1. Trang chủ
  2. » Thể loại khác

De thi thu toan THPT thuan thanh 1 bac ninh nam 2016 lan 2

8 202 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 5,8 MB

Nội dung

Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử Đề thi THPT thử

Hanhtrangvaodaihoc.com SỞ GD & ĐT BẮC NINH TRƯỜNG THPT THUẬN THÀNH SỐ ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC: 2015 – 2016 MÔN: TOÁN Thời gian làm bài: 180 phút Câu (2,0 điểm) Cho hàm số −2x + 3x − a) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho b) Viết phương trình tiếp tuyến đồ thị (C) giao điểm (C) với đường thẳng y = −1 Câu (1,0 điểm) a) Giải bất phương trình log x − 2log x − > 3  2i  b) Tìm số phức z thỏa mãn ( + i ) z + 3iz =  ÷  i −1  x Câu (1,0 điểm) Tính diện tích hình phẳng giới hạn đường y = (e + 1)x , y = (e + 1)x Câu (1,0 điểm) a) Cho sin α = π π  , < α < π Tính giá trị biểu thức P = tan  − α ÷ 4  b) Xếp ngẫu nhiên bốn người đàn ông, hai người đàn bà đứa trẻ ngồi vào bảy ghế đặt quanh bàn tròn Tính xác suất để đứa trẻ ngồi hai người đàn bà Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật với AB = 2a, AD = a Hình chiếu vuông góc S mặt phẳng (ABCD) trung điểm H AB SC tạo với đáy góc 45 Tính theo a thể tích khối chóp S.ABCD khoảng cách hai đường thẳng SB, AC Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – y + 2z = hai đường thẳng d: x −1 y −1 z −1 x −1 y − z = = , d’: = = Viết phương trình đường thẳng ∆ nằm mặt −2 1 phẳng (P), vuông góc với đường thẳng d cắt đường thẳng d’ Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD Trên cạnh AB, AD lần 2 5 lượt lấy hai điểm E, F cho AE = AF Gọi H hình chiếu vuông góc A DE Biết H  ; − 14  ÷, 5 8  F  ; −2 ÷, C thuộc đường thẳng d: x + y – = 0, D thuộc đường thẳng d’: x – 3y + = Tìm tọa độ 3  đỉnh hình vuông  2x − y − + 3y + = x + x + 2y Câu (1,0 điểm) Giải hệ phương trình:   x + x + 3y + 17 − x + − 2x 3y + = Câu (1,0 điểm) Cho a, b, c độ dài ba cạnh tam giác Chứng minh rằng: 1 1   + + + ≥ 4 + + ÷ a b c a +b+c a +b b+c c+a  - Hết ĐÁP ÁN – THANG ĐIỂM Câu ĐÁP ÁN Điểm 2,0 Hanhtrangvaodaihoc.com a) • TXĐ: D = ¡ • Sự biến thiên: - Chiều biến thiên: y' = −6x + 6x ; y’ = ⇔ x = x = - Hàm số đồng biến khoảng (0; 1); Hàm số nghịch biến khoảng ( −∞;0 ) ( 1;+∞ ) - Cực trị: Hàm số đạt cực đại x = 1, y CĐ = ; - = −∞, Giới hạn: xlim →+∞ Bảng biến thiên: −∞ x − y' +∞ y lim = +∞ x →−∞ 0 + 0 −1 • 0,25 0,25 Hàm số đạt cực tiểu x = 0, y CT = −1 - 1,0 − +∞ 0,25 −∞ Đồ thị: 0,25 b) 1,0 x = Phương trình hoành độ giao điểm: −2x + 3x − = −1 ⇔  x =  + Với x = 0: y(0) = -1, y’(0) = ⇒ PTTT: y = −1 + Với x = : 3 3 y  ÷ = −1 , y'  ÷ = − 2 2 0,25 0,25 0,25 Hanhtrangvaodaihoc.com 9 3 ⇒ PTTT: y = −  x − ÷− 2 2 23 Hay y = − x + 23 Vậy phương trình tiếp tuyến cần tìm là: y = −1, y = − x + a) 0,25 1,0 0,5 ĐK: x >  t < −1 ⇔ t − 2t − > t > t < −1 ⇒ log x < −1 ⇒ x > + Đặt t = log x Bpt trở thành: 0,25 + t > ⇒ log x > ⇒ x < 27 0,25   Kết hợp điều kiện suy tập nghiệm bpt  0;  ÷∪ ( 3; +∞ ) 27  b) 0,5 ( + i ) z + 3iz =  2i  ÷ ⇔ ( + i ) z + 3iz = −2i  i −1 Giả sử z = a + bi ( a,b ∈ ¡ ) PT trở thành: ( + i ) ( a + bi ) + 3i ( a − bi ) = −2i 0,25 ⇔ a + 2b + ( 4a + b + ) i =  a = −  a + 2b = ⇔ ⇔ 4a + b + = b =  Vậy z = − + i 7 0,25 1,0 Hoành độ giao điểm hai đường nghiệm phương trình x = x = ( e + 1) x = (1 + e x )x ⇔  Diện tích cần tính S = ∫ x( e 1 x − e ) dx S = ∫ xe dx − ∫ exdx = ∫ xd ( e x 0 0,5 x ) − e ∫ xdx 0,5 Hanhtrangvaodaihoc.com x2 = xe − ∫ e dx − e x 1 = x e −1 a) 1,0 0,5 π < α < π ⇒ cosα = − π tan − tan α + π  P = tan  − α ÷ = = 4  + tan π tan α − sin α = , , tan α = − 2 = 3+ 2 b) 0,25 0,25 0,5 Có 6! Cách xếp người quanh bàn tròn ⇒ n ( Ω ) = 6! = 720 Gọi A biến cố: “Đứa trẻ ngồi giưa hai người đàn bà” Ta xếp đứa trẻ vào ghế: cách Xếp người đàn bà vào ghế bên đứa trẻ: 2! cách Xếp người đàn ông vào ghế lại: 4! cách ⇒ n ( A ) = 2!.4! = 48 n(A) 48 = = Vậy P(A) = n(Ω) 720 15 0,25 0,25 1,0 0,25 · HC hình chiếu SC mp(ABCD) nên góc SC mp(ABCD) SCH · Từ gt suy SCH = 450 Suy SH = HC = a SABCD = 2a 2 2a Vậy VABCD = (đvtt) Kẻ đt d qua B song song với AC Gọi E hình chiếu H đt d 0,25 0,25 Hanhtrangvaodaihoc.com Suy AC // (SBE) ⇒ d ( SB, AC ) = d ( AC, ( SBE ) ) = d ( A, ( SBE ) ) = 2d ( H, ( SBE ) ) (Vì AB = 2HB) Gọi F hình chiếu H SE Khi đó: BE ⊥ ( SHE ) , HF ⊥ ( SBE ) Suy d(H, (SBE)) = HF BC a · · HE = HB.sin EBH = HB.sin BAC = HB = AC 1 11 a 22 = + = ⇒ HF = 2 HF HE HS 2a 11 Vậy d(SB, AC) = 0,25 2a 22 11 uur uur mp (P) có VTPT n P = ( 2; −1; ) , đường thẳng d có VTCP u d = ( 1;3; )  x = − 2t  PTTS d’:  y = + t z = t  Đường thẳng ∆ nằm mp(P), vuông góc với đường thẳng d nên chọn VTCP uur uur uur ∆ u ∆ =  n P , u d  = ( −8; −2;7 ) Gọi A = d '∩ ( P ) ⇒ A ( − 2t; + t; t ) Vì A ∈ ( P ) nên t = ⇒ A ( 1; 2;0 ) ∆ nằm mp(P) cắt d’ nên ∆ qua A  x = − 8t  Vậy PT đường thẳng ∆ là:  y = − 2t z = 7t  1,0 0,25 0,25 0,25 0,25 1,0 0,25 Gọi M giao điểm AH BC Hai tam giác ADE BAM nên BM = AE = AF Suy tứ giác ABMF, DCMF hình chữ nhật Hanhtrangvaodaihoc.com Gọi I giao điểm FC MD 1 Ta có HI = MD = FC nên tam giác HFC vuông H 2 uuur uuur Giả sử C(c; – c) HC.HF = ⇒ C ( −2; ) uuur uuur Giả sử D(3m– 2; m) DC.DF = ⇒ D ( 4; ) PT đường thẳng AD: 3x – y – 10 = Giả sử A(a; 3a – 10)  A ( 6;8 ) a = ⇒ DA = DC ⇒  a =  A ( 2; −4 ) uuur uuur Vì DF, DA hướng nên A(2; – 4) uuur uuur CB = DA ⇒ B ( −4; −2 ) 0,25 0,25 0,25 Vậy A(2; – 4), B ( −4; −2 ) , C ( −2; ) , D ( 4; ) 1,0  2x − y − + 3y + = x + x + 2y   x + x + 3y + 17 − x + − 2x 3y + = x ≥   y ≥ − ĐK:  2x − y − ≥   x + 2y ≥ ( 1) ⇔ ( 1) ( 2) 2x − y − − x + 3y + − x + 2y = * Nhận xét:  2x − y − =  x = ⇒ - Nếu  ⇒ 2x − y − + x >  y = −1 ( L )  x =  x =  3y + 1− =  ⇒ - Nếu  Thay vào PT(2) thấy không thỏa mãn x + 2y = y = −   ⇒ 3y + + x + 2y > x − y −1 x − y −1 ⇔ − =0 2x − y − + x 3y + + x + 2y 0,25 x − y − = ⇔  2x − y − + x = 3y + + x + 2y + TH1: x − y − = ⇔ y = x − Thế vào PT (2) ta được: x + 4x + 14 − x + − 2x 3x − = (3) ĐK: x ≥ 0,25 Hanhtrangvaodaihoc.com (3) ⇔  x + − ( x + 16 )  + x  3x − − ( 3x + )  + x − 4x + = 2 9x   ⇔ − ( x − 4x + )  + − 1÷ =  x + + x + 16 3x − + 3x +  6x − − 3x −  2 ⇔ ( x − 2)  + ÷= x + + x + 16 3x − + 3x +    3x − − ÷ 2 ⇔ ( x − 2) + =0  x + + x + 16 3x − + 3x + ÷  ÷   ⇒ y = (TM) ⇔ x = (TM) ( + TH2: ) 2x − y − + x = 3y + + x + 2y  2x − y − + 3y + = x + x + 2y Ta có:   2x − y − + x = 3y + + x + 2y 0,25 Trừ hai vế tương ứng hai phương trình ta được: x = 3y + ⇔ 3y = x − Thế vào PT (2) ta được: (4) ĐK: x ≥ x + 2x + 16 − x + − 2x x = PT(4) ⇔ ( ) ( x +7 −3 + x − x ) =0  x + − =  x = ⇔ ⇔ (vô lý) ⇒ PT vô nghiệm x =  x − x = 0,25 Vậy hệ phương trình cho có nghiệm (x; y) = (2; 1) 1,0 Không giảm tính tổng quát, giả sử a + b + c =   1 2 Vì a, b, c ba cạnh tam giác nên a,b,c ∈  0; ÷ 0,25 0,5 0,25 Hanhtrangvaodaihoc.com - Hết -* Chú ý: Các cách giải khác điểm tối đa

Ngày đăng: 18/06/2016, 23:28

TỪ KHÓA LIÊN QUAN

w