1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ chuyên ngành kỹ thuật xây dựng công trình và dân dụng nghiên cứu nội lực và chuyển vị của hệ dầm có xét đến biến dạng trượt ngang

154 449 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 154
Dung lượng 5,33 MB

Nội dung

B GIO DC V O TO TRNG I HC DN LP HI PHềNG - CAO QUANG NGC NGHIấN CU NI LC V CHUYN V CA H DM Cể XẫT N BIN DNG TRT NGANG Chuyờn ngnh: K thut Xõy dng Cụng trỡnh Dõn dng & Cụng nghip Mó s: 60.58.02.08 LUN VN THC S K THUT NGI HNG DN KHOA HC GS.TSKH H HUY CNG Hi Phũng, 2015 Li cm n Vi tt c s kớnh trng v bit n sõu sc nht, tụi xin chõn thnh by t lũng bit n ca mỡnh ti s hng dn tn tỡnh v chu ỏo ca thy hng dn GS.TSKH H Huy Cng, cỏc thy cụ khoa Sau i hc, khoa Xõy dng v ton th cỏc thy cụ giỏo trng i hc Dõn Lp Hi Phũng nhng ngi ó to iu kin cho tụi hon thnh lun ny Do nhng hn ch v kin thc, thi gian, kinh nghim v ti liu tham kho nờn thiu sút v khuyt im l iu khụng th trỏnh Vỡ vy, tụi rt mong nhn c s gúp ý, ch bo ca cỏc thy cụ giỏo ú chớnh l s giỳp quý bỏu m tụi mong mun nht c gng hon thin hn quỏ trỡnh nghiờn cu v cụng tỏc sau ny Xin trõn trng cm n! Tỏc gi lun Cao Quang Ngc M U Nhng nm gn õy, kinh t phỏt trin, dõn s tng v qu t ngy cng thu hp, c bit l cỏc thnh ph ln ỏp ng nhu cu s dng ht sc a dng ca ngi dõn, cỏc gii phỏp kt cu cho nh cao tng ó c cỏc k s thit k s dng ú cú gii phỏp kt cu nh cao tng kt hp theo phng ng, tng mt lm siờu th, nh hng vi din tớch sn rt ln, cỏc tng trờn l nh , khỏch sn v phũng cho thuờ cú din tớch nh c s dng tng i ph bin Trong nhng cụng trỡnh ú ngi ta thng dựng cỏc kt cu dm chuyn, sn chuyn hoc dn chuyn lm nhim v tip nhn ti trng t cỏc tng bờn trờn truyn xung ct v xung múng Kt cu dm chuyn cú c im l chiu cao tit din rt ln so vi chiu di ca chỳng (dm cao), ú vic nghiờn cu ni lc v chuyn v ca cỏc bi toỏn c hc kt cu núi chung v cỏc bi toỏn c hc kt cu cú dng ct ngn v dm cao núi riờng cú tm quan trng c bit, ũi hi phi nghiờn cu y c v mt lý thuyt v thc nghim Cho n nay, cỏc ng li xõy dng bi toỏn kt cu chu un thng khụng k n nh hng ca bin dng trt ngang lc ct gõy hoc cú k n nhng cỏch t v cỏch chn n cha tht chớnh xỏc nờn ó gp rt nhiu khú khn m khụng tỡm c kt qu ca bi toỏn mt cỏch chớnh xỏc v y Phng phỏp nguyờn lý cc tr Gauss GS.TSKH H Huy Cng xut l phng phỏp cho phộp ỏp dng nguyờn lý cc tr Gauss - c phỏt biu cho h cht im - xõy dng bi toỏn c hc kt cu di dng tng quỏt T ú tỡm c kt qu chớnh xỏc ca cỏc bi toỏn dự ú l bi toỏn tnh hay bi toỏn ng, bi toỏn tuyn tớnh hay bi toỏn phi tuyn i tng, phng phỏp v phm vi nghiờn cu ca ti Trong lun ny, tỏc gi s dng phng phỏp nguyờn lý cc tr Gauss núi trờn xõy dng v gii bi toỏn dm chu un cú xột n bin dng trt ngang lc ct gõy ra, chu tỏc dng ca ti trng tnh Do s cn thit ca vic nghiờn cu ni lc v chuyn v ca kt cu chu un cú xột n bin dng trt, mc ớch v nhim v nghiờn cu ca ti ny l: Mc ớch nghiờn cu ca ti "Nghiờn cu ni lc v chuyn v ca h dm cú xột n bin dng trt ngang" Nhim v nghiờn cu ca ti Tỡm hiu v gii thiu cỏc phng phỏp xõy dng v cỏc phng phỏp gii bi toỏn c hc kt cu hin Trỡnh by Phng phỏp Nguyờn lý cc tr Gauss GS TSKH H Huy Cng xut, vi cỏc ng dng c hc mụi trng liờn tc núi chung v c hc vt rn bin dng núi riờng Gii thiu lý thuyt xột bin dng trt i vi bi toỏn kt cu dm chu un vi vic dựng hai hm cha bit l hm vừng y v hm lc ct Q Xõy dng v gii bi toỏn dm cú xột n bin dng trt, chu tỏc dng ca ti trng tnh Lp chng trỡnh mỏy tớnh in t cho cỏc bi toỏn nờu trờn í ngha khoa hc v thc tin ca ti nghiờn cu Vic xỏc nh ni lc v chuyn v ca kt cu chu un ó c nhiu tỏc gi v ngoi nc quan tõm nghiờn cu, k c bi toỏn cú xột n lc ct ngang Q Trong cỏc nghiờn cu ú cỏc tỏc gi ó s dng lý thuyt dm truyn thng, lý thuyt dm Euler - Bernoulli (Lý thuyt khụng y v dm, b qua thnh phn bin dng trt ngang lc ct Q gõy ra) xõy dng bi toỏn Khi xõy dng cỏc cụng thc tớnh toỏn ni lc v chuyn v, gi thit Bernoulli - gi thit tit din phng (tit din dm trc v sau bin dng phng v vuụng gúc vi trc trung hũa) c chp nhn, tc l gúc trt lc ct Q gõy ó b b qua, quan nim tớnh toỏn ny lm nh hng khụng nh ti chớnh xỏc ca kt qu cỏc bi toỏn Mt s tỏc gi nh X.P Timoshenko, O.C Zienkiewicz, J.K Bathe, W.T Thomson cng ó cp ti nh hng ca bin dng trt phõn tớch kt cu chu un, nhng thng c b ng hoc khụng c gii quyt mt cỏch trit k c cỏc li gii s Khc phc c nhng tn ti nờu trờn ca cỏc tỏc gi khỏc chớnh l ý ngha khoa hc v thc tin ca ti, ý ngha khoa hc ú nm ch ti ó xõy dng c lý thuyt dm cú xột n nh hng ca bin dng trt ngang lc ct Q gõy (Lý thuyt y hay lý thuyt tng quỏt v dm) nghiờn cu ni lc v chuyn v ca dm v khung chu tỏc dng ca ti trng tnh, tỡm c kt qu chớnh xỏc ca cỏc bi toỏn ng thi a c kt lun " Lý thuyt dm Euler - Bernoulli thng dựng hin ch l mt trng hp riờng ca Lý thuyt dm ny" LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca bn thõn, c thc hin trờn c s nghiờn cu, tớnh toỏn di s hng dn khoa hc ca GS.TSKH H Huy Cng Cỏc s liu lun cú ngun trớch dn, kt qu lun l trung thc Tỏc gi lun Cao Quang Ngc DANH MC Kí HIU I LNG Kí HIU T ng nng Th nng E Mụdun n hi C(x) Phim hm m rng G Mụdun trt 2G cng ca bin dng J Mụ men quỏn tớnh tit din EJ cng un ca tit din dm M Mụmen un N Lc dc P Lc trung Q Lc ct q Ngoi lc phõn b tỏc dng lờn dm m Khi lng cht im ng sut tip ng sut phỏp ( x) Bin dng trt vừng ca dm Bin dng ca vt liu Bin phõn ri Vộc t ta i lng Ten x G Modun trt Bin dng th tớch Bin dng un ( cong ng n hi) , H s Lamộ H s Poisson u Chuyn v theo trc x Z Lng cng bc D cng un D(1- v) cng xon MC LC Li cm n M U LI CAM OAN DANH MC Kí HIU CHNG I CC PHNG PHP XY DNG V CC PHNG PHP GII BI TON C HC KT CU 13 Phng phỏp xõy dng bi toỏn c hc 13 1.1 Phng phỏp xõy dng phng trỡnh vi phõn cõn bng phõn t .13 1.2 Phng phỏp nng lng 16 1.3 Nguyờn lý cụng o .19 1.4 Phng trỡnh Lagrange: .21 Bi toỏn c hc kt cu v cỏc phng phỏp gii .24 2.1 Phng phỏp lc 24 2.2 Phng phỏp chuyn v 24 2.3 Phng phỏp hn hp v phng phỏp liờn hp 25 2.4 Phng phỏp phn t hu hn 25 2.5 Phng phỏp sai phõn hu hn 25 2.6 Phng phỏp hn hp sai phõn - bin phõn 26 CHNG PHNG PHP NGUYấN Lí CC TR GAUSS 27 2.1 Nguyờn lớ cc tr Gauss 27 2.2 Phng phỏp nguyờn lớ cc tr Gauss 29 2.3 C h mụi trng liờn tc: ng sut v bin dng 36 (i 0,1, 2, 3,4) n v ti 79 gi a nh p m t, hai v ba i nhn c 58 phng trỡnh bc nht xỏc nh 58 n s Gii cỏc phng trỡnh trờn ta nhn c kt qu tớnh ng vừng yi v lc ct Qi vi t l h nh T h 1 l s q E q l E q E q E q l E J a u q l : E J 4 B n g Bng 16: Mụ men un ti cỏc u : C h u y T M 2 h/l 1/100 0.0769ql2 0.0385ql2 0.0962ql2 0.1202ql2 0.1635ql2 0.1683ql2 1/10 0.0769ql2 0.0383ql2 1/5 0.0768ql2 0.0379ql2 0.0975ql2 0.1210ql2 0.1605ql2 0.1698ql2 0.0965ql2 0.1204ql2 0.1627ql2 0.1687ql2 Bng 17: Lc ct ti cỏc u T s h/ l 1/10 1/1 1/ 1/ Q 11 12 Q21 Q22 0.4808 ql 0.4808ql 0.4327 ql 0.4804 ql 0.4804ql 0.4338 ql 0.4793 ql 0.4793ql 0.4370 ql 0.4776ql 0.4436 ql Q 0.4776 ql Q31 Q32 Q41 Q42 0.5673ql 0.6635 ql 0.5662ql 0.6627 ql 0.3373ql 0.5630ql 0.6605 ql 0.3395ql 0.6556 ql 0.3444ql 0.5564ql Q52 Q51 0.3365ql Bng 18: So sỏnh vừng ln nht ti im gia nhp gia ca dm liờn tc ba nhp hai trng hp: khụng k v cú k ti nh hng ca bin dng ngang khụng T s h n h /l cú ymaxca dm ymaxca dm k ti nh hng ca k tbiinnhng rgca Chờnh lch vừng (%) d t t 1/100 b 1/ l EJ 1/ ql EJ ql 1/ EJ ql E J 9.8039 31.3432 1904 80 T kt qu tớnh thy rng mụ men un v lc ct trng hp ny thay i khụng ỏng k ta thay i t l h/l ca tit din, M v Q ch thay i khong t 3% n 5% i vi vớ d tớnh l dm liờn tc chu ti tng i ng u cỏc nhp, xột bin dng trt khụng lm thay i nhiu ni lc mo-men v lc ct, ch lm thay i ng vừng ca dm t 9.8% n 56.1% tng ng vi cỏc t l h/l=1/10 n h/l=1/3 vừng ln nht y gia nhp cú th tng 1.5 ln chiu max cao dm ln Khi khụng xột bin dng trt (cho h/l=1/100), ta cú biu mụ men un v lc ct ca dm liờn tc ba nhp nh sau: Hỡnh 3.11 Biu M v Q KT LUN Qua kt qu nghiờn cu t cỏc chng, chng n chng i vi bi toỏn dm chu un (bi toỏn tnh) Tỏc gi ó ỏp dng c lý thuyt dm y v tớnh toỏn ni lc v chuyn v ca h dm phng n hi chu un cú xột n bin dng trt ngang: Vi vic dựng hm vừng y, hm lc ct Q l hai hm n v ỏp dng Phng phỏp Nguyờn lý cc tr Gauss tỏc gi ó ỏp dng c lý thuyt dm y tớnh toỏn ni lc v chuyn v ca h dm phng n hi chu un cú xột n bin dng trt ngang T ú nhn c h hai phng trỡnh: 81 EJ d4y d 3Q q G F dx dx EJ d d y Q Q d x3 GF dx chu un ó cú s thay i ỏng k Lng thay i ny Hai phng trỡnh trờn l ph thuc vo t s chiu cao tit din/chiu di dm, ph hai phng trỡnh vi phõn thuc vo hỡnh thc liờn kt v cỏch t ti trng Dm cõn bng ca dm chu cú bc siờu tnh cng ln, cú t l h/l cng ln thỡ ni lc un cú xột v chuyn v thay i cng nhiu Cỏc dm t ti khụng n bin dng trt Khi i xng, liờn kt khụng ging ti hai u thỡ chu khụng xột n bin dng nh hng ca bin dng trt nhiu hn cỏc dm chu ti trt, (G hoc h0) trng i xng v cú liờn kt i xng thỡ cỏc phng trỡnh trờn ó xỏc nh c ng n hi cho h dm v h u dn v phng trỡnh khung cú cỏc iu kin biờn khỏc T ú xỏc nh cõn bng ca dm chu c ni lc mụmen un, lc ct ca h dm cú k un c xõy dng theo n bin dng trt ngang Trong trng hp khụng lý thuyt dm Euler- xột n nh hng ca bin dng trt ngang (trng Bernoulli m khụng gp hp t s h/l=1/1000), kt qu v ni lc v chuyn v u phi hin tng lc ct b trựng khp vi kt qu nhn c gii bng cỏc khúa phng phỏp hin cú Khi k ti nh hng ca bin dng trt, ti hng ca bin dng trt tit din sỏt liờn kt cú th tng hoc gim so vi khụng xột bin dng ngm, dm b xoay trt ph thuc vo v trớ tit din, tng loi bi toỏn, mt gúc bng gúc trt iu kin biờn v ti trng cng nh t l h/l, ni lc lc ct gõy Hay núi dm tnh nh khụng thay i xột v khụng xột cỏch khỏc liờn kt ngm nh hng ca bin dng trt ch cn tr gúc xoay mụmen gõy m khụng cn tr gúc trt lc ct gõy Khi k ti nh hng ca bin dng trt, ni lc v chuyn v ca dm Mụ men un v lc ct ca h dm xột n nh vừng ca dm hai trng hp cú xột v khụng xột bin dng trt ngang thay i rt ln, cú trng hp vừng ca dm xột bin dng trt tng t 9.8% n 56.1% so vi khụng xột bin dng trt tng ng vi cỏc t l h/l=1/10 n h/l=1/3 KIN NGH V NHNG NGHIấN CU TIP THEO Dựng lý thuyt y v dm, dm cú xột bin dng trt vi hai hm n l hm vừng y v hm lc ct Q ó trỡnh by ti lm c s xõy dng v gii cỏc bi toỏn kt cu chu un khỏc nh kt cu tm, v Dựng cỏc kt qu tớnh toỏn ni lc v chuyn v, theo lý thuyt dm cú xột bin dng trt a vo thit k cỏc cụng trỡnh Qua kt qu nghiờn cu thy rng, vi vic s dng lý thuyt y v dm v dựng phng phỏp Nguyờn lý cc tr Gauss cú th xõy dng bi toỏn c hc kt cu mt cỏch d dng Vỡ vy, nờn xột bin dng trt mi trng hp Danh mục tài liệu tham khảo I TIếNG VIệT [1] Hà Huy C-ơng (2005), Ph-ơng pháp nguyên lý cực trị Gauss, Tạp chí Khoa học kỹ thuật, IV/ Tr 112 118 [2] Nguyễn Văn Liên, Nguyễn Ph-ơng Thành, Đinh Trọng Bằng (2003), Giáo trình Sức bền vật liệu, Nhà xuất xây dựng, tái lần thứ 3, 330 trang 83 [3] Nguyễn Ph-ơng Thành (2002), Nghiên cứu trạng thái ứng suất biến dạng nhiều lớp chịu tải trọng động có xét lực ma sát mặt tiếp xúc, Luận án tiến sỹ kỹ thuật [4] V-ơng Ngọc L-u (2002), Nghiên cứu trạng thái ứng suất biến dạng sàn Sandwich chịu tải trọng tĩnh động, Luận án tiến sỹ kỹ thuật [5] Trần Hữu Hà (2006), Nghiên cứu toán t-ơng tác cọc d-ới tác dụng tải trọng, Luận án tiến sỹ kỹ thuật [6] Phạm Văn Trung (2006), Ph-ơng pháp Tính toán hệ dây mái treo, Luận án Tiến sỹ kỹ thuật [7] Vũ Hoàng Hiệp (2007), Nghiên cứu trạng thái ứng suất biến dạng dầm nhiều lớp chịu tải tĩnh động, Luận án tiến sỹ kỹ thuật, Hà nội [8] Nguyễn Văn Đạo (2001), Cơ học giải tích, Nhà xuất Đại học Quốc gia Hà nội, 337 trang [9] Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng (2005), Nhập môn Động lực học phi tuyến chuyển động hỗn độn Nhà xuất Đại học Quốc gia Hà nội [10] Lều Thọ Trình, Đỗ Văn Bình(2006), Giáo trình ổn định công trình, Nhà xuất Khoa học kỹ thuật [11] Vũ Hoàng Hiệp (2008), Tính kết cấu có xét biến dạng tr-ợt, Tạp chí XD số [12] Đoàn Văn Duẩn, Nguyễn Ph-ơng Thành (2007), Ph-ơng pháp tính toán ổn định thanh, Tạp chí Xây dựng số 12 (Tr41-Tr44) [13] Đoàn Văn Duẩn (2007), Ph-ơng pháp nguyên lý Cực trị Gauss toán ổn định công trình, Luận văn thạc sỹ kỹ thuật 84 [14] Đoàn Văn Duẩn (2008), Ph-ơng pháp tính toán ổn định khung, Tạp chí Xây dựng số 01 (Tr35-Tr37) [15] Đoàn Văn Duẩn (2008), Nghiên cứu ổn định uốn dọc có xét biến dạng tr-ợt, Tạp chí Xây dựng số 12 (Tr33-Tr37) [16] Đoàn Văn Duẩn (2009), Ph-ơng pháp nghiên cứu ổn định tổng thể dàn, Tạp chí Xây dựng số 03 (Tr86-Tr89) [17] Đoàn Văn Duẩn (2010), Ph-ơng pháp phần tử hữu hạn nghiên cứu ổn định uốn dọc thanh, Tạp chí kết cấu Công nghệ xây dựng, số 05, Qúy IV(Tr30-Tr36) [18] Đoàn Văn Duẩn (2011), Nghiên cứu ổn định đàn hồi hệ thanh, Luận án Tiến sỹ kỹ thuật [19] Đoàn Văn Duẩn (2012), Ph-ơng pháp tính toán dây mềm, Tạp chí kết cấu công nghệ Xây dựng số 09, Qúy II (Tr56-Tr61) [20] Đoàn Văn Duẩn (2014), Ph-ơng pháp chuyển vị c-ỡng giải toán trị riêng véc tơ riêng, Tạp chí Xây dựng số 11 (Tr82-Tr84) [21] Đoàn Văn Duẩn (2015), Ph-ơng pháp nghiên cứu ổn định động lực học thanh, Tạp chí Xây dựng số 01 (Tr86-Tr88) [22] Đoàn Văn Duẩn (2015), Bài toán học kết cấu d-ới dạng tổng quát, Tạp chí Xây dựng số 02 (Tr59-Tr61) [23] Đoàn Văn Duẩn (2015), Ph-ơng pháp so sánh nghiên cứu nội lực chuyển vị hệ dầm, Tạp chí Xây dựng số 11 (Tr56-Tr58) [24] Đoàn Văn Duẩn (2015), Tính toán kết cấu khung chịu uốn ph-ơng pháp so sánh, Tạp chí Xây dựng số 12 (Tr62-Tr64) 85 [25] Trần Thị Kim Huế (2005), Ph-ơng pháp nguyên lý Cực trị Gauss toán học kết cấu, Luận văn thạc sỹ kỹ thuật [26] Nguyễn Thị Liên (2006), Ph-ơng pháp nguyên lý Cực trị Gauss toán động lực học công trình, Luận văn thạc sỹ kỹ thuật [27] Vũ Thanh Thủy (2009), Xây dựng toán dầm xét đầy đủ hai thành phần nội lực momen lực cắt Tạp chí Xây dựng số [28] Vũ Thanh Thủy (2009), Dao động tự dầm xét ảnh h-ởng lực cắt Tạp chí Xây dựng, số [29] Timoshenko C.P, Voinópki- Krige X, (1971), Tấm Vỏ Ng-ời dịch, Phạm Hồng Giang, Vũ Thành Hải, Đoàn Hữu Quang, Nxb Khoa học kỹ thuật, Hà Nội II TIếNG PHáP [30] Robert LHermite (1974), Flambage et Stabilité Le flambage élastique des pièces droites, édition Eyrolles, Paris IIi TIếNG ANH [31] Stephen P.Timoshenko-Jame M.Gere (1961), Theory of elastic stability, McGraw-Hill Book Company, Inc, New york - Toronto - London, 541 Tr [32] William T.Thomson (1998), Theory of Applications (Tái lần thứ 5) Vibration with Stanley Thornes (Publishers) Ltd, 546 trang 86 [33] Klaus - Jurgen procedures Part Bathe one, (1996), Prentice - Finite Hall Element International, Inc, 484 trang [34] Klaus - Jurgen procedures Part Bathe two, (1996), Prentice - Finite Hall Element International, Inc, 553 trang [35] Ray W.Clough, Structures (Tái Joseph lần Penzien(1993), thứ 2), Dynamics McGraw-Hill of Book Company, Inc, 738 trang [36] O.C Zienkiewicz-R.L Taylor (1991), The finite element method (four edition) Volume 2, McGraw-Hill Book Company, Inc, 807 trang [37] G.Korn-T.Korn (1961), Mathematical Handbook for sientists and Engineers, McGraw-Hill, New york (Bản dịch tiếng Nga, I.Bramovich chủ biên, Nhà xuất NaukaMoscow, 1964) [38] Stephen P.Timoshenko-J Goodier (1970), Theory of elasticity, McGraw-Hill, New york (Bản dịch tiếng Nga, G Shapiro chủ biên, Nhà xuất Nauka-Moscow, 1979), 560 trang [39] D.R.J Owen, E.Hinton (1986), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Lt [40] Lars Olovsson, Kjell (2006), Shear locking linear solid finite Simonsson, reduction elements, in Mattias Unosson eight-node J tri- Computers @ Structures,84, trg 476-484 [41] C.A.Brebbia, J.C.F.Telles, L.C.Wrobel(1984), Boundary Element Techniques Theory and Applications in 87 Engineering Nxb Springer - Verlag.(Bản dịch tiếng Nga, 1987) [42] Chopra Anil K (1995) Dynamics of structures Prentice Hall, Englewood Cliffs, New - Jersey 07632 [43] Wilson Edward L Professor Emeritus of structural Engineering University of California at Berkeley (2002) Three Dimensional structures, Inc Static and Berkeley, Dynamic California, Analysis USA of Third edition, Reprint January [44] Wilson, E L., R L Taylor, W P Doherty and J Ghaboussi (1971) "Incompatible Displacement Models, Proceedings, ORN Symposium on "Numerical and Computer Method in Structural Mechanics" University of Illinois, Urbana September Academic Press [45] Strang, G (1972) Variational Crimes in the Finite Element Method in "The Mathematical Foundations of the Finite Element Method" P.689 -710 (ed A.K Aziz) Academic Press [46] Irons, B M and O C Zienkiewicz isoparametric Finite Element System (1968) The A New Concept in Finite Element Analysis, Proc Conf "Recent Advances in Stress Analysis" Royal Aeronautical Society London [47] Kolousek University, Vladimir, Pargue DSC (1973) Professor, Dynamics in Technical engineering structutes Butter worths London [48] Felippa element Carlos methods A (2004) Department Introduction of Aerospace of finite Engineering Sciences and Center for Aerospace Structures University 88 of Colorado Boulder, Colorado 80309-0429, USA, Last updated Fall [49] Wang C.M, Reddy J.N, Lee K.H.( 2000), Shear deformable beems and plates Relationships with Classical Solutions ELSEVIER, Amsterdam - Lausanne - New York Oxford - Shannon - Singapore - Tokyo [50] Barbero Ever J, Department of Mechanica & Aerospace Engineering, West Virgina University, USA (1999), Introduction to Composite Materials Design Taylor and Francis [51] Decolon C (2002) Analysis of Composite Structures Hermes Penton, Ltd, UK [52] Fu-le Li, Department of Nanjing ZHI-zhong Sun, Mathematics, 210096, PR China Corresponding Shoutheast (2007) A author, University, finite difference scheme for solving the Timoshenko beem equations with boundary feedback Journal of Computational and applied Mathematics 200, 606 - 627, Elsevier press Avaiable online at www.sciencedirect.com [53] Khaji N., Corresponding author, Shafiei M., Civil Engineering DepartmentTarbiat Modares University, P O Box 14155-4838, solutions beems Journal lists for with of Tehran, crack various at ((2009)) detection boundary Mechanical available Tran Closed problem conditions Sciences Science of - form Timoshenko International 51, 667-681 Contents Direct journal hompage: www.elsevier.com/locate/ijmecsci [54] Antes H Institute of Applied Mechanics, University Carolo Wilhelmina, D-38023Braunschweig, Germany (2003) 89 Fundamental solution and integralequations for Timoshenko beems Computers and Structures 81, 383-396 Pergamon press Available online at www.sciencedirect.com [55] Nguyen Dinh Kien (2007) Free Vibration of prestress Timoshenko beems resting on elastic foundation Viet nam Journal of Mechanics, VAST, Vol.29, No 1,pp 1-12 [56] Grawford F (1974) Waves, Berkeley physics course, volume McGraw - hill Book Company Iv TIếNG nga [57] epma (1980), auecka , [58] (1969) - , [59] C oak (1959), apuauoe uu u, [60] (1980) - , [61] A A upac (1989), Cpoueba , , [62] (1961), , 90 91

Ngày đăng: 05/07/2016, 20:50

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[3] Nguyễn Ph-ơng Thành (2002), Nghiên cứu trạng thái ứng suÊt biến dạng tấm nhiều lớp chịu tải trọng động có xét lực ma sát ở các mặt tiếp xúc, Luận án tiến sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Nghiên cứu trạng thái ứng suÊt biến dạng tấm nhiều lớp chịu tải trọng động có xét lực ma sát ở các mặt tiếp xúc
Tác giả: Nguyễn Ph-ơng Thành
Năm: 2002
[4] V-ơng Ngọc L-u (2002), Nghiên cứu trạng thái ứng suất biến dạng của tấm sàn Sandwich chịu tải trọng tĩnh vàđộng, Luận án tiến sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Nghiên cứu trạng thái ứng suất biến dạng của tấm sàn Sandwich chịu tải trọng tĩnh và "động
Tác giả: V-ơng Ngọc L-u
Năm: 2002
[5] Trần Hữu Hà (2006), Nghiên cứu bài toán t-ơng tác giữa cọc và nền d-ới tác dụng của tải trọng , Luận án tiÕn sü kü thuËt Sách, tạp chí
Tiêu đề: Nghiên cứu bài toán t-ơng tác giữa cọc và nền d-ới tác dụng của tải trọng
Tác giả: Trần Hữu Hà
Năm: 2006
[6] Phạm Văn Trung (2006), Ph-ơng pháp mới Tính toán hệ dây và mái treo, Luận án Tiến sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Ph-ơng pháp mới Tính toán hệ dây và mái treo
Tác giả: Phạm Văn Trung
Năm: 2006
[7] Vũ Hoàng Hiệp (2007), Nghiên cứu trạng thái ứng suất - biến dạng của dầm nhiều lớp chịu tải tĩnh và động, LuËnán tiến sỹ kỹ thuật, Hà nội Sách, tạp chí
Tiêu đề: Nghiên cứu trạng thái ứng suất -biến dạng của dầm nhiều lớp chịu tải tĩnh và động
Tác giả: Vũ Hoàng Hiệp
Năm: 2007
[8] Nguyễn Văn Đạo (2001), Cơ học giải tích, Nhà xuất bản Đại học Quốc gia Hà nội, 337 trang Sách, tạp chí
Tiêu đề: Cơ học giải tích
Tác giả: Nguyễn Văn Đạo
Nhà XB: Nhà xuất bản Đại học Quốc gia Hà nội
Năm: 2001
[9] Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng (2005), Nhập môn Động lực học phi tuyến và chuyển động hỗn độn.Nhà xuất bản Đại học Quốc gia Hà nội Sách, tạp chí
Tiêu đề: Nhập môn Động lực học phi tuyến và chuyển động hỗn độn
Tác giả: Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng
Nhà XB: Nhà xuất bản Đại học Quốc gia Hà nội
Năm: 2005
[10] Lều Thọ Trình, Đỗ Văn Bình(2006), Giáo trình ổn định công trình, Nhà xuất bản Khoa học kỹ thuật Sách, tạp chí
Tiêu đề: Giáo trình ổn định công trình
Tác giả: Lều Thọ Trình, Đỗ Văn Bình
Nhà XB: Nhà xuất bản Khoa học kỹ thuật
Năm: 2006
[11] Vũ Hoàng Hiệp (2008), Tính kết cấu có xét biến dạng tr-ợt, Tạp chí XD số 7 Sách, tạp chí
Tiêu đề: Tính kết cấu có xét biến dạng tr-ợt
Tác giả: Vũ Hoàng Hiệp
Năm: 2008
[12] Đoàn Văn Duẩn, Nguyễn Ph-ơng Thành (2007), Ph-ơng pháp mới tính toán ổn định của thanh, Tạp chí Xây dựng số 12 (Tr41-Tr44) Sách, tạp chí
Tiêu đề: Ph-ơng pháp mới tính toán ổn định của thanh
Tác giả: Đoàn Văn Duẩn, Nguyễn Ph-ơng Thành
Năm: 2007
[13] Đoàn Văn Duẩn (2007), Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán ổn định công trình, Luận văn thạc sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán ổn định công trình
Tác giả: Đoàn Văn Duẩn
Năm: 2007
[14] Đoàn Văn Duẩn (2008), Ph-ơng pháp mới tính toán ổn định của khung, Tạp chí Xây dựng số 01 (Tr35-Tr37) Sách, tạp chí
Tiêu đề: Ph-ơng pháp mới tính toán ổn "định của khung
Tác giả: Đoàn Văn Duẩn
Năm: 2008
[15] Đoàn Văn Duẩn (2008), Nghiên cứu ổn định uốn dọc của thanh có xét biến dạng tr-ợt, Tạp chí Xây dựng số 12 (Tr33-Tr37) Sách, tạp chí
Tiêu đề: Nghiên cứu ổn định uốn dọc của thanh có xét biến dạng tr-ợt
Tác giả: Đoàn Văn Duẩn
Năm: 2008
[16] Đoàn Văn Duẩn (2009), Ph-ơng pháp nghiên cứu ổn định tổng thể của dàn, Tạp chí Xây dựng số 03 (Tr86-Tr89) Sách, tạp chí
Tiêu đề: Ph-ơng pháp nghiên cứu ổn định tổng thể của dàn
Tác giả: Đoàn Văn Duẩn
Năm: 2009
[25] Trần Thị Kim Huế (2005), Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán cơ học kết cấu, Luận văn thạc sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán cơ học kết cấu
Tác giả: Trần Thị Kim Huế
Năm: 2005
[26] Nguyễn Thị Liên (2006), Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán động lực học công trình, Luận văn thạc sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Ph-ơng pháp nguyên lý Cực trị Gauss đối với các bài toán động lực học công trình
Tác giả: Nguyễn Thị Liên
Năm: 2006
[27] Vũ Thanh Thủy (2009), Xây dựng bài toán dầm khi xét đầy đủ hai thành phần nội lực momen và lực cắt. Tạp chí X©y dùng sè 4 Sách, tạp chí
Tiêu đề: Xây dựng bài toán dầm khi xét "đầy đủ hai thành phần nội lực momen và lực cắt
Tác giả: Vũ Thanh Thủy
Năm: 2009
[28] Vũ Thanh Thủy (2009), Dao động tự do của dầm khi xét ảnh h-ởng của lực cắt. Tạp chí Xây dựng, số 7 Sách, tạp chí
Tiêu đề: Dao động tự do của dầm khi xét ảnh h-ởng của lực cắt
Tác giả: Vũ Thanh Thủy
Năm: 2009
[29] Timoshenko C.P, Voinópki- Krige X, (1971), Tấm và Vỏ. Ng-ời dịch, Phạm Hồng Giang, Vũ Thành Hải, Đoàn Hữu Quang, Nxb Khoa học và kỹ thuật, Hà Nội.II. TIếNG PHáP Sách, tạp chí
Tiêu đề: Tấm và Vỏ
Tác giả: Timoshenko C.P, Voinópki- Krige X
Nhà XB: Nxb Khoa học và kỹ thuật
Năm: 1971
[30] Robert L ‟ Hermite (1974), Flambage et StabilitÐ Le flambage Ðlastique des piÌces droites, Ðdition Eyrolles, Paris.IIi. TIÕNG ANH Sách, tạp chí
Tiêu đề: Flambage et StabilitÐ Leflambage Ðlastique des piÌces droites
Tác giả: Robert L ‟ Hermite
Năm: 1974

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w