Nghiên cứu ảnh hưởng của bức xạgamma lên tính chất quang của chấm lượng tử CdSe

73 345 0
Nghiên cứu ảnh hưởng của bức xạgamma lên tính chất quang của chấm lượng tử CdSe

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Nguyễn Đình Công NGHIÊN CỨU ẢNH HƯỞNG CỦA BỨC XẠ GAMMA LÊN TÍNH CHẤT QUANG CỦA CHẤM LƯỢNG TỬ CdSe LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2015 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Nguyễn Đình Công NGHIÊN CỨU ẢNH HƯỞNG CỦA BỨC XẠ GAMMA LÊN TÍNH CHẤT QUANG CỦA CHẤM LƯỢNG TỬ CdSe Chuyên ngành: Vật lý Chất rắn Mã số: 60440104 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS NGUYỄN THANH BÌNH Hà Nội – Năm 2015 Lời cam đoan Luận văn với tên đề tài nghiên cứu "Nghiên cứu ảnh hưởng xạ gamma lên tính chất quang chấm lượng tử CdSe" công trình nghiên cứu tôi, hoàn thành hướng dẫn TS Nguyễn Thanh Bình Luận văn không chép từ tài liệu người khác mà không xin phép, tham khảo trích dẫn Kết thực nghiệm luận văn không chép từ kết khác Nếu vi phạm hai điều này, xin hoàn toàn chịu trách nhiệm trước đơn vị đào tạo pháp luật Lời cảm ơn Lời cảm ơn lời cảm ơn đặc biệt tới TS Nguyễn Thanh Bình, người giao đề tài hướng dẫn thực luận văn Trong suốt trình thực luận văn, nhận hướng dẫn tận tình hội học hỏi nhiều kiến thức chuyên môn thầy kinh nghiệm sống Lời cảm ơn thứ hai, xin gửi tới PGS Nguyễn Xuân Nghĩa anh chị nhóm nghiên cứu, cho phép tham gia nhóm nghiên cứu trình chế tạo, có nhiều ý kiến chuyên môn đóng góp giúp cho trình thực hoàn thiện luận văn Lời cảm ơn thứ ba, xin gửi tới TS Đặng Quang Thiệu anh chị Trung tâm Chiếu xạ Hà Nội, thuộc Viện Năng lượng Nguyên tử Việt Nam, giúp trình chiếu xạ gamma cho mẫu nghiên cứu, quan đề tài Lời cảm ơn tiếp theo, xin gửi lời cảm ơn đến anh chị Trung tâm Điện tử học Lượng tử, Viện Vật lý, VHLKHVN Đã tạo điều kiện cho sử dụng hệ đo phân tích thực luận văn Tôi xin cảm ơn TS Phạm Đức Khuê, TS Phan Việt Cương, Trung tâm Vật lý Hạt nhân, Viện Vật lý, Viện HLKHVN, góp ý kiến thức chuyên môn Vật lý Hạt nhân, giúp trình tính toán liều lượng hấp thụ nghiên cứu thích hợp Tôi xin gửi tới thầy cô môn Vật lý, trường Đại học Khoa học Tự nhiên, ĐHQGHN Lời cảm ơn chân thành nhất, nơi tiếp nhận giáo dục Đại học Cao học Đã dạy bảo, truyền đạt cho kiến thức khoa học tự nhiên kinh nghiệm sống Và cuối xin gửi lời cảm ơn từ đáy lòng tới gia đình bạn bè, theo ngưỡng cửa đời, chỗ dựa vật chất tinh thần để đến ngày hôm Luận văn hoàn thành với hỗ trợ từ đề tài Nghiên cứu định hướng ứng dụng mã số: G/07/2012/HĐ-ĐHUD đề tài Hợp tác quốc tế IAEA Viện Vật lý Hà Nội, tháng 12 năm 2015 Học viên : Nguyễn Đình Công MỤC LỤC Danh mục ký hiệu chữ viết tắt eV : Electron volt (1 eV = 1,6.10-19V) ns : Nano giây (10-9) ps : Pico giây (10-12) PMT : Ống nhân quang điện (photonmultiplier tube) QDs : Chấm lượng tử (quantum dots) TCSPC : Hệ đếm đơn photon tương quan thời gian (Time Correlated Single Photon Counting) TTL : Transistor – transistor logic Danh mục hình vẽ Danh mục bảng biểu Mở đầu Lĩnh vực nghiên cứu vật liệu nano lĩnh vực thu hút nhiều nhà khoa học hàng đầu tham gia nghiên cứu Bắt đầu từ năm 1990 đến nay, thành thu có ý nghĩa ứng dụng thực tiễn, thay đổi mặt đời sống Vật liệu nano đáp ứng yêu cầu tính chất vật liệu khối đáp ứng yêu cầu tính chất khắt khe vật liệu tiên tiến Những ưu điểm vật liệu nano qua báo cáo tạp chí uy tín mà thể ứng dụng chúng, thiết bị điện tử, thiết bị chiếu sáng (đèn LED), thông tin quang laser, đánh dấu sinh học, thiết bị chuyển đổi lượng mặt trời (solar cell), cảm biến (sensor), … Điều kiện môi trường ảnh hưởng nhiều đến khả năng, chất lượng tuổi thọ thiết bị Với môi trường làm việc đặc biệt lò phản ứng hạt nhân, môi trường vũ trụ bầu khí trái đất Ở có nhiều xạ mang lượng cao nên vật liều làm việc môi trường Việc đánh giá cần thiết để biết vật liệu bị tác động nào, ảnh hưởng thay rổi làm sao, … để khắc phục lựa chọn phù hợp vật liệu làm thiết bị Tương tác xạ photon ánh sáng mặt trời với lượng cỡ lượng trạng thái kích thích điện tử tinh thể lượng thường bé 10 eV Những xạ có lượng lớn nhiều tia X, tia Alpha, tia gamma, tia Notron, tia Proton, tia Photon hãm, …cỡ vài mega electron volt đến vài chục mega electron volt chưa đề cập đến nhiều Việc nghiên cứu đánh giá cần phải xem xét nhiều mức độ khía cạnh, bước đầu với điều kiện sẵn có lựa chọn 10 Hình 3.7 Năng lượng hấp thụ đỉnh huỳnh quang dịch lượng cao hàm liều hấp thụ gamma 3.4.2 Suy giảm cường độ huỳnh quang theo liều hấp thụ gamma Những báo cáo tác giả Hong-Yeol Kim (10,11), Rohit Khanna(19), M Ali(17), Sharon M Weiss(9), X J Wang(23), Robert Z Stodilka(20), Marek Osinski(18) nghiên cứu ảnh hưởng xạ lượng cao xạ proton, gamma hay tia X lên chất bán dẫn, kết thu cường độ huỳnh quang suy giảm sau chiếu xạ Trong báo cáo này, nghiên cứu hệ CdSe CdSe/CdS lõi/vỏ nhận kết tương tự với dải liều hấp thụ 0-10 kGy Với kết thu thấy với liều hấp thụ gamma lớn độ suy giảm cường độ huỳnh quang lớn (hình 3.8) Trong dải liều hấp thụ nghiên cứu, mẫu CdSe suy giảm nhanh, với liều hấp thụ kGy cường độ huỳnh quang suy giảm 15%, với kGy 2%, với liều lớn kGy cường độ huỳnh quang bé với 10 kGy gần dập tắt huỳnh quang Mẫu CdSe/CdS (lõi/vỏ) tốc độ suy giảm chậm hơn, với liều hấp thụ kGy cường độ huỳnh quang 13.5%, với liều hấp thụ kGy cường độ huỳnh quang 6.5% với 10 kGy 3% cường độ huỳnh quang, điều thể rõ hình 3.9 thể tích phân cường độ đỉnh huỳnh quang hai loạt mẫu CdSe CdSe/CdS lõi/vỏ sau chiếu xạ xạ gamma Hình 3.8 Cường độ huỳnh quang suy giảm theo liều hấp thụ gamma, (a) mẫu lõi CdSe (b) mẫu lõi/vỏ CdSe/CdS Ngoài hạt photon gamma làm bóc phân tử bên hạt nano dẫn đến thu nhỏ kích thước, hạt photon gamma vào bên hạt tác động lên nguyên tử bên hạt nano tinh thể, với trường áp suất bên trong, nguyên tử bị tác động hạt gamma nhận lượng dịch chuyển khỏi vị trí cân trường mạng tinh thể, điều dẫn đến chất lượng tinh thể giảm, nên cường độ huỳnh quang suy giảm theo Với liều hấp thụ lớn bị ảnh hưởng nhiều dẫn đến cường độ huỳnh quang bé So sánh hai loại mẫu chấm lượng tử CdSe chấm lượng tử hệ CdSe/CdS lõi/vỏ hình 3.9, tốc độ giảm cường độ huỳnh quang mẫu CdSe nhanh CdSe/CdS lõi/vỏ, vùng tái hợp phát quang vùng CdSe, mẫu chấm lượng tử CdSe chịu tác động trực tiếp xạ gamma, mẫu CdSe/CdS lõi/vỏ có lớp CdS bên cản trở phần tia gamma vào tác động lên vùng tái hợp CdSe Hình 3.9 Tích phân diện tích cường độ huỳnh quang chuẩn hóa suy giảm theo liều hấp thụ gamma hai loạt mẫu lõi CdSe CdSe/CdS lõi/vỏ sau chiếu xạ gamma 3.4.3 Ảnh hưởng xạ gamma tới thời gian sống huỳnh quang điện tử Khảo sát thời gian sống huỳnh quang mẫu CdSe CdSe/CdS lõi/vỏ thực hệ đo huỳnh quang phân giải thời gian Viện Vật lý, Viện Hàn lâm Khoa học Công nghệ Việt Nam Kết hình 3.10 Để tìm thời gian sống huỳnh quang, luận văn sử dụng mô hình nhiều tâm phát quang thời gian sống thời gian sống trung bình tâm phát: I = ∑ I 0i * e (− t ) τi i (3.2) Thời gian sống trung bình tính theo công thức: τ tb ∑I = ∑I oi * τ i2 oi *τ i i i (3.3) Để tìm thay đổi thời gian sống tâm phát quang so sánh mẫu không chiếu xạ gamma mẫu chiếu xạ gamma, kết sử lý phần mềm OriginPro 8.5, fit hàm theo biểu thức 3.2, kết nhận phù hợp với mô hình tâm (i=2) phát quang, kết bảng 3.3 Kết cho thấy so với mẫu không chiếu xạ gamma, chấm lượng tử chiếu xạ thời gian sống trung bình τtb giảm dần giảm tăng liều chiếu Hình 3.10 Huỳnh quang phân giải thời gian chấm lượng tử mẫu CdSe CdSe/CdS lõi/vỏ so sánh với liều chiếu xạ gamma khác Bảng 3.3 Thời gian sống trung bình mẫu CdSe CdSe/CdS lõi/vỏ sau chiếu xạ gamma Liều chiếu xạ kGy kGy kGy kGy kGy 10 kGy τtb (CdSe) (ns) 13.2 12.2 11.5 8.7 6.6 1.8 τtb (CdSe/CdS) (ns) 17.1 16.1 9.8 5.0 3.2 2.8 Bảng 3.3 cho thấy thời gian sống huỳnh quang trạng thái kích thích có xu hướng giảm liều chiếu tăng, điều phù hợp mà kích thước hạt giảm xen phủ hàm sóng điện tử lỗ trống tăng lên, dẫn đến xắc suất tái hợp điện tử lỗ trống tăng, làm cho thời gian sống trung bình điện tử giảm Thông thường chấm lượng tử có nhiều sai hỏng pha tạp chất thường dẫn đến thời gian sống điện tử trạng thái kích thích tăng lên, trường hợp tác dụng xạ gamma không gây sai hỏng mạng tinh thể mà xô lệch vị trí nút mạng mạng tinh thể dẫn đến tinh thể không cũ gây hệ cường độ huỳnh quang giảm 3.5 Ảnh hưởng thời gian lên tính chất quang chấm lượng tử sau chiếu xạ gamma Trong phần tập trung khảo sát thời gian sau chiếu xạ gamma chấm lượng tử CdSe CdSe/CdS lõi/vỏ Kết thu thảo luận xoay quanh hai tượng thu tượng dịch đỉnh huỳnh quang phía lượng cao tượng phục hồi phần cường độ huỳnh quang theo thời gian sau chiếu xạ gamma 3.5.1 Hiện tượng dịch đỉnh huỳnh quang phía lượng cao chấm lượng tử theo thời gian sau chiếu xạ gamma Ảnh hưởng dung môi toluene nhắc đến báo cáo nhóm nghiên cứu PGS Nguyễn Xuân Nghĩa nghiên cứu tính chất quang học tinh thể nano CdSe(16) Đỉnh huỳnh quang dịch bước sóng ngắn theo thời gian hệ việc tan dần hạt nano chấm lượng tử vào dung môi toluen, kích thước hạt giảm dần theo thời gian với hiệu ứng kính thước hạt, đỉnh phổ huỳnh quang phía lượng cao kích thước hạt giảm Tuy nhiên trình diễn chậm, cần thời gian tương đối dài quan sát rõ tượng Mẫu sau chiếu xạ gamma với điều kiện bảo quản, dung môi môi toluene, chấm lượng tử CdSe CdSe/CdS lõi/vỏ sau chiếu xạ gamma, đỉnh huỳnh quang dịch phía lượng cao theo thời gian, liều hấp thụ lớn tốc độ dịch nhanh hàm liều hấp thụ L Hình 3.11 Đỉnh huỳnh quang chấm lượng tử sau chiếu xạ gamma tiếp tục dịch phía lượng cao theo thời gian (a) chấm lượng tử CdSe (b) chấm lượng tử CdSe/CdS lõi/vỏ Tốc độ dịch đỉnh huỳnh quang hạt chấm lượng tử tỉ lệ với liều chiếu, hình 3.11 thấy mẫu có liều hấp thụ lớn tốc độ dịch đỉnh huỳnh quang lớn tốc độ dịch giản dần theo thời gian, thấy sau chiếu xạ ngày đỉnh huỳnh quang dịch nhanh giản dần với ngày Hiện tượng giải thích hạt tan dần dung môi toluen, không chiếu xạ gamma tốc độ dịch chậm, cần thời gian dài nhận thấy thay đổi(16) Với mẫu chiếu xạ gamma, ảnh hưởng làm bứt phân tử phía hạt nano, xạ gamma làm yếu liên kết nguyên tử, phân tử lớp ngoài, tạo thuận lợi cho việc tan vào dung môi so với mẫu không chiếu xạ gamma Nhưng vào bên ảnh hưởng xạ gamma yếu nên tốc độ tan giảm dần, dẫn đến tốc độ dịch đỉnh huỳnh quang chậm dần So sánh hai mẫu chấm lượng tử CdSe CdSe/CdS lõi/vỏ thấy mẫu chấm lượng tử CdSe tốc độ dịch khoảng cách dịch lớn so với chấm lượng tử CdSe/CdS lõi/vỏ, sau 16 ngày mẫu CdSe với liều chiếu xạ kGy đỉnh huỳnh quang dịch khoảng lượng 0.048 eV, liều hấp thụ kGy mẫu CdSe/CdS lõi/vỏ đỉnh huỳnh quang dịch khoảng lượng 0.009 eV Có thể thấy hiệu độ âm điện Cd-S lớn Cd-Se nên lượng liên kết tinh thể CdS lớn CdSe, mà số phân tử bị bứt khỏi hạt nano ảnh hưởng xạ gamma mẫu CdSe/CdS lõi/vỏ so với mẫu CdSe Và dung môi toluen vậy, tốc độ tan CdS chậm CdSe, mẫu CdSe/CdS lõi/vỏ đỉnh huỳnh quang dịch so với mẫu CdSe 3.5.2 Hiện tượng hồi phục cường độ huỳnh quang chấm lượng tử CdSe CdSe/CdS lõi/vỏ theo thời gian sau chiếu xạ gamma So sánh cường độ huỳnh quang chấm lượng tử sau chi chiếu xạ gamma theo thời gian, kết nhận cường độ huỳnh quang tăng dần theo thời gian Cường độ huỳnh quang sau ngày đầu chiếu xạ tăng rõ rệt, ngày sau tăng chậm dần có xu hướng bão hòa Hình 3.12 Mẫu chấm lượng tử CdSe CdSe/CdS lõi/vỏ liều chiếu 5kGy, cường độ huỳnh quang phục hồi phần theo thời gian sau chiếu xạ Hình 3.13 So sánh tốc độ hồi phục cường độ huỳnh quang theo thời gian hai loại chấm lượng tử CdSe CdSe/CdS, liều hấp thụ 1kGy liều hấp thụ kGy Với liều chiếu 10 kGy mẫu CdSe suy giảm cường độ nhiều nhất, gần dập tắt, khả hồi phục huỳnh quang theo thời gian Những mẫu lại thu nhận tượng hồi phục huỳnh quang, hình 3.12 thể hồi phục cường độ theo thời gian chấm lượng tử CdSe CdSe/CdS lõi/vỏ liều chiếu chiếu xạ kGy, ý đến tốc độ hồi phục thấy, hồi phục nhanh ngày đầu chậm dần ngày tiếp theo, điều thể rõ hình 3.13 so sánh tốc độ hồi phục mẫu kGy kGy Với chấm lượng tử CdSe CdSe/CdS lõi/vỏ không chiếu xạ gamma, cường độ huỳnh quang theo thời gian gần không đổi So sánh độ hồi phục cường độ huỳnh quang chấm lượng tử CdSe CdSe/CdS lõi/vỏ thấy hình 3.12 3.13 So sánh mẫu với liều chiếu 1kGy, sau 15 ngày mẫu CdSe tăng từ 44.8% lên 86.1% cường độ huỳnh quang so với mẫu CdSe không chiếu xạ, tức tăng lên 41.3% cường độ huỳnh quang Còn với mẫu CdSe/CdS lõi/vỏ liều chiếu kGy tăng từ 71.8% lên 91.7 % tăng 19.9% so với cường độ mẫu CdSe/CdS lõi/vỏ không chiếu Như vậy, độ hồi phục mẫu CdSe lớn mẫu CdSe/CdS lõi/vỏ Kết thu tượng tương tự với liều chiếu kGy, kGy, kGy, 10 kGy so sánh bảng 3.4 bảng 3.5 Bảng 3.4 Phần trăm diện tích cường độ đỉnh huỳnh quang mẫu CdSe lõi hồi phục theo thời gian sau chiếu xạ, so sánh với mẫu trước chiếu xạ Thời gian (ngày) Phần trăm diện tích cường độ đỉnh huỳnh quang phục hồi (%) Mẫu 1kGy Mẫu 3kGy Mẫu 5kGy Mẫu 7kGy 44.8 11.4 2.2 1.1 63.3 24.3 5.3 2.8 71.7 26.9 6.1 3.2 78.6 28.2 6.9 3.6 83 29.7 7.9 3.7 10 83.3 30.7 3.8 15 86.1 31.4 8.1 3.9 Bảng 3.5 Phần trăm diện tích cường độ đỉnh huỳnh quang mẫu CdSe/CdS lõi/vỏ hồi phục theo thời gian sau chiếu xạ, so sánh với mẫu trước chiếu xạ Phần trăm diện tích cường độ đỉnh Huỳnh quang phục hồi (%) Thời gian (ngày) Mẫu kGy Mẫu kGy Mẫu kGy Mẫu kGy Mẫu 10 kGy 71.8 31 14.9 7.1 3.3 83.3 34.7 19.3 10.7 8.3 85 36.5 20.2 11.1 8.7 91.2 37.1 21.1 11.2 9.6 92.1 36.6 21.6 11.5 11.6 10 90.3 37.2 21.6 11.7 12.2 15 91.7 38.5 21.8 12.1 13.3 Về khả hồi phục tốc độ hồi phục mẫu với liều chiếu thấp hồi phục nhanh khả hồi phục lớn hơn, liều chiếu xạ lớn khả hồi phục bé, đến giới hạn mẫu CdSe chiếu xạ 10 kGy cường độ huỳnh quang bị dập tắt khả phục hồi lại Hiện tượng hồi phục huỳnh quang có chất với tượng tăng hệ số dẫn điện theo thời gian sau chiếu xạ proton lên LED InGaN/GaN mà báo cáo Hong-Yeol Kim (11) đề cập tới báo cảo Hiện tượng phục hồi cường độ huỳnh quang chấm lượng tử sau chiếu xạ gamma lý sau: -Ảnh hưởng xạ gamma lên nguyên tử tinh thể, làm cho số nguyên tử lệch khỏi nút mạng, dẫn đến giảm chất lượng tinh thể giảm cường độ huỳnh quang Dưới tác động dao động mạng tinh thể nhiệt độ phòng, giới hạn đàn hồi mạng tinh thể, theo thời gian phần nguyên tử bị dịch khỏi vị trí nút mạng dần trở lại ví trí cũ trước chiếu xạ gamma, dẫn đến hồi phục phần chất lượng tinh thể tăng trở lại cường độ huỳnh quang -Với liều chiếu gamma thấp, độ lệch mạng nguyên tử khỏi vị trí cân thấp, với liều chiếu xạ cao độ lệch mạng lớn Khi độ lệch mạng vượt qua giới hạn tự hồi phúc trạng thái ban đầu lúc đo cấu trúc tính thể bị thay đổi tính chất huỳnh quang bị thay đổi theo (ở tượng dập tắt huỳnh quang liều chiếu xạ 10 kGy) -Việc tồn lại lớp vỏ CdS bao bọc bên sinh áp suất lên lõi CdSe bên trong, điều dẫn đến hệ số đàn hồi C nguyên tử Cd với Se tăng lên tương tự lò xo tăng độ cứng nó, nên biên độ dao động mạng tinh thể lõi CdSe cấu trúc lõi/vỏ bé CdSe đơn nhiệt độ, điều dẫn đến khả hồi phục mẫu CdSe/CdS lõi/vỏ mẫu CdSe -Với liều hấp thụ lớn làm cho nguyên vượt qua giới hạn hồi phục để hồi phục mẫu chiếu 10 kGy vào chấm lượng tử CdSe, mẫu chấm lượng tử bị dập tắt cường độ huỳnh quang không khả hồi phục KẾT LUẬN Các kết nghiên cứu thu trình bày luận văn tóm tắt sau: Đã chế tạo chấm lượng tử CdSe, CdSe/CdS lõi/vỏ kích thước… Quan sát ảnh hưởng xạ gamma lên tính chất chấm lượng tử CdSe, CdSe/CdS lõi/vỏ, cụ thể là: -Dịch đỉnh huỳnh quang phía lượng cao theo liều hấp thụ, mẫu CdSe bị dịch mạnh so với mẫu CdSe/CdS lõi/vỏ -Suy giảm cường độ huỳnh quang theo liều hấp thụ xạ gamma chất lượng tinh thể xấu sau chiếu xạ gamma, huỳnh quang mẫu CdSe bị suy giảm mạnh mẫu CdSe/CdS lõi/vỏ -Thời gian sống điện tử trạng thái kích thích giảm dần theo chiều tăng liều hấp thụ gamma Nghiên cứu theo thời gian sau chiếu xạ: -Chấm lượng tử CdSe CdSe lõi/vỏ, đỉnh huỳnh quang tiếp tục dịch dung môi toluen theo thời gian sau chiếu xạ gamma -Cường độ huỳnh quang chấm lượng tử hồi phục phần theo thời gian, kết hồi phục lệch mạng tinh thể Với liều chiếu xạ 10 kGy mẫu CdSe khả hồi phục -Độ hồi phục chấm lượng tử CdSe tốt chấm lượng tử CdSe/CdS lõi/vỏ, phần lõi CdSe chịu áp suất gây bỏi lớp vỏ CdS làm cho khả dao động dịch chuyển so với CdSe không bọc vỏ TÀI LIỆU THAM KHẢO Tài liệu tiếng việt: 1- Nguyễn Thị Thanh Bình (2013), Bài giảng Quang Bán dẫn, giảng trường Đại học Khoa học Tự nhiên, ĐHQGHN 2- Trần Thị Kim Chi (2010), Hiệu ứng kích thuớc ảnh huởng lên tính chất quang CdS, CdSe CuInS, Luận án Tiến si Khoa học vật liệu 3- Nguyễn Đình Công (2013), Nghiên cứu tính quang vật liệu nano bán dẫn ZnSe chế tạo phương pháp thủy nhiệt, Khóa luận cử nhân 4- Tạ Đình Cảnh, Nguyễn Thị Thục Hiền (2005), Vật lý bán dẫn, Nhà xuất Đại học Quốc Gia Hà Nội 5- Nguyễn Thị Dung (2014), Nghiên cứu tính chất quang động học chấm lượng tử CdTe, Luận văn Thạc sĩ Vật lý 6- Nguyễn Trung Kiên (2014), Chế tạo nghiên cứu tính chất quang chấm lượng tử CdS/ZnSe, Luận văn Thạc sĩ Khoa học 7- Nguyễn Ngọc Long (2007), Vật lý Chất rắn, Nhà xuất Đại học Quốc Gia Hà Nội 8- Nguyễn thị Minh Thủy (2014), Nghiên cứu chế tạo tính chất quang chấm lượng tử bán dẫn hợp chất ba nguyên tố I-III-VI 2, (CuInS2), Luận án tiến sĩ khoa học vật liệu Tài liệu tiếng anh: 9- Girija Gaur, Dmitry Koktysh, Daniel M Fleetwood, Robert A Reed, Robert A Weller and Sharon M Weiss (2013), Effects of X-ray and gamma-ray Irradiation on the Optical Properties of Quantum Dots Immobilized in Porous Silicon, Proc of SPIE Vol 8725, 87252D 10- Hong-Yeol Kim, Travis Anderson, Michael A Mastro, Jaime A Freitas Jr., Soohwan Jang, Jennifer Hite, Charles R Eddy Jr., Jihyun Kim (2011), Optical and electrical characterization of AlGaN/GaN high electron mobility transistors irradiated with MeV protons, Journal of Crystal Growth 326 -62– 64 11- Hong-Yeol Kim, Jihyun Kim, F Ren, and Soohwan Jang (2010), Effect of neutron irradiation on electrical and optical properties of InGaN/GaN lightemitting Diodes, Journal of Vacuum Science & Technology B 28, 27 12- Jingbo Lim, Jian-Bai Xia (200), Exciton states and optical spectra in CdSe nanocrystallite quantum dots”, Physical Review B, 15 June 2000-I 13- Karuppasamy Kandasamy, Harkesh B Singh (2009), Synthesis and characterization of CdS and CdSe nanoparticles prepared from novel intramolecularly stabilized single-source precursors, Chem Sci., Vol 121, No 14- 3, May 2009, pp 293–296 Kenneth J Klabunde (2001), Nanoscale materials in chemistry, Wiley interscience 15- Light Conversion Applications, Polymers 2012, 4, 1-19 (polymers ISSN 20734360) 16- Nguyen Xuan Nghia, Le Ba Hai, Nguyen Thi Luyen, Pham Thu Nga, Nguyen Thi Thuy Lieu, and Phan The Long (2012), Identification of Optical Transitions in Colloidal CdSe Nanotetrapods, J Phys Chem C 2012, 116, 25517-25524 17- M Ali, O Svensk, Z Zhen, S Suihkonen, P.T.Torma, H Lipsanen, M Sopanen, K Hjort, J Jensen (2009), Educed photoluminescence from InGaN/GaN multiple quantum well structures following 40 Mev iodine ion irradiation, Physica B 404 (2009) 4925–4928 18- Nathan J Withers, Krishnaprasad Sankar, Brian A Akins, Tosifa A Memon, Tingyi Gu, Jiangjiang Gu, Gennady A Smolyakov, Melisa R Greenberg, imothy J Boyle, and Marek Osinski (2008), Rapid degradation of CdSe/ ZnS colloidal quantum dots exposed to gamma irradiation, Appplied Physics letters 19- 93, 173101 _2008 Rohit Khanna, Sang Youn Han, S J Pearton, D Schoenfeld, W V Schoenfeld, and F Ren (2005), High dose Co-60 gamma irradiation of InGaN 20- quantum well light-emitting diodes, Applied Physics Letters 87, 212107 (2005) Robert Z Stodilka, Jeffrey J L Carson, Kui Yu, Md Badruz Zaman, Chunsheng Li, and Diana Wilkinson (2009), Optical Degradation of CdSe/ZnS Quantum Dots upon gamma-Ray Irradiation, J Phys Chem C 2009, 113, 2580–2585 21- Stephen J Pearton, Richard Deis, Fan Ren, Lu Liu, Alexander Y Polyakov, Jihyun Kim (2013), Review of r adiation damage in GaN-based materials and devices, J Vac Sci Technol A, Vol 31, No 5, Sep/Oct 2013 22- S Li and G W Yang (2010), Phase Transition of II-VI Semiconductor Nanocrystals, J Phys Chem C 2010, 114, 15054–15060 23- Y.L Li Y L Li, X J Wang, S M He, B Zhang, L X Sun et al (2012), Origin of the redshift of the luminescence peak in InGaN light-emitting diodes exposed to Co-60 γ-ray irradiation, J Appl Phys 112, 123515 (2012) 24- Yu Yang, Wennuan Nan, Yuan Niu, Haiyan Qin, Fan Cui, Runchen Lai, Wanzhen Lin, and Xiaogang Peng (2012), Crystal Structure Control of ZincBlende CdSe/CdS Core/Shell Nanocrystals: Synthesis and Structure-Dependent Optical Properties, J Am Chem Soc 2012, 134, 19685-19693 25- Woggon U (1997), Optical Properties of Semiconductor Quantum dot”, Springer Tracts in Modern Physics 26- www.semiconductors.co.uk/ 27- Zeger Hens, Richard Karel Capek, Iwan Moreels, Karel Lambert, David De Muynck, Qiang Zhao, André Van Tomme, Frank Vanhaecke, Optical properties of zincblende Cadmium Selenide Quantum Dots, J, Phys Chem C 2010, 114, 6371-6376 [...].. .nghiên cứu ảnh hưởng bức xạ gamma tới sự thay đổi tính chất quang của chấm lượng tử CdSe, một loại vật liệu nano điển hình mang đặc trưng về tính chất quang học Và để so sánh mức độ ảnh hưởng của bức xạ gamma, luận văn đã nghiên cứu chấm lượng tử CdSe đơn thuần và chấm lượng tử bọc vỏ CdSe/ CdS lõi/vỏ So sánh ảnh hưởng của bức xạ gamma lên tính chất hấp thụ, huỳnh quang và thời gian sống điện tử. .. ΔSO=40 meV 23 1.4.3 Tính chất quang của chấm lượng tử CdSe Nghiên cứu tính chất quang của chấm lượng tử CdSe đã có rất nhiều báo cáo công bố quốc tế, các nghiên cứu tập trung đi sâu vào ảnh hưởng bởi hiệu ứng kích thước, ảnh hưởng bởi hóa chất phản ứng tổng hợp, pha tạp, … Ngoài ra, Các nghiên cứu tăng tính chất ưu việt cũng được quan tâm nhiều như bọc vỏ cho các chấm lượng tử Ảnh hưởng bởi hiệu ứng... suất của các chuyển mức không bức xạ cao(1,4,7) Bảng 1.1 Các thông số về xác suất tái hợp bức xạ B và thời gian sống τ của các hạt tải điện không cân bằng(1) 19 1.4 Tính chất chung của chấm lượng tử CdSe Khi ở kích thước nano, tính chất của chấm lượng tử thể hiện rõ ảnh hưởng của hiệu ứng kích thước hạt và hiệu ứng tăng diện tích bề mặt Điều này làm thay đổi tính chất Vật lý của vật liệu như tính chất. .. thiệu về vật liệu nano, tính chất cơ bản về cấu trúc tinh thể, cấu trúc vùng năng lượng, tính chất quang học của vật liệu bán dẫn và vật liệu nano bán dẫn, những yếu tố ảnh hưởng của trường ngoài như nhiệt độ, áp suất, điện trường và từ trường lên tính chất của vật liệu bán dẫn, tổng quan các kết quả công bố quốc tế về ảnh hưởng của bức xạ năng lượng cao lên tính chất quang của vật liệu bán dẫn Phần... được tương tự khi nghiên cứu các chấm lượng tử CdSe/ ZnS chiếu bức xạ gamma, cùng với suy giảm cường độ huỳnh quang, đỉnh huỳnh qang còn bị dịch về phía năng lượng cao(18,19,20) Ảnh hưởng của bức xạ năng lượng cao nhìn chung làm xấu đi tính chất của vật liệu như độ dẫn điện giảm, giảm cường độ phát quang, nguyên nhân do các bức xạ năng lượng cao làm giảm độ hoàn hảo của tinh thể Nghiên cứu về thời gian... CdSe tương ứng là 2.1, 2.4, 2.8, 3.1, 3.6 và 4.6 nm (13) Hình 1.8 Bờ vùng hấp thụ và đỉnh huỳnh quang dịch về phía năng lượng cao (bước sóng ngắn) khi giảm kích thước hạt tinh thể nano CdSe( 15) 1.4.4 Tính chất quang của chấm lượng tử CdSe/ CdS lõi/vỏ Chất lượng chấm lượng tử nano tinh thể bán dẫn phát quang được đánh giá bằng hiệu suất lượng tử, nhưng có nhiều nguyên nhân làm giảm hiệu suất lượng tử. .. đã nghiên cứu, đánh giá hiệu suất lượng tử của các chấm lượng tử với số đơn lớp của lớp vỏ, trên hình 1.11 chỉ ra sự thay đổi vị trí đỉnh huỳnh quang về bước sóng dài khi tăng số đơn lớp (hình bên trái) cùng với màu sắc của chấm lượng tử dưới ánh đèn tử ngoại thay đổi từ màu xanh nước biển cho tới màu đỏ đậm Hiệu suất lượng tử khi bọc vỏ cao hơn rất nhiều so với lõi không bọc vỏ, hiệu suất lượng tử của. .. khi chiếu bức xạ gamma, ảnh hưởng của thời gian lên tính chất của chấm lượng tử như dịch đỉnh hấp thụ và huỳnh quang về phía năng lượng cao theo thời gian và hiệu ứng phục hồi cường độ huỳnh quang theo thời gian của chấm lượng tử sau khi chiếu xạ gamma 11 12 Chương 1- TỔNG QUAN 1.1 Vật liệu bán dẫn và cấu trúc nano Từ cuối thế kỷ XX đến nay, chứng kiến sự phát triển mạnh mẽ của khoa học kỹ thuật và... bớt các ảnh hưởng xấu và làm tăng hiệu suất phát quang là bọc vỏ cho các chấm lượng tử Lớp vỏ là một loại vật liệu khác với chấm lượng tử bên trong, được nuôi tiếp phát triển theo cấu trúc tinh thể của lõi bao bọc bên ngoài của các chấm lượng tử, như vậy hình thành nên miền chuyển tiếp giữa lõi và vỏ Để bọc được vỏ cho các chấm lượng tử thì vật liệu làm vỏ phải có cấu trúc giống với cấu trúc của lõi... tác dụng của điện trường được gọi là hiệu ứng Franz – Keldysh(1) 1.5.3 Ảnh hưởng của từ trường Xét bán dẫn chịu tác dụng của một từ trường với vectơ cảm ứng từ  B hướng theo phương z, từ trường này không ảnh hưởng lên chuyển động của điện tử theo phương z Năng lượng liên quan đến chuyển động của điện tử theo phương z không bị lượng tử hóa Trong mặt phẳng Oxy vuông góc với phương của  B , điện tử thực

Ngày đăng: 18/06/2016, 15:29

Từ khóa liên quan

Mục lục

  • Mở đầu

  • Chương 1- TỔNG QUAN

    • 1.1. Vật liệu bán dẫn và cấu trúc nano

    • 1.2. Tính chất hấp thụ

    • 1.3. Tính chất phát quang

    • 1.4. Tính chất chung của chấm lượng tử CdSe

      • 1.4.1. Cấu trúc tinh thể

      • 1.4.2. Cấu trúc vùng năng lượng

      • 1.4.3. Tính chất quang của chấm lượng tử CdSe

      • 1.4.4. Tính chất quang của chấm lượng tử CdSe/CdS lõi/vỏ

      • 1.5. Ảnh hưởng trường ngoài đến tính chất quang.

        • 1.5.1. Ảnh hưởng bởi nhiệt độ

        • 1.5.2. Ảnh hưởng của điện trường

        • 1.5.3. Ảnh hưởng của từ trường

        • 1.5.4. Ảnh hưởng bởi hạt năng lượng cao

        • Chương 2 –KỸ THUẬT THỰC NGHIỆM

          • 2.1. Phương pháp chế tạo

          • 2.2. Chiếu xạ gamma

          • 2.3. Phương pháp phân tích

            • 2.3.1. Kính hiển vi điện tử truyền qua

            • 2.3.2. Phương pháp đo hấp thụ

            • 2.3.3. Kỹ thuật đo phổ huỳnh quang

            • 2.3.4. Hệ đo huỳnh quang phân giải thời gian-TCSPC

            • Chương 3 - KẾT QUẢ VÀ THẢO LUẬN

              • 3.1. Tổng hợp chấm lượng tử CdSe và chấm lượng tử CdSe/CdS lõi/vỏ

              • 3.2. Ảnh vi hình thái của chấm lượng tử

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan