1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi tuyển sinh vào lớp 10 THPT môn Ngữ văn sở GD&ĐT Bình Phước năm 2016 - 2017

1 394 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 68,92 KB

Nội dung

www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V  1 1 2 3 2 3 L     2. Cho biểu thức: 6 9 4 3 2 x x x T x x        . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x  và đường thẳng (d): 1 y x    . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( )  song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y        Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1) x m x m m     với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 , x x thỏa mãn điều kiện: 1 2 4 x x    . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE  . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 . AQ AM R  4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V  1 1 2 3 2 3 L     2. Cho biểu thức 6 9 4 3 2 x x x T x x        . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x  và đường thẳng 1 y x    a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng  song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y        Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học: 2016 - 2017 Môn thi: Ngữ văn (chung) Ngày thi: 10/06/2016 Thời gian: 120 phút (Đề gồm có 01 trang) Câu (1,0 điểm) Cho khổ thơ sau: "Mặt trời xuống biển lửa Sóng cài then đêm sập cửa Đoàn thuyền đánh cá lại khơi Câu hát căng buồm gió khơi” a Khổ thơ trích văn nào? Tác giả ai? b Nêu ngắn gọn nội dung khổ thơ Câu (1,0 điểm) Cho câu văn: Người nói viết thạo nhiều thứ tiếng ngoại quốc: Pháp, Anh, Hoa, Nga Người làm nhiều nghề (Phong cách Hồ Chí Minh, Lê Anh Trà) a, Xác định gọi tên thành phần biệt lập câu văn b Xét cấu tạo, câu văn thuộc kiểu câu gì? Vì sao? Câu (2,0 điểm) Viết văn ngắn (khoảng 300 từ) trình bày suy nghĩ em tinh thần tự học Câu (6,0 điểm) Cảm nhận em nhân vật ông Hai truyện ngắn Làng Kim Lân (Phần trích Ngữ văn 9, tập 1, NXB Giáo dục, 2015) WWW.VNMATH.COM SỞ GD & ĐT BÌNH DƯƠNG KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2013 – 2014 Môn thi: Toán Thời gian làm bài: 120 phút, không kể thời gian giao để Ngày thi: 28/6/2013 Bài 1. (1 điểm) Cho biểu thức A = ( 4) 4 x x   1/ Rút gọn biểu thức A 2/ Tính giá trị của A khi x = 3 Bài 2. (1,5 điểm) Cho hai hàm số bậc nhất y = x – m và y = -2x + m – 1 1/ Với giá trị nào của m thì đồ thị của các hàm số trên cắt nhau tại một điểm thuộc trục hoành. 2/ Với m = -1, Vẽ đồ thị các hàm số trên cùng mặt phẳng tọa độ Oxy Bài 3. (2 điểm) 1/ Giải hệ phương trình 2 10 1 1 1 2 3 x y x y          2/ Giải phương trình: x - 2 x = 6 - 3 x Bài 4. (2 điểm) 1/ Tìm giá trị m trong phương trình bậc hai x 2 – 12x + m = 0, biết rằng phương trình có hiệu hai nghiệm bằng 2 5 2/ Có 70 cây được trồng thành các hàng đều nhau trong một miếng đất. Nếu bớt đi 2 hàng thi mỗi hàng còn lại phải trồng thêm 4 cây mới hết số cây đã có. Hỏi lúc đầu có bao nhiêu hàng cây? Bài 5. (2 điểm) Cho đường tròn (O) đường kính AB, trên tia OA lấy điểm C sao cho AC = AO. Từ C kẻ tiếp tuyến CD với (O) (D là tiếp điểm) 1/ Chứng minh tam giác ADO là tam giác đều 2/ Kẻ tia Ax song song với CD, cắt DB tại I và cắt đường tròn (O) tại E. Chứng minh tam giác AIB là tam giác cân. 3/ Chứng minh tứ giác ADIO là tứ giác nội tiếp 4/ Chứng minh OE  DB WWW.VNMATH.COM HƯỚNG DÂN GIẢI Bài 1. (1 điểm) 1/ Ta có A = ( 4) 4 x x   = 2 4 4 x x   = 2 ( 2) x  = 2 x  2/ Khi x = 3 , suy ra A = 3 2  = 2 - 3 Bài 2. (1,5 điểm) 1/ Gọi A là giao điểm của đồ thị hàm số y = x – m với trục hoành, ta có A(m; 0) B là giao điểm của đồ thị hàm số y = -2x + m – 1 với trục hoành, ta có B( 1 2 m  ; 0) Để đồ thị hai hàm số cắt nhau tại một điểm trên trục hoành khi và chỉ khi m = 1 2 m   2m = m – 1  m = -1 2/ Với m = -1, ta có: *y = x + 1 Đồ thị hàm số y = x + 1 là đường thẳng đi qua hai điểm A(0; 1) và B(-1; 0) *y = -2x – 2 Đồ thị hàm số y = -2x – 2 là đường thẳng đi qua điểm C(0; -2) và D(-1; 0) 5 4 3 2 1 1 2 3 4 5 6 4 2 2 4 6 g x ( ) = 2∙ x 2 y = x + 1 Bài 3. (2 điểm) 1/ 2 10 1 1 1 2 3 x y x y           2 10 3 2 6 x y x y         2 10 4 16 x y x        3 4 y x      Vậy hệ phương trình có nghiệm là (x; y) = (4; 3) 2/ ĐKXĐ: x  0 x - 2 x = 6 - 3 x x + x - 6 = 0 WWW.VNMATH.COM Đặt x = t ; t  0, ta được t 2 + t – 6 = 0 (2) Giải phương trình (2): t 1 = 2 (nhận) ; t 2 = -3 (loại) Với t = t 1 = 2 => x = 2  x = 4 (thỏa điều kiện) Vậy phương trình đã cho có nghiệm là x = 4 Bài 4. (2 điểm) 1/ Phương trình x 2 – 12x + m = 0 có hai nghiệm mà hiệu hai nghiệm bằng 2 5 khi và chỉ khi / 1 2 0 (1) 2 5 (2) x x          Mà /  = (-6) 2 – m = 36 – m (1)  36 – m > 0  m < 36 Khi đó, áp dụng định lý Viet ta có: x 1 + x 2 = 12 và x 1 x 2 = m Ta có: (2)  2 1 2 ( ) 2 5 x x   2 2 1 1 2 2 2 2 5 x x x x    2 1 2 1 2 ( ) 4 2 5 x x x x    2 12 4 2 5 m   2 2 2 ( 12 4 ) (2 5) m   144 – 4m = 20  m = 31 (thỏa điều kiện (1)) Vậy m = 31 là giá trị cần tìm. 2/ Gọi số hàng cây lúc đầu là x (hàng); x > 2 Số hàng cây lúc sau là: x – 2 (hàng) Số cây mỗi hàng lúc đầu là: 70 x (cây) Số cây mỗi SỞ GIÁO DỤC - ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM 2010 BÌNH ĐỊNH TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Đề chính thức Môn thi: VẬT LÝ Thời gian: 150 phút (không kể thời gian phát đề) Ngày thi: 18/6/2010 Câu 1: (2,0 điểm) Trong một bình kín cách nhiệt với môi trường ngoài có chứa một lượng nước ở 0 0 C. Bây giờ người ta rút hết không khí ra khỏi bình nói trên, sự bay hơi của nước xảy ra khi hóa đá toàn bộ nước trong bình. Khi đó bao nhiêu phần trăm của nước đã hóa hơi ? Biết rằng ở 0 0 C, 1 kg nước hóa hơi cần phải cung cấp một lượng nhiệt là 2543.10 3 J và để 1 kg nước đá ở 0 0 C nóng chảy hoàn toàn cần phải cung cấp một lượng nhiệt là 335,2.10 3 J. Câu 2: (2,0 điểm) Cho một mạch điện như hình vẽ dưới đây với hiệu điện thế hai đầu mạch không đổi U = 6V, một miliampe kế có điện trở rất nhỏ, bốn điện trở không đổi và một biến trở. Dựa vào đồ thị phụ thuộc của cường độ dòng điện qua miliampe kế vào giá trị của biến trở R. Hãy tính R 1 và R 2 . Câu 3: (2,0 điểm) Cho một mạch điện theo sơ đồ dưới đây được mắc vào một hiệu điện thế không đổi U = 22 V. Hai đèn Đ 1 , Đ 2 có cùng hiệu điện thế định mức. Khi khóa K mở thì hiệu điện thế ở đèn Đ 1 là 21,2 V. Khi khóa K đóng thì hiệu điện thế ở đèn Đ 1 là 20 V. Tính công suất định mức P 2 của đèn Đ 2 , biết đèn của các đèn không thay đổi theo nhiệt độ. Câu 4: (2,5 điểm) Có 4 học sinh cùng trọ một nơi cách trường 5 km, họ có chung một chiếc xe máy điện. Xe chỉ được phép chở 2 người (kể cả người lái xe). Họ xuất phát cùng một lúc từ nhà trọ đến trường: hai bạn lên xe, hai bạn còn lại đi bộ. Đén trường, một bạn xuống xe; lái xe quay lại đón thêm một bạn nữa; bạn còn lại tiếp tục đi bộ. Cứ như thế cho đến khi tất cả đều đến trường. Xem chuyển động trên là đều; thời gian dùng xe để đón, thả người không đáng kể; vận tốc của người đi bộ là 6 km/h; vận tốc của xe là 30 km/h. Tìm quãng dườngđi tổng cộng của xe. - - - - O I ( m A ) 0 , 5 1 1 , 5 2 H . 2 R R R R R R 1 1 2 2 + U H . 1 A m U A C R K B + D D 2 1 Câu 5: (1,5 điểm) Cho các dụng cụ sau: - Một đèn sáng nhỏ, pin, dây dẫn. - Một thấu kính hội tụ. - Một thấu kính phân kỳ. - Một thước đo có vạch chia độ tới milimet và một màn hứng M. Hãy trình bày và giải thích một phương án thực nghiệm để xác định tiêu cự của thấu kính phân kỳ nói trên. SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Môn thi: Ngữ Văn chuyên Thời gian làm bài: 150 phút Ngày thi: 12 tháng năm 2016 Câu (4 điểm) Trong sống, phải biết yêu biết yêu người, phải biết làm đẹp cho thi biết làm đẹp cho đời, phải biết tạo hạnh phúc cho biết tạo hạnh phúc cho người,… Bởi ta trao cho người khác điều mà ta chưa thể mang lại cho Em đồng ý với suy nghĩ không? Hãy viết văn trình bày câu trả lời em Câu (6 điểm) Nhà văn Pháp Elsa Triolet quan niệm nhà văn người cho máu Nhà văn Nguyễn Đình Thi cho nhà văn người truyền sống, người đốt lửa lòng người đọc Bằng trải nghiệm việc đọc tác phẩm thơ truyện, trình bày suy nghĩ em quan niệm   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1 2 1 2 1 2 .x x x x x x x x      (Do x 1 khác x 2 )     2 2 1 2 1 2 1 2 1 2 1 2 22 2 ( ) . ( 2 ) x x x x x x x x x x S S P S P              22 1(1 2 ) 1PP    (Vì S = 1) 0P 2 10m   (vô nghiệm) Do đó yêu cầu bài toán 1m   Cách khác Khi 0 ta có 12 1xx và 2 12 1 8 m xx   4 4 3 3 1 2 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT THANH HÓA NĂM HỌC 2016-2017 Môn thi: NGỮ VĂN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút, không kể thời gian phát đề Ngày thi: 17/6/2016 Đề có 01 trang, gồm câu Câu (2.0 điểm) Từ “đầu” câu thơ sau dùng với nghĩa gốc hay nghĩa chuyển? Trên đầu rác rơm Chồng yêu chồng bảo hoa thơm rắc đầu (Ca dao) Xác định gọi tên thành phần biệt lập câu sau: Chao ôi, bắt gặp người hội hãn hữu cho sáng tác, hoàn thành sáng tác chặng đường dài (Nguyễn Thành Long, Lặng Lẽ Sa Pa) Nêu ngắn gọn hàm ý đoạn thơ sau: “Người đồng thô sơ da thịt Chẳng nhỏ bé đâu con” (Y Phương –Nói Với con) Câu (3.0 điểm) “Xe chạy miền Nam phía trước Chỉ cần xe có trái tim” (Bài thơ tiểu đội xe không kính - Phạm Tiến Duật) Từ ý thơ trên, viết văn nghị luận ngắn (khoảng 30 dòng) trình bày suy nghĩ em lí tưởng sống niên Câu (5.0 điểm) Cảm nhận em nhân vật anh niên làm công tác khí tượng truyện ngắn “ Lặng Lẽ Sa Pa” Nguyễn Thành Long VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1

Ngày đăng: 20/06/2016, 11:36

TỪ KHÓA LIÊN QUAN

w