nghiệm : (x; y) = (−2; −1), y = −2 ⇒ x = −1 y= ⇒x= 3 ; 3 Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.14 Câu 391 đến câu 410 Câu 397 221 16 − y = (x − 1)(x + 6) (x + 2)2 + 2(y − 4)2 = Giải x≥1 x ≤ −6 oMc uinoh cT cuoấ n m Từ phương trình đầu ta có (x − 1)(x + 6) ≥ ⇔ Từ phương trình (2) ta lại có (x + 2)2 ≤ ⇔ −5 ≤ x ≤ Vậy suy x = y = Vậy hệ cho có nghiệm : (x; y) = (1; 4) Câu 398 √ √ x + 2y − x − 2y = √ x + + x2 − 4y = Giải Điều kiện : x ≥ −3, x ≥ 2y Để ý phương trình (2) có lượng (1) suy x2 − 4y sinh từ việc bình phương (1) Vậy bình phương x−2= kNh ogun ygễ bn Thay xuống ta √ x2 − 4y x + + x − = ⇔ x = ⇒ y = ±2 Chú ý đến điều kiện bình phương (1) ta loại y = −2 Vậy hệ cho có nghiệm : (x; y) = (5; 2) Câu 399  y3   x2 + xy + y + x + =2 x+1   2x + y + y = x+1 Giải Hệ cho tương đương  y2   (x + y + 1)( + x) = x+1   (x + y + 1) + ( y + x) = x+1 Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 222 Tuyển tập hệ đặc sắc y2 + x = b ta có hệ x+1    x + y = x = 0, y =   x = 1, y =   y +x=2 √ √   ab = a = 1, b =  17 17 − 1 − x +   ⇔ x= ⇔ ⇔ ,y = a = 2, b =   x + y = a+b=3  4√ √   + 17 −1 − 17 y  x= ,y = +x=1 4 x+1 √ √ √ √ − 17 17 − 1 + 17 −1 − 17 Vậy hệ cho có nghiệm : (x; y) = (0; 1), (1; 0), ; , ; 4 4 Câu 400 oMc uinoh cT cuoấ n m Đặt x + y + = a,   2y + + x (y + 2y) = x3 − 3x  y+1− =0 3x − Giải Điều kiện : x = √ Đặt y + = a hệ cho trở thành  2a + x(a2 − 1) x3 − 3x a = 3x2 − 2a − a2 ⇔  a = x − 3x 3x2 −   x = kNh ogun ygễ bn Đến hẳn phải nhìn thấy tư tưởng lượng giác hóa ? Xin nhường lại cho bạn đọc làm nốt √ √ √ Vậy hệ cho có nghiệm : (x; y) = (0; −1), ± − 5; −1 ∓ − + 5(5 − 5) ± √ √ − 5; −1 ∓ − − Câu 401 √ 5(5 − 5) √ x2 + − y x + y = y x2 (x + y − 2) + x − = 5y Giải Điều kiện : x + y ≥ Nhận thấy y = không nghiệm hệ Hệ cho viết lại thành  x +1 √    − x+y =1 a−b=1 y ⇔ ⇔ 2 x +1  a(b − 2) =  (x + y − 2) =  y a=3 b=2 Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.14 Câu 391 đến câu 410 223 √ √ 11 + 53 −3 − 53 ,y =  x= √ 2 √ ⇔ 53 − 11 − 53 x= ,y = 2 √ √ √ √ −3 − 53 11 + 53 53 − 11 − 53 ; , ; 2 2  ⇔ x+y =4 x2 + = 3y Câu 402 oMc uinoh cT cuoấ n m Vậy hệ cho có nghiệm : (x; y) = x2 + y = 3x − 4y + 3x2 (x2 + 9) − 2y (y + 9) = 18(x3 + y ) + 2y (7 − y) + Giải Hệ cho tương đương x(x − 3) + y(y + 4) = 3x2 (x − 3)2 − 2y (y + 4)2 =  √ ± 13 a+b=1 a = 1, b = ,y = ∨  x= ⇔ ⇔ ⇔ 2 a = −5, b = 3a − 2b = VN √ √ ± 13 ± 13 ;0 , ;4 Vậy hệ cho có nghiệm : (x; y) = 2 kNh ogun ygễ bn  8√3y + = −x + 85 16(x3 − y) + 6x(3 − 4x) = 16y + 21 + 6√ y+1 Câu 403 Giải Phương trình thứ tương đương Điều kiện : y ≥ − ⇔ 16x3 − 24x2 + 18x = 16y + y + ⇔ 16x3 − 24x2 + 18x + 16 = 16(x + 1) + y + Nhìn vào hình thức có lẽ xét hàm Tuy nhiên vế phải có dạng khuyết thiếu bậc √ b vế trái lại có Vậy ta đổi biến x = u − = u+ , t = y + Như phương trình 3a (2) 16u3 + 16u = 16t3 + 16t ⇔ u = t ⇔ x = + y + Thay lên (1) ta 3y + + y + = 42 ⇔ y = ⇒ x = Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 224 Tuyển tập hệ đặc sắc Vậy hệ cho có nghiệm : (x; y) = ;7 √ 2x −√1 − y + 2x − = −8 y + y 2y − − 4x − 2x + y = 13 Câu 404 oMc uinoh cT cuoấ n m √ Giải Đây hệ khó, nhiên anh Nguyễn Xuân Nam, người bạn facebook chơi cách khác Tôi xin giới thiệu cho bạn đọc cách dễ hiểu Đúng lời ảnh nhận xét : ví dụ cho câu nói "Cần cù bù thông minh" Điều kiện : x ≥ , y ≥ 2 √ Đặt 2x − = a ≥ Từ phương trình (1) ta rút y= a+8 + 2a Thay vào phương trình (2) ta a+8 + 2a + Đặt vế trái f (a) Ta có − 15 (1+2a)2 −4a3 − 2a2 − 4a + 13 a+8 − 2a2 + = 14 + 2a + 2a −4a3 −2a2 −4a+13 1+2a kNh ogun ygễ bn f (a) = −30(a+8)(2a+1) (2a+1)4 a+8 + 2a + a+8 1+2a −16a3 −16a2 −4a−30 (1+2a)2 −4a3 −2a2 −4a+13 1+2a − 4a − 15 (1+2a)2 có phương trình, cần√tìm thêm phương trình biểu diễn mối quan hệ ẩn √ √ Đặt 2x − 3y = a, 2x − y − = b, − x + y = c, a, b, c > hệ cho tương đương     2a + c =  2x − 3y = ⇔ a = 3, b = 2, c = ⇔ 2x − y − = ⇔ x = 3, y = −1 3c − b =     a + b2 + 4c2 = 17 5−x+y =1 Vậy hệ cho có nghiệm : (x; y) = (3; −1) Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.14 Câu 391 đến câu 410 Câu 406 225 x5 + x4 + x2 + x +  x + y − 3xy − x + 3y − =   y2 = Giải oMc uinoh cT cuoấ n m Phương trình (2) ∆ không đẹp Sẽ phải khai thác từ (1) Với hình thức có lẽ vế phải rút gọn Vì mẫu phân tích nên dự đoán tử có nhân tử x2 + x + Tiến hành nhóm ta x5 + x4 + = (x3 − x + 1)(x2 + x + 1) Như hệ y = x3 − x + x2 + y − 3xy − x + 3y − = Thay y từ (1) xuống ta (x − 1)(x2 + 2x − 3y) = Với x = ⇒ y = ±1 Với y = Vậy hệ cho có nghiệm : 1− √ 13 − ; kNh ogun ygễ bn (x; y) = (1; 1), (1; −1), (3; 5), x2 + 2x thay vào (1) ta giải  x = ⇒√ y=5 √  − 13 − 13  x= ⇒y=  2√ 2√  + 13 + 13 ⇒y= x= 2 Câu 407 √ 13 , 1+ √ 13 + ; √ 13 √ x2 −√2x + + y − 2y + = √ x+ y+3=3 Giải Phương trình thứ tương đương (x − 1)2 + + (y − 1)2 + = Dễ thấy V T ≥ V P Đẳng thức xảy x = y = thay vào (1) thỏa mãn Vậy hệ cho có nghiệm : (x; y) = (1; 1) Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 226 Tuyển tập hệ đặc sắc Câu 408 √ √ 3 2x − y + 3x − 2y = √ 3x − 2y + 5x + y = Giải √ √ Vậy hệ cho tương đương oMc uinoh cT cuoấ n m Đặt a = 2x − y, b = 3x − 2y Sử dụng đồng sau 5x + y = 13(2x − y) − 7(3x − 2y) a+b=2 2b − 7b3 + 13a3 = ⇔ 2x − y = 3x − 2y = ⇔a=b=1 ⇔x=y=1 Vậy hệ cho có nghiệm : (x; y) = (1; 1) Câu 409 √ (2x + 1) + 4x2 + 4x + + 3y + √ 4x3 − 3y + − 3y = −5 9y + = Giải Để ý phương trình (1) biến x, y hoàn toàn tách rời ta hi vọng điều đó, với hình thức có lẽ hàm số Phương trình (1) viết lại thành (2x + 1)(2 + (2x + 1)2 + = −3y(2 + 9y + 3) kNh ogun ygễ bn Chưa phải dạng hàm Nhưng để ý 9y = (−3y)2 Khi vế có dạng √ f (t) = 2t + t t2 + Hàm đơn điệu tăng, từ ta suy 2x + = −3y thay vào (2) ta √ 4x3 + 2x + 2x + = −6 ⇔ x = −1 Vì vế trái đồng biến nên phương trình có nghiệm Vậy hệ cho có nghiệm : (x; y) = −1; Câu 410    27y − 3x + 9y = √ √ x2   x + 3y = 72 + y Giải Điều kiện : x, y ≥ Để ý phương trình thứ (2) Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn Truy cập www.khongbocuoc.com để download thêm tài liệu học tập khác 2.14 Câu 391 đến câu 410 227 √ ( x+ 3y)4 ≤ 4(x + 3y)2 ≤ 8(x2 + 9y ) = V P Đẳng thức xảy √ x= 3y ⇔ x = 3y Thay lên (1) ta oMc uinoh cT cuoấ n m x3 − 3x2 + 3x − = ⇔ x = ⇒ y = Vậy hệ cho có nghiệm : (x; y) = 1; kNh ogun yg ễbn Rễ học tập đắng, học tập Nguyễn Minh Tuấn - K62CLC Toán Tin - ĐHSPHN My facebook : Popeye Nguyễn

Ngày đăng: 27/08/2016, 21:17

TỪ KHÓA LIÊN QUAN

w