1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu chế tạo cảm biến khí H2 và H2S trên cơ sở màng SnO2 biến tính đảo xúc tác micronano

127 394 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 127
Dung lượng 6,14 MB

Nội dung

LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi di s hng dn ca GS TS Nguyn Vn Hiu v PGS TS Nguyn Vn Quy Cỏc s liu, kt qu nghiờn cu l trung thc v cha tng cụng b bt k cụng trỡnh no khỏc Tp th Giỏo viờn hng dn Tỏc gi i LI CM N iu u tiờn tụi xin by t li cm n chõn thnh ti th giỏo viờn hng dn GS.TS Nguyn Vn Hiu v PGS.TS Nguyn Vn Quy, cỏc thy ó chp nhn tụi l nghiờn cu sinh v hng dn sut quỏ trỡnh tụi thc hin bn lun ỏn ny Cỏc thy ó ch bo, hng dn cho tụi tụi c tip cn mt lnh vc ang c s quan tõm ca ton nhõn loi, ú l cụng ngh vi in t v cụng ngh nano Tụi ó hc c rt nhiu t nhng iu ch dn, nhng bui tho lun v t nhõn cỏch ca cỏc thy Tụi cm phc nhng hiu bit sõu sc v chuyờn mụn, nhng kh nng cng nh s tn tỡnh ca cỏc thy Tụi cng rt bit n s kiờn trỡ ca cỏc thy ó c cn thn v gúp ý kin cho bn tho ca lun ỏn ny Tụi xin cỏm n PGS TS Nguyn c Hũa, TS Nguyn Vn Duy, ThS Nguyn Vit Chin cựng th cỏn b, NCS, ThS ca nhúm cm bin khớ Vin ITIMS ó ng viờn, giỳp tụi rt nhiu quỏ trỡnh thc hin cỏc cụng vic thc nghim ca ti cng nh tho lun gii thớch thnh cụng kt qu thc nghim Tụi cng trõn trng cm n GS Thõn c Hin, GS Nguyn c Chin, PGS Phm Thnh Huy nguyờn l nhng cỏn b lónh o ca Vin ITIMS Cỏc thy ó ng viờn v giỳp tụi rt nhiu quỏ trỡnh lm vic v hc Tụi xin chõn thnh cm n ti BG v th cỏn b nhõn viờn Vin ITIMS Cỏc thy, cỏc anh cỏc ch ó ng viờn giỳp v chia s nhng kinh nghim quý bỏu cho tụi sut quỏ trỡnh thc hin cỏc cụng vic thc nghim ca ti, ng thi cú nhng tho lun gi m quý bỏu quỏ trỡnh tụi vit hon thin lun ỏn With Tom A.a.i.rnink from Twente University, Thanks for your help! Tụi xin trõn trng cm n Ban giỏm hiu, Vin Sau i hc, Trng i hc Bỏch khoa H Ni ỏn 911 ca B Giỏo dc v o to Ni dung nghiờn cu ca lun ỏn ny nm khuụn kh thc hin v c ti tr bi Qu Phỏt trin Khoa hc v Cụng ngh Quc gia (Nafosted) mó s 103.99-2012.31 v mó s 103.02.2014.18; D ỏn chng trỡnh sỏng kin nghiờn cu VLIR-UOS under code ZEIN2012RIP20; ti cp Trng HBK H Ni mó s T2014-119 v T2015-068 Cui cựng, tụi mun dnh cho nhng ngi thõn yờu nht, bn lun ỏn ny l mún qu quý giỏ tụi xin c tng cho b m, v v cỏc thõn yờu ca tụi Tỏc gi lun ỏn ii MC LC LI CM N II MC LC III DANH MC CC Kí HIU V CH VIT TT V DANH MC BNG BIU VI DANH MC HèNH VII M U 1 Tớnh cp thit ca ti Mc tiờu ca lun ỏn Ni dung nghiờn cu i tng nghiờn cu Phng phỏp nghiờn cu í ngha thc tin ca ti Nhng úng gúp mi ca lun ỏn Cu trỳc ca lun ỏn Kt lun CHNG TNG QUAN 1.1 Gii thiu chung v cm bin khớ da trờn ụxớt kim loi bỏn dn 1.2 Gii thiu v vt liu SnO2 ng dng cho cm bin khớ 10 1.3 Nguyờn tc hot ng, hin tng un cong vựng nng lng v c ch tng tỏc b mt 12 1.4 Cỏc phng phỏp bin tớnh b mt mng mng cho cm bin khớ 16 1.4.1 Cm bin mng mng ụxớt bin tớnh vi xỳc tỏc kim loi 16 1.4.1.1 Mụ hỡnh cỏc cht phõn b cht bỏn dn 17 1.4.1.2 C ch nhy khớ ca mng mng bin tớnh vi xỳc tỏc kim loi 17 a) C ch nhy hoỏ 18 b) C ch nhy in t 18 1.4.2 Cm bin mng mng ụxớt bin tớnh vi o xỳc tỏc khỏc loi ht ti 25 1.4.3 Cm bin mng mng ụxớt bin tớnh vi o xỳc tỏc cựng loi ht ti 30 1.5 Kt lun 32 CHNG THC NGHIM LINH KIN CM BIN KH V CễNG NGH CH TO 33 2.1 Gii thiu 33 2.2 Thit k, ch to cm bin 33 2.2.1 Thit k cm bin 33 2.2.2 Tớnh toỏn cụng sut tiờu th cho cm bin 34 2.3 Quy trỡnh ch to cm bin 37 2.3.1 Mụ hỡnh v s cụng ngh ch to 37 2.3.2 Cỏc bc cụng ngh ch to 38 a) X lớ b mt 38 b) ễxy húa nhit 38 c) Quang khc mt n th nht (Mask 1, ch to lũ vi nhit v in cc) 39 d) Phỳn x catot to in cc v lũ vi nhit 41 e) Quang khc Mask v phỳn x to mng mng nhy khớ SnO2 42 f) Quang khc Mask v phỳn x o xỳc tỏc 43 2.4 Kho sỏt t trng nhy khớ ca cm bin 44 2.5 Quỏ trỡnh úng v cm bin 46 iii 2.6 Kho sỏt cụng sut tiờu th ca cm bin 48 2.7 Th nghim cm bin trờn bo mch tớch hp 48 2.8 Kt lun 49 CHNG CM BIN KH H2 TRấN C S MNG MNG SNO2 BIN TNH PD (SNO2/PD) 50 3.1 Gii thiu 50 3.2 Kt qu v tho lun 51 3.2.1 Kho sỏt hỡnh thỏi, cu trỳc vt liu cm bin mng mng SnO2 51 3.2.2 Kho sỏt hỡnh thỏi, cu trỳc vt liu cm bin mng mng SnO2/Pd 55 3.3 Kho sỏt c trng nhy khớ ca cm bin 56 3.3.1 Cm bin mng mng SnO2 56 3.3.2 Cm bin mng mng SnO2 kt hp o xỳc tỏc Pd (SnO2/Pd) 65 3.3.3 Cm bin mng mng SnO2 cú o xỳc tỏc Pt, Au 75 3.4 Thit k v chun húa thit b o khớ H2 trờn c s mng mng SnO2/Pd 78 3.5 Kt lun 82 CHNG 4: CM BIN KH H2S TRấN C S MNG MNG SNO2 BIN TNH CUO (SNO2/CUO) 83 4.1 Gii thiu 83 4.2 Kt qu v tho lun 86 4.2.1 Kt qu kho sỏt hỡnh thỏi v cu trỳc vt liu 86 4.2.2 Kt qu kho sỏt c trng nhy khớ 88 C ch nhy khớ ca cm bin 98 4.3 Kho sỏt ng u cm bin khớ H2S 103 4.4 Kho sỏt kh nng nhy khớ ca cm bin sau khớ úng gúi 103 4.5 Kt lun 106 KT LUN CHUNG V KIN NGH ERROR! BOOKMARK NOT DEFINED DANH MC CC CễNG TRèNH CễNG B CA LUN N 109 TI LIU THAM KHO 110 iv DANH MC CC Kí HIU V CH VIT TT Ký hiu, vit tt Tờn ting Anh Ngha ting Vit CVD Chemical Vapour Deposition Lng ng húa hc pha hi VLS Vapour Liquid Solid Hi-lng-rn VS Vapour Solid Hi-rn Mask Mt n TT MFC Mass Flow Controllers B iu khin lu lng khớ ppb Parts per billion Mt phn t ppm Parts per million Mt phn triu SEM Scanning Electron Microscope Kớnh hin vi in t quột TEM Transmission Electron Microscope Kớnh hin vi in t truyn qua 10 XRD X-Ray Diffraction Nhiu x tia X 11 FESEM Field Emission Scanning Electron Microsope Kớnh hin vi in t quột phỏt x trng 12 EDS/EDX Energy Dispersive X-ray Spectroscopy Ph nhiu x in t tia X 13 SMO Semiconducting Metal Oxides ễxớt kim loi bỏn dn 14 JCPDS Joint Committee on Powder Diffraction Standards y ban chung v tiờu chun nhiu x ca vt liu 15 Ra Rair in tr o khụng khớ 16 Rg Rgas in tr o khớ th 17 S Sensitivity hi ỏp/ ỏp ng 18 Donors Cỏc tõm cho in t 19 Acceptors Cỏc tõm nhn in t 20 Prototype Sn phm th nghim 21 sccm Standard Cubic Centimeters per Minute mL/phỳt 22 ITIMS International Training Institute for Materials Science Vin o to Quc t v Khoa hc Vt liu v DANH MC BNG BIU Bng 1.1 Mt s lnh vc ng dng ca cm bin khớ Bng 1.2 Di nng c quan tõm ca cỏc nng khớ [117] Bng 1.3 Thng kờ v loi vt liu ụxớt kim loi bỏn dn cho cm bin dng mng mng t nm 2000 n 11 Bng 1.4 Mt s cụng b tiờu biu v cm bin khớ trờn c s mng mng ụxớt bin tớnh vi o xỳc tỏc kim loi 20 Bng 1.5 dn in ca cm bin vi 300 ppm khớ CO theo nhit [76] 22 Bng 1.6 ỏp ng 200 ppm khớ LPG ca cm bin SnO2/Pt vi cỏc chiu dy o xỳc tỏc [25] 23 Bng 1.7 ỏp ng 200 ppm khớ LPG ca cm bin SnO2/Pt chiu UV/khụng chiu UV [26] 23 Bng 1.8 Mt s cụng b tiờu biu v cm bin khớ trờn c s mng mng ụxớt bin tớnh vi o xỳc tỏc khỏc loi ht ti 26 Bng 1.9 ỏp ng v in tr tng ng ca cm bin khụng khớ v khớ H2S [74] 29 Bng 2.1 Giỏ tr in tr tớnh toỏn tng ng vi cụng sut 35 Bng 2.2 Giỏ tr in tr tng ng chiu dy mng Pt 35 Bng 2.3 Quy trỡnh cụng ngh quang khc 40 Bng 2.5 Thụng s phỳn x mng mng Cr/Pt 41 Bng 2.6 Thụng s phỳn x mng mng SnO2 42 Bng 2.7 Thụng s phỳn x o xỳc tỏc 43 Bng 4.1 nh hng ca khớ H2S n sc khe ngi (Ngun: American National Standards Institute (ANSI Standard No Z37.2-1972) 83 Bng 4.2 Mt s cm bin khớ H2S c bỏn trờn th trng 105 vi DANH MC HèNH Hỡnh 1.1 Cu to chung ca cm bin khớ Hỡnh 1.2 Mụ hỡnh cu trỳc ụ n v (a) v cu trỳc vựng nng lng ca SnO2 (b) 10 Hỡnh 1.3 Cỏc loi cm bin nhy khớ trờn c s vt liu ụxớt bỏn dn dng (a) v dng mng (b) 12 Hỡnh 1.4 Mụ hỡnh c ch nhy khớ ca cm bin mng mng bỏn dn [115] 13 Hỡnh 1.5 S nng lng v s thay i vựng nghốo in t ti biờn gii ht [115] 14 Hỡnh 1.6 nh hng ca kớch thc ht n c ch nhy khớ [117] 15 Hỡnh 1.7 Mụ hỡnh cỏc cht hp trờn b cht vo bỏn dn (a); dng (b) v dng mng (c) [115] 17 Hỡnh 1.8 Mụ hỡnh s cu trỳc nng lng bin tớnh xỳc tỏc kim loi: (a) khụng khớ v mụi trng cú khớ kh (b) 19 Hỡnh 1.9 nh SEM ca mng mng SnO2/Ag (a) v tớnh cht nhy khớ H2 ca mng mng Ag (dy nm) theo nhit (b) [122] 20 Hỡnh 1.10 Phõn b kớch thc ht theo t l kim loi pha (a) v c trng in tr ca mng khụng pha Rh v cú pha Rh (b) [76] 21 Hỡnh 1.11 ỏp ng khớ theo nhit ca mng mng SnO2 bin tớnh cỏc loi o kim loi khỏc (a) v thi gian ỏp ng, hi phc ca cm bin SnO2/Pt (b) [84] 23 Hỡnh 1.12 S mc nng lng sau kt hp hai vt liu bỏn dn loi p/n 25 Hỡnh 1.13 Cm bin mng mng SnO2 bin tớnh mng mng CuO (a) v cỏc o CuO (b) [11] 27 Hỡnh 1.14 ỏp ng ca cỏc cm bin theo nng (a) v theo nhit (b) [11] 27 Hỡnh 1.15 c trng I-V ca tip xỳc CuO (p)-SnO2 (n) [74] 28 Hỡnh 1.16 ỏp ng theo nhit ca mng mng SnO2 bin tớnh o khớ SO2 (a) 30 v chn lc ca cm bin (b) [100] 30 Hỡnh 1.17 S mc nng lng sau kt hp hai vt liu bỏn dn loi n/n 31 Hỡnh 2.1 Cỏc thụng s ca cm bin (n v o àm) 34 Hỡnh 2.2 Quan h gia cụng sut phỏt x v nhit 34 Hỡnh 2.3 B mt n thit k cho Si 4-inch: (a) mt n to hỡnh vi in cc v lũ vi nhit; (b) mt n to hỡnh o xỳc tỏc (5 àm); (c) mt n to hỡnh vựng nhy khớ 36 Hỡnh 2.4 Mụ hỡnh cm bin sau ch to (a) v quy trỡnh ch to cm bin trờn c s cụng ngh Vi in t (b) 37 Hỡnh 2.5 Cỏc thit b chớnh dựng quỏ trỡnh cụng ngh: Mỏy quang khc mt (PEM 800) (a); Mỏy quay ph 1H-D7 (b); Bp nhit (c) v Kớnh hin vi quang hc (d) phũng sch Vin ITIMS 39 Hỡnh 2.6 nh h phỳn x phũng sch Vin ITIMS 41 Hỡnh 2.7 Hỡnh nh in cc v lũ vi nhit sau ch to 41 vii Hỡnh 2.8 Quy trỡnh ch to mng nhy khớ: a) Quang khc mask 2; (b) Sau quang khc; (c) Phỳn x mng mng SnO2 42 Hỡnh 2.9 Hỡnh nh lp mng nhy khớ SnO2 trờn in cc sau ch to 42 Hỡnh 2.10 Quy trỡnh ch to o xỳc tỏc: a) Quang khc mask 3; (b) Sau quang khc; (c) Phỳn x mng mng Pd, Cu 43 Hỡnh 2.11 Hỡnh nh lp o xỳc tỏc trờn mng nhy khớ SnO2 sau ch to 43 Hỡnh 2.12 nh quang hc ca cỏc cm bin ch to trờn phin Si inch (a); nh ca mt cm bin (b) v mụ hỡnh cm bin mng mng kt hp o xỳc tỏc (c) 44 Hỡnh 2.13 S nguyờn lý h o tớnh cht nhy khớ ca cm bin (a), thit b o th v dũng (b) 45 Hỡnh 2.14 Giao din chng trỡnh VEE-Pro 46 Hỡnh 2.15 Quy trỡnh úng v cm bin: Mỏy hn dõy Westbond 7400C (a) v quy trỡnh úng gúi cm bin (b) bao gm cỏc cụng on: (1) Chớp cm bin ct ri; (2) Hn dõy cm bin vo bn mch; (3) Ph lp bo v bng keo chu nhit v (4) Cm bin úng v hon chnh 46 Hỡnh 2.16 Cm bin ch to sau hn lờn (a); mch tớch hp linh kin (b) 49 Hỡnh 3.1 Cu trỳc mt trờn ca cm bin ch to chp bng kớnh hin vi (a) v hỡnh nh phúng to (b) 52 Hỡnh 3.2 Hỡnh nh b dy mng mng SnO2 thu c t Profilometer (a) Hỡnh nh chp t mỏy Profilometer; (b) Mụ hỡnh mt ct ngang 52 Hỡnh 3.3 Kt qu o chiu dy mng mng SnO2: (a) 20 nm; (b) 40 nm; (c) 60 nm v (d) 80 nm 53 Hỡnh 3.4 Gin nhiu x tia X ca mng SnO2 53 Hỡnh 3.5 nh FESEM ca mng mng SnO2 cỏc chiu dy khỏc nhau: (a) 20; (b) 40; (c) 60 v (d) 80 nm 54 Hỡnh 3.6 nh FESEM ca mng mng SnO2/Pd: (a) Cm bin SnO2/Pd; (b) Ma trn o xỳc tỏc Pd; (c) Hỡnh nh mt o xỳc tỏc v (d) Hỡnh nh biờn ca o xỳc tỏc Pd trờn nn SnO2 55 Hỡnh 3.7 Ph EDS ca cm bin mng mng SnO2/Pd: hỡnh chốn bờn l nh FESEM ca o Pd v thnh phn cỏc nguyờn t tng ng 56 Hỡnh 3.8 Cỏc c trng nhy khớ H2 ca cm bin mng mng SnO2 dy 20 nm: (a) c trng ỏp ng ca cm bin 300, 350 v 400 C; ỏp ng biu din ph thuc vo nng khớ (b) v nhit lm vic (c) 57 Hỡnh 3.9 Cỏc c trng nhy khớ H2 ca cm bin mng mng SnO2 dy 40 nm: (a) c trng ỏp ng ca cm bin 300, 350 v 400 C; ỏp ng biu din ph thuc vo nng khớ (b) v nhit lm vic (c) 58 Hỡnh 3.10 Cỏc c trng nhy khớ H2 ca cm bin mng mng SnO2 dy 60 nm: (a) c trng ỏp ng ca cm bin 300, 350 v 400 C; ỏp ng biu din ph thuc vo nng khớ (b) v nhit lm vic (c) 59 viii Hỡnh 3.11 Cỏc c trng nhy khớ H2 ca cm bin mng mng SnO2 dy 80 nm: (a) c trng ỏp ng ca cm bin 300, 350 v 400 C; ỏp ng biu din ph thuc vo nng khớ (b) v nhit lm vic (c) 59 Hỡnh 3.12 th so sỏnh ỏp ng ca cỏc cm bin mng mng SnO2 cú chiu dy khỏc nhau: ỏp ng biu din ph thuc vo nng khớ (a) v nhit lm vic (b) 61 Hỡnh 3.13 Thi gian ỏp ng v hi phc theo nhit ca mng mng SnO2 cú chiu dy 40 nm vi nng 1000 ppm khớ H2 61 Hỡnh 3.14 c trng nhy khớ: 250 ppm CO (a); 2500 ppm LPG (b) 250 ppm NH3 (c); 62 v 250 ppm H2 (d) ca cm bin mng mng SnO2 dy 40 nm ti nhit 400 C 62 Hỡnh 3.15 chn lc khớ ca cm bin mng mng SnO2 dy 40 nm 63 Hỡnh 3.16 c trng nhy khớ H2 ca cm bin mng mng SnO2 thay i lu lng khớ phỳn x theo nng khớ Ar : O2 (sccm) khỏc nhau: 100% (30 sccm) Ar (a); t l (25 sccm) Ar v (5 sccm) O2 (b); (c) t l (20 sccm) Ar v (10 sccm) O2; (d) t l (10 sccm) Ar v (20 sccm) O2 64 Hỡnh 3.17 ỏp ng khớ H2 ca cm bin mng mng SnO2 dy 40 nm thay i lu lng khớ phỳn x ti nhit 400 C 65 Hỡnh 3.18 Cỏc c trng nhy khớ H2 ca cm bin mng mng SnO2 (40 nm)/Pd (5 nm): (a) c trng ỏp ng khớ ca cm bin 200, 250, 300, 350 v 400 C v (b) ỏp ng biu din ph thuc vo nng khớ 66 Hỡnh 3.19 c trng nhy khớ H2 ca cm bin mng mng SnO2/Pd (dy 10 nm): (a) c trng ỏp ng khớ 200, 250, 300, 350 v 400 C v (b) ỏp ng biu din ph thuc vo nng khớ 67 Hỡnh 3.20 c trng nhy khớ H2 ca cm bin mng mng SnO2/Pd (dy25 nm): (a) c trng ỏp ng khớ 200, 250, 300, 350 v 400 C v (b) ỏp ng biu din ph thuc vo nng khớ 68 Hỡnh 3.21: c trng nhy khớ H2 ca cm bin mng mng SnO2/Pd (dy 40 nm): (a) c trng ỏp ng khớ 200, 250, 300, 350 v 400 C v (b) ỏp ng biu din ph thuc vo nng khớ 69 Hỡnh 3.22 ỏp ng ca cỏc cm bin SnO2/Pd biu din ph thuc vo nng khớ (a) v nhit lm vic (b) 69 Hỡnh 3.23 Mụ hỡnh c ch nhy khớ ca cm bin SnO2/Pd: (a) Khụng o Pd; (b) o Pd = nm; (c) o Pd = 10 nm v (d) o Pd 25 nm 72 Hỡnh 3.24 Thi gian hi phc (a) v ỏp ng (b) ca cỏc cm bin SnO2/Pd vi chiu dy khỏc theo nng 72 Hỡnh 3.25 c trng hi ỏp ca cm bin SnO2/Pd (10 nm) ti nhit 300 C vi cỏc loi khớ: (a) 250 ppm khớ CO, (b) 2500 ppm khớ LPG, (c) 250 ppm khớ NH3 v 250 ppm khớ H2 (d) 73 ix Hỡnh 3.26 chn lc khớ ca cm bin SnO2/Pd (10 nm) ti 300 C v 400 C (a); ỏp ng ca cm bin cú v khụng cú o ti 300 C (b) 74 Hỡnh 3.27 n nh ca cm bin SnO2/Pd (10 nm) sau 10 chu k thi / ngt 75 Hỡnh 3.28 Ph EDS ca cm bin SnO2 cú o xỳc tỏc Pt (a) v Au (b) 76 Hỡnh 3.29 Cỏc c trng nhy khớ ca cm bin SnO2/Au (dy10 nm): (a) c trng nhy khớ; ỏp ng biu din ph thuc theo nng khớ (b) 76 Hỡnh 3.30 Cỏc c trng nhy khớ ca cm bin SnO2/Pt (dy10 nm): (a) c trng nhy khớ; ỏp ng biu din ph thuc theo nng khớ (b) 77 Hỡnh 3.31 th so sỏnh ỏp ng theo nng khớ o ca cm bin SnO2 cú cỏc loi o xỳc tỏc dy (10 nm) ca Pt, Pd v Au 78 Hỡnh 3.32 S nguyờn lý mch o cm bin 78 Hỡnh 3.33 Thit k mt trờn (a) v mt di ca mch o (b) 79 Hỡnh 3.34 Cm bin sau hn dõy (a); sau úng v (b); mch o ca thit b (c) v thit b o khớ H2 hon chnh (d) 79 Hỡnh 3.35 c trng ỏp ng khớ H2 ca cm bin SnO2/Pd: Cụng sut tiờu th ph thuc theo thi gian (a) v biu din c trng nhy khớ theo cụng sut (b) 80 Hỡnh 3.36 c trng ỏp ng khớ H2 theo cỏc nng khỏc ca cm bin SnO2/Pd: (a) c trng hi ỏp theo cụng sut lũ vi nhit l 180 mW; (b) ỏp ng biu din ph thuc theo nng khớ 81 Hỡnh 3.37 chn lc khớ ca cm bin SnO2/Pd ti cụng sut 180 mW 81 Hỡnh 3.38 ỏp ng khớ H2 ca cm bin SnO2/Pd theo thi gian 82 Hỡnh 4.1 nh quang hc ca khong 400 cm bin trờn phin Si inch sau ch to (a); nh SEM ca mt cm bin (b); nh FE-SEM hỡnh thỏi b mt ca lp vt liu nhy khớ (c); nh quột chp EDS ca vt liu CuO v ph tỏn xc nng lng EDS ca vt liu CuO/SnO2 (d) 87 Hỡnh 4.2 Ph nhiu x tia X ca mng mng SnO2 (a) v ph Raman Shift ca vt liu SnO2/CuO (b) 88 Hỡnh 4.3 Cỏc c trng nhy khớ H2S ca cm bin SnO2 dy 40 nm: (a) c trng hi ỏp v ỏp ng biu din ph thuc theo nng khớ (b) 89 Hỡnh 4.4 Cỏc c trng nhy khớ H2S ca cm bin SnO2/CuO (dy nm): (a) c trng hi ỏp vi khớ H2S 250, 300, 350 v 400 C; ỏp ng biu din ph thuc v nng khớ (b) 90 Hỡnh 4.5 Cỏc c trng nhy khớ H2S ca cm bin SnO2/CuO (dy 10 nm): (a) c trng hi ỏp vi khớ H2S 250, 300, 350 v 400C; ỏp ng biu din ph thuc v nng khớ (b) 92 Hỡnh 4.6 Cỏc c trng nhy khớ H2S ca cm bin SnO2/CuO (dy 15 nm): (a) c trng hi ỏp vi khớ H2S 250, 300, 350 v 400C; ỏp ng biu din ph thuc vo nng khớ (b) 92 x Kt qu ny tng t nh i vi mng mng SnO2 thun khit Tuy nhiờn ỏp ng khớ H2S ca cỏc cm bin mng mng SnO2 bin tớnh o Cr2O3, Fe2Ox thp hn rt nhiu so vi mng khụng bin tớnh v so vi mng bin tớnh bng o CuO Khỏc vi cm bin mng mng SnO2/CuO (dy 20 nm), nhit hot ng ti u ca cm bin mng mng SnO2/Fe2Ox (dy 20 nm) l 400C ( ỏp ng S = 6,2 o ppm H2S ti 400 C) Trờn Hỡnh 4.18 l th so sỏnh ỏp ng ca cỏc cm bin mng mng SnO2 (40 nm) bin tớnh vi cỏc loi vt liu xỳc tỏc khỏc Chỳng ta d dng nhn thy cm bin mng mng SnO2/CuO khụng ch cú ỏp ng cao nht vi khớ H2S m cũn cú nhit hot ng thp hn so vi cỏc o xỳc tỏc khỏc Ta nhn thy, cm bin vi lp o xỳc tỏc CuO dy 20 nm trờn lp mng mng SnO2 dy 40 nm cú ỏp ng l cao nht, nhit hot ng ti u gim xung cũn 250 C Vi nhng u im ny chỳng tụi nhn thy cm bin cú th ng dng vo thc tin ch to thit b o quan trc ụ nhim mụi Cú th thy, Fe2Ox, Cr2O3, v CuO u l cỏc ụxớt kim loi bỏn dn loi p Khi bin tớnh trờn b mt mng mng SnO2 u to tip xỳc p-n Tuy nhiờn ỏp ng khớ H2S ca cm bin cú o xỳc tỏc Fe2Ox, Cr2O3 l khụng cao, hay cú th hiu õy khụng phi l loi vt liu xỳc tỏc tt i vi khớ H2S Ngc li, bin tớnh vi CuO thỡ ỏp ng khớ H2S ca cm bin c tng lờn ỏng k iu ny chng t vai trũ o xỳc tỏc CuO ca cm bin SnO2 cú ỏp ng vi khớ H2S l tt nht Hay cú th hiu, CuO d dng phn ng vi khớ H2S to thnh CuS, t ú thay i bn cht tip xỳc p-n gia CuO v SnO2 ng thi tng cng tớnh nhy khớ ca cm bin 100 80 250 C 300C 350 C 400 C = R /R ) SS (Raa/Rgg 60 40 @@@ 2,5 ppm khí H2S 20 SnO2- Cr2O3 SnO2- Fe2Ox SnO2- CuO Hỡnh 4.18 ỏp ng ca cm bin o khớ H2S trờn c s mng mng SnO2/CuO, Cr2O3, Fe2Ox 102 4.3 Kho sỏt ng u cm bin khớ H2S T kt qu kho sỏt c trng nhy khớ ca cm bin mng mng SnO2/CuO (dy 20 nm) chỳng tụi ó tin hnh ch to linh kin cm bin o khớ H2S ng thi kho sỏt tin cy ca quy trỡnh ch to Cỏc chớp cm bin ó ch to trờn phin Si (4 inch) c tỏch nh v phõn tớch nh trờn Hỡnh 4.19 Chỳng tụi tin hnh kho sỏt ng u ca cm bin bng vic ly 12 chớp cm bin o tớnh cht nhy khớ ti cựng iu kin l 300 C v nng khớ H2S l 2,5 ppm Kt qu c mụ t trờn Hỡnh 4.19 cho thy cỏc cm bin ó ch to cú ng u tng i cao Trong nghiờn cu ny, chỳng tụi s dng bia cú kớch thc 2inch phỳn x lờn kớch thc 4-inch ú ng u ca cm bin cha c ti u ch to hng lot tin ti sn xut cụng nghip, thỡ yờu cu bia phỳn x phi cú kớch thc tng ng hoc ln hn kớch thc ca wafer S (Ra/Rg) 100 10 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 Số mẫu Hỡnh 4.19 ng u ca cm bin SnO2/CuO (dy 20nm) 4.4 Kho sỏt kh nng nhy khớ ca cm bin sau khớ úng gúi kho sỏt kh nng lm vic thc ca cm bin, mi chớp cm bin tip tc c gn lờn theo quy trỡnh ging nh ó thc hin vi cm bin khớ H2 nh trỡnh by Chng Vi linh kin cm bin khớ H2S ó c úng gúi, chỳng tụi tin hnh kho sỏt s nh hng ca cụng sut tiờu th cng nh cỏc iu kin ph thuc vo nng cng nh chn lc ca cm bin Cỏc kt qu kho sỏt trờn linh kin c trỡnh by trờn cỏc Hỡnh t Hỡnh 4.20; Hỡnh 4.21; Hỡnh 4.20 103 100 3000 250 mW 500 1000 100 1500 300 mW 500 1000 10 10 100 1500 350 mW 500 1000 1500 100 400 mW 250 500 40 20 10 60 10 2000 @ 2,5 ppm H2S 80 V (Vin /V S = S in/Vout out) 2000 (b) 10 200 mW 1000 100 100 (a) 750 1000 200 Thời gian (s) 250 300 350 400 Công suất (mW) Hỡnh 4.20 c trng nhy khớ H2S ca cm bin SnO2/CuO: (a) c trng hi ỏp vi khớ H2S 200, 250, 300, 350 v 400 mW v ỏp ng biu din ph thuc cụng sut lũ vi nhit (b) Cm bin mng mng ụxớt kim loi bỏn dn thng hot ng nhit cao, ú lũ vi nhit c ch to vi mc ớch cung cp nhit cho vựng cha lp vt liu nhy khớ Cm bin ca chỳng tụi ch to cú lũ vi nhit l dõy Pt rng 20 m un quanh lp mng mng Vi vic cp in ỏp vo lũ vi nhit khong 4V 9V v o dũng in, ta cú th tớnh c cụng sut tiờu th ca lũ vi nhit Chỳng tụi tin hnh kho sỏt c trng nhy khớ ca linh kin cm bin khớ H2S ti cỏc mc cú cụng sut tiờu th khỏc l 200, 250, 300, 350, 400 mW v kt qu c th hin trờn Hỡnh 4.20 Khi o vi 2,5 ppm khớ H2S, cm bin cho thy cú ỏp ng cao v tng dn cụng sut tiờu th ca lũ nhit gim ỏp ng cao nht S = 93 ng vi cụng sut lũ nhit l 200 mW, mc dự thi gian hi phc di iu ny hon ton ph hp vi kt qu kho sỏt cm bin phn trc Khi cụng sut lũ vi nhit thp, ng ngha vi vic nhit hot ng ca cm bin thp, ỏp ng tng cao nhng thi gian cm bin hi phc li trng thỏi ban u di Sau kho sỏt tớnh nhy khớ ph thuc cụng sut, chỳng tụi la chn cụng sut lũ nhit 300 mW kho sỏt tớnh nhy khớ v chn lc ca linh kin ỏp ng ca linh kin cm bin khớ da trờn c s mng mng SnO2 (40 nm) cú o xỳc tỏc CuO (20 nm) vi nng khớ H2S khỏc c th hin trờn Hỡnh 4.21(a) Chỳng tụi kho sỏt vi cỏc nng khớ H2S rt thp ln lt l 0,5; 1; 2,5 v ppm Vi 0,5 ppm khớ H2S, ỏp ng t giỏ tr S = 2.6, kt qu ny cho thy cm bin cú kh nng phỏt hin khớ H2S nng thp hn ppm Kt qu trờn Hỡnh 4.21(b) cng cho thy c cm bin cú chn lc cao ỏp ng vi ppm khớ H2S cao gp 12 ln so vi 500 ppm khớ NH3 v gp 25 ln so vi 500 ppm khớ H2 v 500 ppm khớ C2H5OH 104 ppm @ 300 mW 100 100 (a) (b) 2,5 ppm 10 ppm SS(Vinin/Vout ) = V /Vout ppm H2S @ 300 mW 10 500 ppm NH3 0,5 ppm 500 ppm H2 1 500 1000 1500 500 ppm C2H5OH 2000 300 Thời gian (s) 600 900 1200 1500 Thời gian (s) Hỡnh 4.21 ỏp ng ca linh kin cm bin khớ H2S theo: nng khớ (a) v cỏc loi khớ (b) Bng 4.2 so sỏnh phm cht ca mt s loi cm bin H2S thng mi v sn phm phỏt trin ti Cú th thy cm bin chỳng tụi phỏt trin th hin nhng u im vt tri so vi cỏc sn phm thng mi nh ỏp ng cao, gii nng lm vic thp, v thi giỏn ỏp ng nhanh Cỏc cm bin chỳng tụi phỏt trin hon ton ỏp ng c yờu cu ng dng quan trc ụ nhim mụi trng khụng khớ Bng 4.2 Mt s cm bin khớ H2S c bỏn trờn th trng Hóng sn xut Khong o (ppm) Sierra Monitor - 100 Industrial Scientific - 500 Pemtech 0.1 ppm chớnh xỏc Thi gian ỏp ng (s) Khong nhit (oC) Khong m (%) - 10 15 n 90 -20 n 50 15 n 95 -20 n 50 15 n 90 < 16 ppm -40 n 50 < 30 s 0-100 Lun ỏn phõn gii n 38 35 n 92 < 35 s ppm 105 4.5 Kt lun Trờn c s cỏc kt qu ó t c, chỳng tụi xin a mt s kt lun sau: ó nghiờn cu ch to thnh cụng cm bin khớ H2S da trờn mng mng SnO2 cú o xỳc tỏc CuO bng cụng ngh vi in t Cụng ngh ny cho phộp ch to quy mụ ln cỏc chớp (~400 chớp/1 phin Si 4-inch) cm bin bng s kt hp gia phng phỏp phỳn x hot húa v k thut quang khc nh hng ca dy o xỳc tỏc CuO lờn tớnh nhy khớ ca cm bin mng mng SnO2 ó c kho sỏt vi cỏc nng khớ H2S khong t n ppm ti cỏc nhit 250, 300, 350 v 400 oC Cỏc kt qu ch rng cm bin mng mng SnO2/CuO (dy 20 nm) cho ỏp ng cao nht S = 128 ng vi ppm khớ H2S o ti 250 C Cm bin ó ch to cú chn lc tt kho sỏt vi mt s loi khớ khỏc nh H2, LPG, CO, v NH3 Cm bin khụng h b suy gim phm cht lm vic liờn tc vi 10 chu k o khớ khỏc nhau, v cho thy tim nng cao vic ng dng vo kho sỏt khớ H2S thc t S tng cng tớnh cht nhy khớ ca cm bin mng mng SnO2 cú o xỳc tỏc CuO c gii thớch da trờn hai c ch ú l c ch trn spillover v c ch phn ng húa hc, ú c ch nhy khớ cng c kim tra trờn cỏc loi o xỳc tỏc khỏc nh Fe2Ox, v Cr2O3 Tỏc gi ch rng c ch húa hc quyt nh chớnh n c ch ci thin tớnh nhy khớ H2S ca mng mng SnO2 bin tớnh o CuO ó ch to th nghim mt s linh kin cm bin khớ H2S trờn c s mng mng SnO2/CuO (dy 20 nm) v kho sỏt ti cỏc iu kin hot ng theo cụng sut, nng khớ cng nh chn lc vi cỏc loi khớ khỏc Kt qu cho thy linh kin cm bin cú cụng sut tiờu th thp c 200 mW Cm bin hon ton cú th ng dng vo vic o giỏm sỏt quan trc ụ nhim khụng khớ 106 KT LUN CHUNG V KIN NGH Vi s phỏt trin vt bc ca khoa hc v cụng ngh nano, nhiu loi vt liu cú cu trỳc nano khỏc ó c nghiờn cu nhm phỏt trin th h cm bin khớ mi vi nhiu tớnh nng u vit so vi cm bin khớ truyn thng nh cú nhy cao, chn lc tt, n nh cao v cụng sut tiờu th nh Tuy nhiờn, vic phỏt trin cỏc cụng ngh hiu qu cho phộp ch to c s lng ln cm bin ng dng c sn sut cụng nghip ang l nhng thỏch thc t Cng xu hng ú, khuụn kh lun ỏn tin s ny, chỳng tụi trung phỏt trin cụng ngh ch to cm bin bỏn dn dng mng mng s dng cụng ngh vi in t v phỳn x hot húa ch to cỏc loi cm bin khớ cú ỏp ng cao, c th l chỳng tụi hon thin cụng ngh ch to hai loi cm bin khớ H2S v H2 s dng mng mng SnO2 kt hp vi cỏc o xỳc tỏc tng cng ỏp ng cng nhng chn lc ca hai loi cm bin ny Cỏc kt qua chớnh m chỳng tụi ó trỡnh by lun ỏn ny nh sau: - Thit k, ch to c b mt n (mask) v a c quy trỡnh chun phự hp vi cụng ngh vi in t ch to cm bin khớ mng mng dng mt mt (lũ vi nhit v in cc c tớch hp trờn cựng mt mt) trờn c s vt liu SnO2 Quy trỡnh cho phộp ch to c s lng ln cm bin cú quy mụ kớch c wafer (hn 350 chớp cm bin c ch to cựng mt t cụng ngh) Cỏc thụng s cụng ngh nh chiu dy mng v t l khớ O2/Ar qua trỡnh lng ng mng SnO2 bng phng phỏp phỳn x ó c ti u húa - Ch to thnh cụng cm bin o khớ H2 trờn c s mng mng bin tớnh b mt SnO2/Pd Ti u húa c chiu dy ca o xỳc tỏc Cm bin SnO2/Pd cú cỏc u im vt tri so vi cm bin SnO2 ú l: ỏp ng tt hn (t 27,8 ln nng 250 ppm), nhit lm vic ca cm bin gim n 300 C, cú chn lc tt vi cỏc loi khớ th khỏc nhau, hot ng n nh v cụng sut tiờu th thp Trờn c s cm bin ó kho sỏt chỳng tụi ó thit k v xõy dng c thit b o khớ H2 cnh bỏo s rũ r khớ H2 nhm th nghim kh nng ng dng thc t ca cm bin ch to c - Ch to thnh cụng cm bin o khớ H2S trờn c s mng mng bin tớnh b mt SnO2/CuO Ti u húa c chiu dy ca o xỳc tỏc Cm bin SnO2/CuO cú cỏc u im vt tri so vi cm bin SnO2 ú l: ỏp ng tt hn (t 128 ln nng ppm), nhit lm vic ca cm bin gim n 250 C, cú chn lc tt vi cỏc loi khớ th khỏc nhau, hot ng n nh v cụng sut tiờu th thp Trờn c s cm bin ó kho sỏt chỳng tụi ó thit k v xõy dng c thit b o khớ H2S cnh bỏo s rũ r khớ H2S nhm th nghim kh nng ng dng thc t ca cm bin ch to c - Trờn c s cm bin ó ch to c, chỳng tụi nhn thy cỏc loi cm bin H2 v H2S cú tim nng ng dng cao xõy dng c thit b o cnh bỏo chỏy n o khớ H2 gõy nờn v o khớ H2S phc v quan trc ụ nhim mụi trng 107 - Cỏc kt qu nghiờn cu ny mi ch l u, cn cú nhng nghiờn cu sõu sc v h thng hn nhm nh hng ng dng thc t cng nh tin ti thng mi húa sn phm Hng nghiờn cu tip theo: Kho sỏt nh hng ca cỏc thụng s mụi trng nh m, ỏnh sỏng,v.v lờn tớnh cht nhy khớ ca cm bin tin ti cú th ng dng thc t Hon thin quy trỡnh cụng ngh úng v ca cm bin, bao gm phỏt trin cỏc loi mng lc ci thin chn lc, tin ti ch to hng lot Nghiờn cu v hon thin thit b o cú th ng dng cm bin vic phỏt hin, cnh bỏo nguy c chỏy n v s cú mt ca cỏc khớ c mụi trng 108 DANH MC CC CễNG TRèNH CễNG B CA LUN N N V Toỏn, N V Chin, N V Quy, N V Duy, N V Hiu(2013)Nghiờn cu ch to s lng ln cm bin khớ NH3 trờn c s mng mng SnO2 bng phng phỏp phỳn x Tuyn bỏo cỏo Hi ngh Vt lý cht rn v Khoa hc Vt liu ton quc ln th 8, Thỏi Nguyờn, Vit Nam, Trang 333 336 N V Toan, N V Chien, N V Duy, N V Quy, N V Hieu (2014) Wafer-scale fabrication of planer type SnO2 thin film gas sensor The 2ndInternational Conference on Advanced Materials and Nanotechnology, Ha Noi, Viet Nam Page 244 248 N V Duy, N V Toan, N D Hoa, N V Hieu (2014) Synthesis of H2S Gas Sensor based on SnO2 Thin Film Sensitized by Microsize CuO Islands.The 2ndInternational Conference on Advanced Materials and Nanotechnology, Ha Noi, Viet Nam Page 14 17 N V Toỏn, N V Chin, N V Quy, N V Duy, N Hũa, N V Hiu (2015) Nghiờn cu ch to cm bin khớ CO trờn c s mng Pd/SnO2 Tp khoa hc cụng ngh 104 (2015), Trang 095 098 N V Toan, N V Chien, N V Duy, D D Vuong, N H Lam, N D Hoa, N V Hieu, N D Chien (2015) Scalable fabrication of SnO2 thin lms sensitized with CuO islands for enhanced H2S gas sensing performance Applied Surface Science 324 (2015), page 280 285 (*IF 2014: 2,71*) N V Toan, N V Chien, N V Duy, H S Hong, Hugo Nguyen, N D Hoa, N V Hieu (2016) Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands J Hazardous Materials 301 (2016) 433 442(*IF 2014: 4.52*) 109 TI LIU THAM KHO [1] Adamyan, a Z., Adamyan, Z N., & Aroutiounian, V M (2009) Study of sensitivity and response kinetics changes for SnO2 thin-film hydrogen sensors International Journal of Hydrogen Energy, 34(19), 84388443 doi:10.1016/j.ijhydene.2009.08.001 [2] Afzal, A., Cioffi, N., Sabbatini, L., & Torsi, L (2012) NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives Sensors and Actuators, B: Chemical, 171-172, 25 42 doi:10.1016/j.snb.2012.05.026 [3] Aguilar-Leyva, J., Maldonado, A., & de la L Olvera, M (2007) Gas-sensing characteristics of undoped-SnO2 thin films and Ag/SnO2 and SnO2/Ag structures in a propane atmosphere Materials Characterization, 58(8-9), 740744 doi:10.1016/j.matchar.2006.11.016 [4] Al-Salman, H S., & Abdullah, M J (2013) Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates Sensors and Actuators B: Chemical, 181, 259266 doi:10.1016/j.snb.2013.01.065 [5] Bagal, L K., Patil, J Y., Mulla, I S., & Suryavanshi, S S (2012) Influence of Pd-loading on gas sensing characteristics of SnO2 thick films.Ceramics International, 38(6), 48354844 doi:10.1016/j.ceramint.2012.02.073 [6] Balouria, V., Kumar, A., Samanta, S., Singh, a., Debnath, a K., Mahajan, A Gupta, S K (2013) Nano-crystalline Fe2O3 thin films for ppm level detection of H2S Sensors and Actuators, B: Chemical, 181, 471478 doi:10.1016/j.snb.2013.02.013 [7] Bin, Z., Chenbo, Y., Zili, Z., Chunmin, T., & Liu, Y (2013) Investigation of the hydrogen response characteristics for solgel-derived Pd-doped, Fe-doped and PEG-added SnO2 nano-thin films.Sensors and Actuators B: Chemical, 178, 418425 doi:10.1016/j.snb.2012.12.101 [8] Choi, J.-K., Hwang, I.-S., Kim, S.-J., Park, J.-S., Park, S.-S., Jeong, U., Lee, J.-H (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers Sensors and Actuators B: Chemical, 150(1), 191199 doi:10.1016/j.snb.2010.07.013 [9] Choi, S W., Katoch, A., Zhang, J., & Kim, S S (2013) Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection Sensors and Actuators, B: Chemical, 176, 585591 doi:10.1016/j.snb.2012.09.035 [10] Choi, S.-W., Katoch, A., Kim, J.-H., & Kim, S S (2014) A novel approach to improving oxidizing-gas sensing ability of p-CuO nanowires using biased radial modulation of a hole-accumulation layer.J Mater Chem C, 2(42), 89118917 doi:10.1039/C4TC01182A [11] Chowdhuri, A., Gupta, V., & Sreenivas, K (2003a) Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2 Sensors and Actuators B: Chemical, 93(1-3), 572579 doi:10.1016/S0925-4005(03)00226-0 [12] Chowdhuri, A., Gupta, V., & Sreenivas, K (2003b) THICKNESS DEPENDENCE EFFECTS OF CuO ISLANDS ON SnO2 IN THE NANO-SCALE RANGE FOR H2S GAS SENSING APPLICATIONS,4(4), 25 [13] Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S., & Patanjali, P K (2004) Response speed of SnO2-based H2S gas sensors with CuO nanoparticles Applied Physics Letters, 84(7), 11801182 doi:10.1063/1.1646760 [14] Chowdhuri, A., Singh, S K., Sreenivas, K., & Gupta, V (2010) Contribution of adsorbed ụxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas.Sensors and Actuators B: Chemical, 145(1), 155166 doi:10.1016/j.snb.2009.11.050 [15] Chu, Y., Mallin, D., Amani, M., Platek, M J., & Gregory, O J (2014) Detection of peroxides using Pd/SnO2 nanocomposite catalysts.Sensors and Actuators B: Chemical, 197, 376384 doi:10.1016/j.snb.2014.03.009 [16] Chung, W.-Y., Lim, J.-W., Lee, D.-D., Miura, N., & Yamazoe, N (2000) Thermal and gas-sensing properties of planar-type micro gas sensor Sensors and Actuators B: Chemical, 64(1-3), 118123 doi:10.1016/S0925-4005(99)00493-1 110 [17] Du, X., & George, S M (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition Sensors and Actuators, B: Chemical, 135(1), 152 160 doi:10.1016/j.snb.2008.08.015 [18] Ebrahimi, a., Pirouz, a., Abdi, Y., Azimi, S., & Mohajerzadeh, S (2012) Selective deposition of CuO/SnO2 solgel on porous SiO2 suitable for the fabrication of MEMS-based H2S sensors.Sensors and Actuators B: Chemical, 173, 802810 doi:10.1016/j.snb.2012.07.104 [19] Eranna, G (2011) Metal-Oxide-Based Gas-Sensor Devices Metal Oxide Nanostructures as Gas Sensing Devices, 1326 doi:doi:10.1201/b11367-5 [20] Ghosh, S., Roychaudhuri, C., Bhattacharya, R., Saha, H., & Mukherjee, N (2014) Palladium-silveractivated ZnO surface: Highly selective methane sensor at reasonably low operating temperature.ACS Applied Materials and Interfaces, 6(6), 38793887 doi:10.1021/am404883x [21] Graf, M., Gurlo, a., Bõrsan, N., Weimar, U., & Hierlemann, a (2005) Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films Journal of Nanoparticle Research, 8(6), 823 839 doi:10.1007/s11051-005-9036-7 [22] Guan, Y., Yin, C., Cheng, X., Liang, X., Diao, Q., Zhang, H., & Lu, G (2014) Sub-ppm H2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode.Sensors and Actuators, B: Chemical, 193, 501508 doi:10.1016/j.snb.2013.11.072 [23] Giulio, D (1995) Sn02 thin films for gas sensor prepared by r.f reactive sputtering, 25, 465468 [24] Haridas, D., Chowdhuri, A., Sreenivas, K., & Gupta, V (2009) Enhanced LPG response characteristics of SnO2 thin film based sensors loaded with Pt clusters,2(3), 503514 [25] Haridas, D., Chowdhuri, A., Sreenivas, K., & Gupta, V (2011a) Effect of thickness of platinum catalyst clusters on response of SnO2 thin film sensor for LPG Sensors and Actuators B: Chemical, 153(1), 89 95 doi:10.1016/j.snb.2010.10.013 [26] Haridas, D., Chowdhuri, A., Sreenivas, K., & Gupta, V (2011b) Enhanced room temperature response of SnO2 thin film sensor loaded with Pt catalyst clusters under UV radiation for LPG.Sensors and Actuators B: Chemical, 153(1), 152157 doi:10.1016/j.snb.2010.10.024 [27] Haridas, D., & Gupta, V (2012) Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection Sensors and Actuators B: Chemical, 166-167, 156164 doi:10.1016/j.snb.2012.02.026 [28] Haridas, D., & Gupta, V (2013) Study of collective efforts of catalytic activity and photoactivation to enhance room temperature response of SnO2 thin film sensor for methane.Sensors and Actuators B: Chemical, 182, 741746 doi:10.1016/j.snb.2013.03.100 [29] Haridas, D., Gupta, V., & Mahavidyalaya, K (2012) Enhanced Room Temperature Response of SnO Thin Film Sensor Loaded with Pd Catalyst Clusters Under UV Radiation for Methane, ICMS 2012, 758760 doi:10.5162/IMCS2012/P1.0.4 [30] Haridas, D., Sreenivas, K., & Gupta, V (2008) Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection Sensors and Actuators B: Chemical, 133(1), 270 275 doi:10.1016/j.snb.2008.02.030 [31] Hendi, a a., & Alorainy, R H (2014) New fabrication of zinc oxide nanostructure thin film gas sensors.Superlattices and Microstructures, 66, 2332 doi:10.1016/j.spmi.2013.11.009 [32] Hieu, N Van, Duy, N Van, Huy, P T., & Chien, N D (2008) Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection.Physica E: Low-Dimensional Systems and Nanostructures, 40(9), 29502958 doi:10.1016/j.physe.2008.02.018 [33] Hoa, N D., An, S Y., Dung, N Q., Van Quy, N., & Kim, D (2010) Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection Sensors and Actuators, B: Chemical, 146(1), 239244 doi:10.1016/j.snb.2010.02.045 [34] Hoa, N D., Van Quy, N., Jung, H., Kim, D., Kim, H., & Hong, S K (2010) Synthesis of porous CuO nanowires and its application to hydrogen detection.Sensors and Actuators, B: Chemical, 146(1), 266 272 doi:10.1016/j.snb.2010.02.058 111 [35] H.T Giang, H.T Duy, P.Q Ngan, G.H Thai, D.T.A Thu, D.T Thu, N.N Toan (2011) Hydrocarbons gas sensing of nano-crystalline peroskite oxides LnFeO3 (Ln = La, Nd and Sm), Sensors and Actuators B 158, pp 246-251 [36] Hỹbert, T., Boon-Brett, L., Black, G., & Banach, U (2011) Hydrogen sensors A review Sensors and Actuators B: Chemical, 157(2), 329352 doi:10.1016/j.snb.2011.04.070 [37] Huck, R., Bktger, U., Kohl, D., & Heiland, G (1989) SPILLOVER EFFECTS IN THE DETECTION OF H2 AND CH4 BY SPUTTERED SnOz FILMS WITH Pd AND PdO DEPOSITS,7, 355359 [38] Hwang, I S., Choi, J K., Kim, S J., Dong, K Y., Kwon, J H., Ju, B K., & Lee, J H (2009) Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO Sensors and Actuators, B: Chemical, 142(1), 105110 doi:10.1016/j.snb.2009.07.052 [39] Hwang, I.-S., Kim, S.-J., Choi, J.-K., Jung, J.-J., Yoo, D J., Dong, K.-Y., Lee, J.-H (2012) Largescale fabrication of highly sensitive SnO2 nanowire network gas sensors by single step vapor phase growth Sensors and Actuators B: Chemical, 165(1), 97103 doi:10.1016/j.snb.2012.02.022 [40] Ivanovskaya, M I., Bogdanov, P a., Orlik, D R., Gurlo, A C., & Romanovskaya, V V (1997) Structure and properties of sol-gel obtained SnO2 and SnO2-Pd films Thin Solid Films, 296(1-2), 41 43 doi:10.1016/S0040-6090(96)09354-6 [41] Jang, B.-H., Landau, O., Choi, S.-J., Shin, J., Rothschild, A., & Kim, I.-D (2013) Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature.Sensors and Actuators B: Chemical, 188, 156168 doi:10.1016/j.snb.2013.07.011 [42] Jeong J H., Hong S H., (2010) CuO-loaded nano-porous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties.Sensors and Actuators B: Chemical, 151(17),doi:10.1016/j.snb.2010.10.002 [43] Katoch, A., Choi, S.-W., Kim, H W., & Kim, S S (2015) Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism Journal of Hazardous Materials, 286, 229235 doi:10.1016/j.jhazmat.2014.12.007 [44] Kim, B., Lu, Y., Hannon, A., Meyyappan, M., & Li, J (2013) Low temperature Pd/SnO2 sensor for carbon monoxide detection.Sensors and Actuators, B: Chemical, 177, 770775 doi:10.1016/j.snb.2012.11.020 [45] Kim, S.-E., &Choi, W.-C (2012) H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol 13, No 1, pp 2730.DOI: http://dx.doi.org/10.4313/TEEM.2012.13.1.27 [46] Kim, Y S., Ha, S C., Kim, K., Yang, H., Choi, S Y., Kim, Y T., Lee, K (2005) Roomtemperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film Applied Physics Letters, 86(21), 13 doi:10.1063/1.1929872 [47] Kolmakov, a., Klenov, D O., Lilach, Y., Stemmer, S., & Moskovitst, M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles.Nano Letters, 5(4), 667673 doi:10.1021/nl050082v [48] Korea, S (1996) Low-power micro gas sensor, 33, 147150 [49] Korotcenkov, G (2007) Metal oxides for solid-state gas sensors: What determines our choice?Materials Science and Engineering: B, 139(1), 123 doi:10.1016/j.mseb.2007.01.044 [50] Korotcenkov, G (2014) Handbook of Gas Sensor Materials (Vol 1) doi:10.1007/978-1-4614-7388-6 [51] Korotcenkov, G., & Cho, B K (2009) Thin film SnO2-based gas sensors: Film thickness influence Sensors and Actuators B: Chemical, 142(1), 321330 doi:10.1016/j.snb.2009.08.006 [52] Korotcenkov, G., Cho, B K., Gulina, L B., & Tolstoy, V P (2012) Gas sensor application of Ag nanoclusters synthesized by SILD method.Sensors and Actuators, B: Chemical, 166-167, 402410 doi:10.1016/j.snb.2012.02.081 [53] Kosc, I., Hotovy, I., Rehacek, V., Griesseler, R., Predanocy, M., Wilke, M., & Spiess, L (2013) Sputtered TiO2 thin films with NiO additives for hydrogen detection Applied Surface Science, 269, 110115 doi:10.1016/j.apsusc.2012.09.061 112 [54] Lee, I., Choi, S J., Park, K M., Lee, S S., Choi, S., Kim, I D., & Park, C O (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments.Sensors and Actuators, B: Chemical, 197, 300307 doi:10.1016/j.snb.2014.02.043 [55] Liewhiran, C., Tamaekong, N., Wisitsoraat, A., Tuantranont, A., & Phanichphant, S (2013) Ultrasensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films Sensors and Actuators B: Chemical, 176, 893905 doi:10.1016/j.snb.2012.10.087 [56] Liu, H., Gong, S P., Hu, Y X., Liu, J Q., & Zhou, D X (2009) Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors Sensors and Actuators, B: Chemical, 140(1), 190195 doi:10.1016/j.snb.2009.04.027 [57] Liu, H., Wan, J., Fu, Q., Li, M., Luo, W., Zheng, Z., Zhou, D (2013) Tin oxide films for nitrogen dioxide gas detection at low temperatures.Sensors and Actuators B: Chemical, 177(2), 460466 doi:10.1016/j.snb.2012.11.051 [58] Liu, J., Guo, W., Qu, F., Feng, C., Li, C., Zhu, L., Chen, W (2014) V-doped In2O3 nanofibers for H 2S detection at low temperature Ceramics International, 40(5), 66856689 doi:10.1016/j.ceramint.2013.11.129 [59] Llobet, E (2013) Gas sensors using carbon nanomaterials: A review Sensors and Actuators B: Chemical, 179, 3245 doi:10.1016/j.snb.2012.11.014 [60] Marikutsa, a V., Rumyantseva, M N., Gaskov, a M., Konstantinova, E a., Grishina, D a., & Deygen, D M (2011) CO and NH3 sensor properties and paramagnetic centers of nanocrystalline SnO modified by Pd and Ru Thin Solid Films, 520(3), 904908 doi:10.1016/j.tsf.2011.04.176 [61] Mashock, M., Yu, K., Cui, S., Mao, S., Lu, G., & Chen, J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces ACS Applied Materials and Interfaces, 4, 41924199 doi:10.1021/am300911z [62] MORRISON.S (1982) SEMICONDUCTOR GAS SENSORS, Sensors and Actuators, (1982) 329-341 [63] Mộnini, P., Parret, F., Guerrero, M., Soulantica, K., Erades, L., Maisonnat, a., & Chaudret, B (2004) CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum Sensors and Actuators, B: Chemical, 103(1-2), 111114 doi:10.1016/j.snb.2004.04.103 [64] Minh, V A., Tuan, L A., Huy, T Q., Hung, V N., & Quy, N Van (2013) Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods Applied Surface Science, 265, 458464 doi:10.1016/j.apsusc.2012.11.028 [65] Mishra, V N., & Agarwal, R P (1994) Thick-film hydrogen sensor Sensors and Actuators B: Chemical, 21(3), 209212 doi:10.1016/0925-4005(94)01242-3 [66] Mukta V Vaishampayan, Rupali G Deshmukh, Pravin Walke, I.S Mulla (208) Fe-doped SnO2 nanomaterial: A low temperaturehydrogen sulde gas sensor, Mats Chemistry and Physics 109 (230 234) [67] Mondal, B., Basumatari, B., Das, J., Roychaudhury, C., Saha, H., & Mukherjee, N (2014) ZnO-SnO2 based composite type gas sensor for selective hydrogen sensing Sensors and Actuators, B: Chemical, 194, 389396 doi:10.1016/j.snb.2013.12.093 [68] Nah, J., Kumar, S B., Fang, H., Chen, Y., Plis, E., Chueh, Y., Javey, A (2012) Quantum Size Effects on the Chemical Sensing Performance of Two- Dimensional Semiconductors [69] Niskanen, A J., Varpula, A., Utriainen, M., Natarajan, G., Cameron, D C., Novikov, S., Franssila, S (2010) Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors.Sensors and Actuators B: Chemical, 148(1), 227232 doi:10.1016/j.snb.2010.05.018 [70] Paliwal, A., Sharma, A., Tomar, M., Gupta, V (2015) Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique Sensors and Actuators B 216 (2015) 497503 Doi.org/10.1016/j.snb.2015.03.095 [71] Ohgaki, T., Matsuoka, R., Watanabe, K., Matsumoto, K., Adachi, Y., Sakaguchi, I., Haneda, H (2010) Synthesizing SnO2 thin films and characterizing sensing performances Sensors and Actuators B: Chemical, 150(1), 99104 doi:10.1016/j.snb.2010.07.036 113 [72] ệztỹrk, S., Klnỗ, N., Torun, ., Kửsemen, A., ahin, Y., & ệztỹrk, Z Z (2014) Hydrogen sensing properties of ZnO nanorods: Effects of annealing, temperature and electrode structure.International Journal of Hydrogen Energy, 39(10), 51945201 doi:10.1016/j.ijhydene.2014.01.066 [73] Pandey, S K., Kim, K H., & Tang, K T (2012) A review of sensor-based methods for monitoring hydrogen sulfide TrAC - Trends in Analytical Chemistry, 32, 8799 doi:10.1016/j.trac.2011.08.008 [74] Patil, L a., & Patil, D R (2006) Heterocontact type CuO-modifid SnO2 sensor for the detection of a ppm level H2S gas at room temperature Sensors and Actuators, B: Chemical, 120(1), 316323 doi:10.1016/j.snb.2006.02.022 [75] Ramgir, N S., Ganapathi, S K., Kaur, M., Datta, N., Muthe, K P., Aswal, D K., Yakhmi, J V (2010) Sub-ppm H2S sensing at room temperature using CuO thin films Sensors and Actuators, B: Chemical, 151(1), 9096 doi:10.1016/j.snb.2010.09.043 [76] Safonova, O V., Delabouglise, G., Chenevier, B., Gaskov, a M., & Labeau, M (2002) CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh.Materials Science and Engineering C, 21(1-2), 105111 doi:10.1016/S0928-4931(02)00068-1 [77] Sakai, G., Matsunaga, N., Shimanoe, K., & Yamazoe, N (2001) Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor Sensors and Actuators B: Chemical, 80, 125131 doi:10.1016/S0925-4005(01)00890-5 [78] Samarasekara, P., Kumara, N T R N., & Yapa, N U S (2006) Sputtered copper oxide (CuO) thin films for gas sensor devices.Journal of Physics: Condensed Matter, 18(8), 24172420 doi:10.1088/0953-8984/18/8/007 [79] Schlapbach, L (2009) Technology: Hydrogen-fuelled vehicles Nature, 460(7257), 809811 doi:10.1038/460809a [80] Schultes, G., Schmidt, M., Truar, M., Goettel, D., Freitag-Weber, O., & Werner, U (2007) Codeposition of silver nanoclusters and sputtered alumina for sensor devices Thin Solid Films, 515(2021), 77907797 doi:10.1016/j.tsf.2007.03.183 [81] Seiyama, T., Fujiishi, K., Nagatani, M., & Kato, A (1963) A New Detector for Gaseous Components Using Zinc Oxide Thin Films The Journal of the Society of Chemical Industry, Japan, 66(5), 652655 doi:10.1246/nikkashi1898.66.5_652 [82] Sensor, T., Corporation, D., & Park, M (1994) A planar-type sensor for detection of oxidizing and reducing gases,20, 3341 [83] Shaik, U P., & Krishna, M G (2014) Single step formation of indium and tin doped ZnO nanowires by thermal oxidation of indiumzinc and tinzinc metal films: Growth and optical properties.Ceramics International, 40(8), 1361113620 doi:10.1016/j.ceramint.2014.05.085 [84] Sharma, A., Kumar, J., Tomar, M., Umar, A., & Gupta, V (2014) Metal clusters activated SnO2 thin film for low level detection of NH3 gas Sensors & Actuators: B Chemical, 194, 410418 doi:10.1016/j.snb.2013.12.097 [85] Sharma, A., Tomar, M., & Gupta, V (2011) SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures Sensors and Actuators B: Chemical, 156(2), 743752 doi:10.1016/j.snb.2011.02.033 [86] Sharma, A., Tomar, M., & Gupta, V (2012) Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas Sensors and Actuators B: Chemical, 161(1), 11141118 doi:10.1016/j.snb.2011.10.014 [87] Sharma, A., Tomar, M., & Gupta, V (2013a) A low temperature operated NO2 gas sensor based on TeO2/SnO2 pn heterointerface Sensors and Actuators B: Chemical, 176, 875883 doi:10.1016/j.snb.2012.09.029 [88] Sharma, A., Tomar, M., & Gupta, V (2013b) Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters Sensors and Actuators B: Chemical, 181(2), 735742 doi:10.1016/j.snb.2013.01.074 [89] Sharma, A., Tomar, M., & Gupta, V (2013c) Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters Sensors & Actuators: B Chemical, 181(2), 735742 doi:10.1016/j.snb.2013.01.074 114 [90] Sharma, A., Tomar, M., & Gupta, V (2013d) WO3 nanoclustersSnO2 film gas sensor heterostructure with enhanced response for NO2.Sensors and Actuators B: Chemical, 176(2), 675684 doi:10.1016/j.snb.2012.09.094 [91] Shen, Y., Yamazaki, T., Liu, Z., Jin, C., Kikuta, T., & Nakatani, N (2008) Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature Thin Solid Films, 516(15), 51115117 doi:10.1016/j.tsf.2007.12.139 [92] Shen, Y., Yamazaki, T., Liu, Z., Meng, D., Kikuta, T., Nakatani, N., Mori, M (2009) Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires Sensors and Actuators B: Chemical, 135(2), 524529 doi:10.1016/j.snb.2008.09.010 [93] Shen, Y., Zhang, B., Cao, X., Wei, D., Ma, J., Jia, L., Jin, Y (2014) Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films.Sensors and Actuators B: Chemical, 193, 273279 doi:10.1016/j.snb.2013.11.106 [94] Soleimanpour, A M., Hou, Y., & Jayatissa, A H (2013) Evolution of hydrogen gas sensing properties of solgel derived nickel oxide thin film Sensors and Actuators B: Chemical, 182, 125133 doi:10.1016/j.snb.2013.03.001 [95] Sub Kim, S., Gil Na, H., Woo Kim, H., Kulish, V., & Wu, P (2015) Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application Scientific Reports, 5(April), 10723 doi:10.1038/srep10723 [96] Stefanini, C., Chen R., Ruan X., Liu W., (2015) A reliable and fast hydrogen gas leakage detector based on irreversible cracking of decoratedpalladium nanolayer upon aligned polymer bers International journal of hydrogen energy 40, (746-751) [97] Tabata, S., Higaki, K., Ohnishi, H., Suzuki, T., Kunihara, K., & Kobayashi, M (2005) A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and a thin film heater.Sensors and Actuators B: Chemical, 109(2), 190193 doi:10.1016/j.snb.2005.05.012 [98] Tadeev, A ., Delabouglise, G., & Labeau, M (1999) Sensor properties of Pt doped SnO2 thin films for detecting CO Thin Solid Films, 337(1-2), 163165 doi:10.1016/S0040-6090(98)01392-3 [99] Tang, D.-L., He, S., Dai, B., & Tang, X.-H (2014) Detection H2S mixed with natural gas using hollowcore photonic bandgap fiber Optik - International Journal for Light and Electron Optics, 125(11), 25472549 doi:10.1016/j.ijleo.2013.10.097 [100] Tyagi, P., Sharma, A., Tomar M., &Gupta, V (2016) Metal Oxide Catalyst assisted SnO2 thin lm based SO2 gas sensor.Sensors and Actuators B: Chemical, http://dx.doi.org/10.1016/j.snb.2015.10.050 [101] Thong, L V., Hoa, N D., Le, D T T., Viet, D T., Tam, P D., Le, A.-T., & Hieu, N Van (2010) Onchip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance.Sensors and Actuators B: Chemical, 146(1), 361367 doi:10.1016/j.snb.2010.02.054 [102] Vaezi, M R., & Sadrnezhaad, S K (2007) Gas sensing behavior of nanostructured sensors based on tin oxide synthesized with different methods Materials Science and Engineering: B, 140(1-2), 7380 doi:10.1016/j.mseb.2007.04.011 [103] Van Duy, N., Hoa, N D., & Van Hieu, N (2012) Effective hydrogen gas nanosensor based on beadlike nanowires of platinum-decorated tin oxide Sensors and Actuators B: Chemical, 173, 211217 doi:10.1016/j.snb.2012.06.079 [104] Van Hieu, N., Thi Hong Van, P., Tien Nhan, L., Van Duy, N., & Duc Hoa, N (2012) Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles.Applied Physics Letters, 101(25) doi:10.1063/1.4772488 [105] Van Hieu, N., Thuy, L T B., & Chien, N D (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite Sensors and Actuators B: Chemical, 129(2), 888895 doi:10.1016/j.snb.2007.09.088 [106] Van Toan, N., Chien, N V., Van Duy, N., Vuong, D D., Lam, N H., Hoa, N D., Chien, N D (2015) Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance.Applied Surface Science, 324, 280285 doi:10.1016/j.apsusc.2014.10.134 [107] Verma, M K., & Gupta, V (2012) A highly sensitive SnO2CuO multilayered sensor structure for detection of H2S gas Sensors and Actuators B: Chemical, 166-167, 378385 doi:10.1016/j.snb.2012.02.076 115 [108] Verma, M K., Gupta, V., & Member, S (2012) Enhanced Response of Pd Nanoparticle Loaded SnO2 Thin Film Sensor for H2 Gas, 12(10), 29932999 [109] Vlachos, D S., Papadopoulos, C a, & Avaritsiotis, J N (1996) On the electronic interaction between additives and semiconducting oxide gas sensors Applied Physics Letters, 69(5), 650652 doi:10.1063/1.117794 [110] Vuong, D D., Sakai, G., Shimanoe, K., & Yamazoe, N (2005) Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size Sensors and Actuators B: Chemical, 105(2), 437442 doi:10.1016/j.snb.2004.06.034 [111] X.H Vu, T.H.A Ly, Q.T Khuc, D.V Dang, D.C Nguyen (2010) Properties of SnO2 nanoparticles doped with several metal oxides by hydrothermal treatment Journal of Advances in Natural Science: Nanoscience and Nanotechology 1, pp 025014 [112] Wửllenstein, J., Bửttner, H., Jaegle, M., Becker, W ., & Wagner, E (2000) Material properties and the influence of metallic catalysts at the surface of highly dense SnO films.Sensors and Actuators B: Chemical, 70(1-3), 196202 doi:10.1016/S0925-4005(00)00569-4 [113] Xiao, W.-Z., Wang, L., Meng, B., & Xiao, G (2014) First-principles insight into the surface magnetism of Cu-doped SnO2 (110) thin film RSC Adv., 4(75), 39860 doi:10.1039/C4RA06376G [114] Xu, L., Dai, Z., Duan, G., Guo, L., Wang, Y., Zhou, H., Li, T (2015).Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips.Scientific Reports, 5(October 2014), 10507 doi:10.1038/srep10507 [115] Yao, K L., Guojia F., Zuli L., Chuanqing L., (2000) Room temperature H2S sensing properties and mechanism of CeO2 SnO2 solgel thin films Sensors and Actuators B 66 (4648) [116] Yamazoe, N (2000) Theory of gas diffusion controlled sensitivity for thin film semiconductor gas sensor Sensors and Actuators B: 80, 196-202 [117] Yamazoe, N (1991) New approaches for improving semiconductor gas sensors Sensors and Actuators B, (1991) 7-19 [118] Yamazoe, N (2005) Toward innovations of gas sensor technology Sensors and Actuators, B: Chemical, 108(1-2 SPEC ISS.), 214 doi:10.1016/j.snb.2004.12.075 [119] Yamazoe, N., Kurokawa, Y., & Seiyama, T (1983) Effects of Additives on Semiconductor Gas Sensors.Sensors and Actuators B: Chemical, 4, 283289 doi:10.1016/0250-6874(83)85034-3 [120] Yoo, D J., Tamaki, J., Park, S J., Miura, N., & Yamazoe, N (1995) H2S sensing characteristics of SnO2 thin film prepared from SnO2 sol by spin coating Journal of Materials Science Letters, 14(19), 13911393 doi:10.1007/BF00270739 [121] Zhang, C., Boudiba, A., Olivier, M.-G., Snyders, R., & Debliquy, M (2011) Using co-sputtered platinum or palladium activated tungsten oxide films to detect reducing gases.Procedia Engineering, 25(2), 823826 doi:10.1016/j.proeng.2011.12.202 [122] Zhang, J., & Colbow, K (1997) Surface silver clusters as oxidation catalysts on semiconductor gas sensors, Sensors and Actuators B 40 (1997) 47-52 [123] Zhao, M., Huang, J X., & Ong, C W (2014) Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films Sensors and Actuators B: Chemical, 191, 711718 doi:10.1016/j.snb.2013.09.116 116

Ngày đăng: 06/07/2016, 16:36

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Adamyan, a. Z., Adamyan, Z. N., &amp; Aroutiounian, V. M. (2009). Study of sensitivity and response kinetics changes for SnO 2 thin-film hydrogen sensors. International Journal of Hydrogen Energy, 34(19), 8438–8443. doi:10.1016/j.ijhydene.2009.08.001 Sách, tạp chí
Tiêu đề: Study of sensitivity and response "kinetics changes for SnO"2" thin-film hydrogen sensors". International Journal of Hydrogen Energy, "34
Tác giả: Adamyan, a. Z., Adamyan, Z. N., &amp; Aroutiounian, V. M
Năm: 2009
[2]. Afzal, A., Cioffi, N., Sabbatini, L., &amp; Torsi, L. (2012). NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators, B: Chemical, 171-172, 25–42. doi:10.1016/j.snb.2012.05.026 Sách, tạp chí
Tiêu đề: ). NOx sensors based on semiconducting metal "oxide nanostructures: Progress and perspectives
Tác giả: Afzal, A., Cioffi, N., Sabbatini, L., &amp; Torsi, L
Năm: 2012
[3]. Aguilar-Leyva, J., Maldonado, A., &amp; de la L. Olvera, M. (2007). Gas-sensing characteristics of undoped-SnO 2 thin films and Ag/SnO 2 and SnO 2 /Ag structures in a propane atmosphere. Materials Characterization, 58(8-9), 740–744. doi:10.1016/j.matchar.2006.11.016 Sách, tạp chí
Tiêu đề: Gas-sensing characteristics of "undoped-SnO"2" thin films and Ag/SnO"2" and SnO"2"/Ag structures in a propane atmosphere". Materials Characterization, "58
Tác giả: Aguilar-Leyva, J., Maldonado, A., &amp; de la L. Olvera, M
Năm: 2007
[4]. Al-Salman, H. S., &amp; Abdullah, M. J. (2013). Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates. Sensors and Actuators B: Chemical, 181, 259–266. doi:10.1016/j.snb.2013.01.065 Sách, tạp chí
Tiêu đề: Hydrogen gas sensing based on ZnO nanostructure "prepared by RF-sputtering on quartz and PET substrates
Tác giả: Al-Salman, H. S., &amp; Abdullah, M. J
Năm: 2013
[5]. Bagal, L. K., Patil, J. Y., Mulla, I. S., &amp; Suryavanshi, S. S. (2012). Influence of Pd-loading on gas sensing characteristics of SnO 2 thick films.Ceramics International, 38(6), 4835–4844.doi:10.1016/j.ceramint.2012.02.073 Sách, tạp chí
Tiêu đề: Influence of Pd-loading on gas "sensing characteristics of SnO"2 thick films."Ceramics International, "38
Tác giả: Bagal, L. K., Patil, J. Y., Mulla, I. S., &amp; Suryavanshi, S. S
Năm: 2012
[6]. Balouria, V., Kumar, A., Samanta, S., Singh, a., Debnath, a. K., Mahajan, A. Gupta, S. K. (2013). Nano-crystalline Fe 2 O 3 thin films for ppm level detection of H 2 S. Sensors and Actuators, B: Chemical, 181, 471–478. doi:10.1016/j.snb.2013.02.013 Sách, tạp chí
Tiêu đề: Nano-crystalline Fe"2"O"3" thin films for ppm level detection of H"2"S
Tác giả: Balouria, V., Kumar, A., Samanta, S., Singh, a., Debnath, a. K., Mahajan, A. Gupta, S. K
Năm: 2013
[7]. Bin, Z., Chenbo, Y., Zili, Z., Chunmin, T., &amp; Liu, Y. (2013). Investigation of the hydrogen response characteristics for sol–gel-derived Pd-doped, Fe-doped and PEG-added SnO 2 nano-thin films.Sensors and Actuators B: Chemical, 178, 418–425. doi:10.1016/j.snb.2012.12.101 Sách, tạp chí
Tiêu đề: Investigation of the hydrogen response "characteristics for sol–gel-derived Pd-doped, Fe-doped and PEG-added SnO"2" nano-thin films
Tác giả: Bin, Z., Chenbo, Y., Zili, Z., Chunmin, T., &amp; Liu, Y
Năm: 2013
[8]. Choi, J.-K., Hwang, I.-S., Kim, S.-J., Park, J.-S., Park, S.-S., Jeong, U., … Lee, J.-H. (2010). Design of selective gas sensors using electrospun Pd-doped SnO 2 hollow nanofibers. Sensors and Actuators B:Chemical, 150(1), 191–199. doi:10.1016/j.snb.2010.07.013 Sách, tạp chí
Tiêu đề: Design of "selective gas sensors using electrospun Pd-doped SnO"2" hollow nanofibers
Tác giả: Choi, J.-K., Hwang, I.-S., Kim, S.-J., Park, J.-S., Park, S.-S., Jeong, U., … Lee, J.-H
Năm: 2010
[9]. Choi, S. W., Katoch, A., Zhang, J., &amp; Kim, S. S. (2013). Electrospun nanofibers of CuO-SnO 2 nanocomposite as semiconductor gas sensors for H 2 S detection. Sensors and Actuators, B: Chemical, 176, 585–591. doi:10.1016/j.snb.2012.09.035 Sách, tạp chí
Tiêu đề: Electrospun nanofibers of CuO-SnO"2"nanocomposite as semiconductor gas sensors for H"2"S detection
Tác giả: Choi, S. W., Katoch, A., Zhang, J., &amp; Kim, S. S
Năm: 2013
[10]. Choi, S.-W., Katoch, A., Kim, J.-H., &amp; Kim, S. S. (2014). A novel approach to improving oxidizing-gas sensing ability of p-CuO nanowires using biased radial modulation of a hole-accumulation layer.J.Mater. Chem. C, 2(42), 8911–8917. doi:10.1039/C4TC01182A Sách, tạp chí
Tiêu đề: A novel approach to improving oxidizing-gas "sensing ability of p-CuO nanowires using biased radial modulation of a hole-accumulation layer
Tác giả: Choi, S.-W., Katoch, A., Kim, J.-H., &amp; Kim, S. S
Năm: 2014
[11]. Chowdhuri, A., Gupta, V., &amp; Sreenivas, K. (2003a). Fast response H 2 S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO 2 . Sensors and Actuators B: Chemical, 93(1-3), 572–579.doi:10.1016/S0925-4005(03)00226-0 Sách, tạp chí
Tiêu đề: Fast response H"2"S gas sensing characteristics with "ultra-thin CuO islands on sputtered SnO"2
[12]. Chowdhuri, A., Gupta, V., &amp; Sreenivas, K. (2003b). THICKNESS DEPENDENCE EFFECTS OF CuO ISLANDS ON SnO 2 IN THE NANO-SCALE RANGE FOR H 2 S GAS SENSING APPLICATIONS,4(4), 2–5 Sách, tạp chí
Tiêu đề: THICKNESS DEPENDENCE EFFECTS OF CuO "ISLANDS ON SnO"2" IN THE NANO-SCALE RANGE FOR H"2"S GAS SENSING APPLICATIONS,4
[13]. Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S., &amp; Patanjali, P. K. (2004). Response speed of SnO 2 -based H 2 S gas sensors with CuO nanoparticles. Applied Physics Letters, 84(7), 1180–1182. doi:10.1063/1.1646760 Sách, tạp chí
Tiêu đề: Response speed of SnO"2"-based H"2"S gas sensors with CuO nanoparticles
Tác giả: Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S., &amp; Patanjali, P. K
Năm: 2004
[14]. Chowdhuri, A., Singh, S. K., Sreenivas, K., &amp; Gupta, V. (2010). Contribution of adsorbed ôxygen and interfacial space charge for enhanced response of SnO 2 sensors having CuO catalyst for H 2 S gas.Sensors and Actuators B: Chemical, 145(1), 155–166. doi:10.1016/j.snb.2009.11.050 Sách, tạp chí
Tiêu đề: Contribution of adsorbed ôxygen and "interfacial space charge for enhanced response of SnO"2" sensors having CuO catalyst for H"2"S "gas
Tác giả: Chowdhuri, A., Singh, S. K., Sreenivas, K., &amp; Gupta, V
Năm: 2010
[15]. Chu, Y., Mallin, D., Amani, M., Platek, M. J., &amp; Gregory, O. J. (2014). Detection of peroxides using Pd/SnO 2 nanocomposite catalysts.Sensors and Actuators B: Chemical, 197, 376–384.doi:10.1016/j.snb.2014.03.009 Sách, tạp chí
Tiêu đề: Detection of peroxides using "Pd/SnO"2 nanocomposite catalysts
Tác giả: Chu, Y., Mallin, D., Amani, M., Platek, M. J., &amp; Gregory, O. J
Năm: 2014
[16]. Chung, W.-Y., Lim, J.-W., Lee, D.-D., Miura, N., &amp; Yamazoe, N. (2000). Thermal and gas-sensing properties of planar-type micro gas sensor. Sensors and Actuators B: Chemical, 64(1-3), 118–123.doi:10.1016/S0925-4005(99)00493-1 Sách, tạp chí
Tiêu đề: Thermal and gas-sensing "properties of planar-type micro gas sensor
Tác giả: Chung, W.-Y., Lim, J.-W., Lee, D.-D., Miura, N., &amp; Yamazoe, N
Năm: 2000
[17]. Du, X., &amp; George, S. M. (2008). Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sensors and Actuators, B: Chemical, 135(1), 152–160. doi:10.1016/j.snb.2008.08.015 Sách, tạp chí
Tiêu đề: Thickness dependence of sensor response for CO gas sensing by tin "oxide films grown using atomic layer deposition
Tác giả: Du, X., &amp; George, S. M
Năm: 2008
[18]. Ebrahimi, a., Pirouz, a., Abdi, Y., Azimi, S., &amp; Mohajerzadeh, S. (2012). Selective deposition of CuO/SnO 2 sol–gel on porous SiO 2 suitable for the fabrication of MEMS-based H 2 S sensors.Sensors and Actuators B: Chemical, 173, 802–810. doi:10.1016/j.snb.2012.07.104 Sách, tạp chí
Tiêu đề: Selective deposition of "CuO/SnO"2" sol–gel on porous SiO"2" suitable for the fabrication of MEMS-based H"2"S sensors
Tác giả: Ebrahimi, a., Pirouz, a., Abdi, Y., Azimi, S., &amp; Mohajerzadeh, S
Năm: 2012
[19]. Eranna, G. (2011). Metal-Oxide-Based Gas-Sensor Devices. Metal Oxide Nanostructures as Gas Sensing Devices, 13–26. doi:doi:10.1201/b11367-5 Sách, tạp chí
Tiêu đề: Metal-Oxide-Based Gas-Sensor Devices
Tác giả: Eranna, G
Năm: 2011
[20]. Ghosh, S., Roychaudhuri, C., Bhattacharya, R., Saha, H., &amp; Mukherjee, N. (2014). Palladium-silver- activated ZnO surface: Highly selective methane sensor at reasonably low operating temperature.ACS Applied Materials and Interfaces, 6(6), 3879–3887. doi:10.1021/am404883x Sách, tạp chí
Tiêu đề: Palladium-silver-"activated ZnO surface: Highly selective methane sensor at reasonably low operating temperature
Tác giả: Ghosh, S., Roychaudhuri, C., Bhattacharya, R., Saha, H., &amp; Mukherjee, N
Năm: 2014

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w