1. Trang chủ
  2. » Giáo Dục - Đào Tạo

chuyên đề phương trình vô tỷ megabook

86 441 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 86
Dung lượng 5,27 MB

Nội dung

PHNG PHP GII PHNG TRèNH Vễ T I PHNG PHP BIN I TNG NG Bỡnh phng v ca phng trỡnh a) Phng phỏp Thụng thng nu ta gp phng trỡnh dng : A B C D , ta thng bỡnh phng v , iu ú ụi li gp khú khn Khi gp phng trỡnh dng: A B C Ta lp phng v phng trỡnh A B 3 A.B A B C v s dng phộp th : A B C ta c phng trỡnh : A B 3 A.B.C C Vớ d Vớ d 1) Gii phng trỡnh sau : Gii: k x x 3x x x Bỡnh phng v khụng õm ca phng trỡnh ta c: x 3x x x x , gii phng trỡnh ny l khụng khú nhng Phng trỡnh gii s rt n gin nu ta chuyn v phng trỡnh : 3x x x x Bỡnh phng hai v ta cú : Th li x=1 tha x x x 12 x x Nhn xột : Nu phng trỡnh : f x g x h x k x M cú : f x h x g x k x , thỡ ta bin i phng trỡnh v dng : f x h x k x g x sau ú bỡnh phng ,gii phng trỡnh h qu gii xong nh kim tra li nghm xem cú tha hay khụng? Vớ d 2) Gii phng trỡnh sau : x3 x x2 x x x Gii: iu kin : x Bỡnh phng v phng trỡnh ? Nu chuyn v thỡ chuyn nh th no? Ta cú nhn xột : (2) x3 x x x x , t nhn xột ny ta cú li gii nh sau : x x3 x x2 x x x3 http://megabook.vn Bỡnh phng v ta c: x x3 x2 x x x x3 x Th li : x 3, x l nghim Qua li gii trờn ta cú nhn xột : Nu phng trỡnh : f x g x h x k x M cú : f x h x k x g x thỡ ta bin i f x h x k x g x Trc cn thc 2.1) Trc cn thc xut hin nhõn t chung Phng phỏp Khi gp cỏc phng trỡnh vụ t m ta cú th nhm c nghim x0 thỡ phng trỡnh luụn a v c dng tớch x x0 A x ta cú th gii phng trỡnh A x hoc chng minh A x vụ nghim , gii quyt trit ta cn chỳ ý iu kin nghim ca phng trỡnh cú th ỏnh giỏ phng trỡnh A x bng phng phỏp o hm hoc s dng cỏc bt ng thc Vớ d 1) Gii phng trỡnh sau : 3x x x x x x 3x Gii: Ta nhn thy : 3x x x x x v x x 3x x Ta cú th trc cn thc v : x x x x x ( x 2) 3x2 5x x x 3x x x 3x 2 x x 3x D dng nhn thy x=2 l nghim nht ca phng trỡnh Vớ d 2) Gii phng trỡnh sau : x 12 3x x Gii: phng trỡnh cú nghim thỡ : x 12 x x x Ta nhn thy : x=2 l nghim ca phng trỡnh , nh vy phng trỡnh cú th phõn tớch v dng x A x , thc hin c iu ú ta phi nhúm , tỏch nh sau : x 12 x x x2 x 12 x x2 x2 x2 x x x 2 x2 x 12 http://megabook.vn x2 D dng chng minh c : x2 x 12 Vớ d 3) Gii phng trỡnh : x x 0, x x 5 x3 Gii :k x Nhn thy x=3 l nghim ca phng trỡnh , nờn ta bin i phng trỡnh x x x x x3 Ta chng minh : x x x 2 3 x3 x x x x2 x3 x 2 x 3x x2 x3 Vy pt cú nghim nht x=3 Vớ d 4) Gii phng trỡnh: x x x x Gii: iu kin: x Nhn thy phng trỡnh trờn cú nghim x nờn ta ngh n cỏch gii phng trỡnh trờn bng phng phỏp nhõn lng liờn hp x x x x PT x x x x x x x 1 x 1(*) x x 1 1 1; VT (*) Ta cú: x x Mt khỏc x VP(*) x (*) vụ nghim Vy phng trỡnh ó cho cú nghim nht x=3 Vớ d 5) Gii phng trỡnh: x x x x x PT x x x x x x 2 x x x x x x x x2 x x x x x 2x x x x x2 2x x x 2x x x x2 x x Ti ta phỏt hin lng x x http://megabook.vn Ta thy x=-2 khụng l nghim ca phng trỡnh nờn ta chia hai v phng trỡnh cho x+2 ta cú x2 x x2 x Gi s ta cn thờm vo hai v phng trỡnh mt lng mx+n ú ta x2 x2 x x x (mx n) (mx n) x2 cú m2 x 2(1 mn) x n2 m x2 (1 2m n) x 2n x2 x x (mx n) m 2(1 mn) n Ta cn chn m, n cho T ú ta cú m=0, n=3 m 2m n 2n Vớ d 6) Gii phng trỡnh: x x x x x Gii: iu kin xỏc nh: x PT x x x x x x x x x x 2x x x 1 x x x x x x * Vi x x (tha iu kin) x (2) * Nu x thỡ suy ra: x 2x x 5 Vi iu kin x , ta cú: VP ca (2) x 6;VT 2 Do ú pt(2) vụ nghim Hay pt(1) khụng cú nghim khỏc Vy pt(1) cú nghim nht x Vớ d 7) Gii phng trỡnh sau: x3 x x 16 x 12 x x x x x Gii: iu kin: x3 x x x x x x Phng trỡnh c vit li nh sau: 2( x 1)2 x3 (2 x 1) (2 x 1) (2 x 1) 4(2 x 1) x x x x 1 x x x3 (2 x 1) A B A B Vi A 2( x 1)2 x (2 x 1) B (2 x 1)2 (2 x 1) (2 x 1)3 4(2 x 1) (2 x 1)3 4(2 x 1) Vỡ x A 1; B x A B Suy PT x x 2 http://megabook.vn 2.2) a v h tm a) Phng phỏp Nu phng trỡnh vụ t cú dng A B C , m : A B C dõy C cú th l hng s ,cú th l biu thc ca x Ta cú th gii nh sau : A B C A B A B C A C A B , ú ta cú h: A B b) Vớ d Vớ d 1) Gii phng trỡnh sau : x x x x x Gii: Ta thy : x x x x x x khụng phi l nghim Xột x Trc cn thc ta cú : 2x 2 x 2x2 x 2x2 x 2x x x x x x x x x 2 Vy ta cú h: 2x x x 2 x x x x x x Th li tha; vy phng trỡnh cú nghim : x=0 v x= x2 x x x 3x Ta thy : x x x x x x , nh vy khụng tha iu kin trờn.Tuy Vớ d 2) Gii phng trỡnh : nhiờn Ta cú th chia c hai v cho x v t t thỡ bi toỏn tr nờn n gin hn x Nhn thy x=0 khụng phi l nghim, chia hai v pt cho x ta cú t t 1 1 x x x x ta cú phng trỡnh mi l t t t t vic gii phng trỡn.h ny l x hon ton n gin Ta cú t2 t t2 t t t t t 2t t t t t 2t T ú ta cú h sau : t2 t t2 t t x 2t 10 2t t t t x t t t t http://megabook.vn Vớ d 3) Gii phng trỡnh: x x 24 x 59 x 149 x Gii: Phng trỡnh xỏc nh vi mi x thuc R Phng trỡnh cú dng: 5(5 x )2 5(5 x) x x 2 x x 24 x 59 x 149 x x 24 x 59 x 149 x 5(5 x) (*) x x 24 x 59 x 149 (*) x x 24 x 59 x 149 5( x 5) Kt hp vi phng trỡnh bi ta cú h : x x 24 x 59 x 149 5( x 5) x x 24 x 10 x x 24 x 59 x 149 x x 4( L) x x 19 (TM ) x x 24 (2 x 10) 19 Vy phng trỡnh cú nghim l : x 5; x 3 Phng trỡnh bin i v tớch S dng ng thc *) u v uv u v *) au bv ab vu u b v a *) A2 B Vớ d 1) Gii phng trỡnh : Gii: PT x 1 x x x 3x x x x Vớ d 2) Gii phng trỡnh : x Gii: + x , khụng phi l nghim x2 x x2 x x x x x x x + x , ta chia hai v cho x: Vớ d 3) Gii phng trỡnh: Gii:iu kin : x x x x x x2 4x PT x 2x x x x x 1 x http://megabook.vn 4x x x3 x3 Vớ d 4) Gii phng trỡnh : Gii: k: x Chia c hai v cho 4x 4x 4x x : x x3 x3 x Vớ d 5) Gii phng trỡnh: x x x x x Gii: iu kin x t a x , b x 1; a, b ab x x Phng trỡnh ó cho tr thnh: b 2a 2b ab a b b a b b - Nu a=b thỡ x x x x x tha iu kin bi - Nu b=2 thỡ x x Vy phng trỡnh ó cho cú nghim nht x=3 Dựng hng ng thc Bin i phng trỡnh v dng : Ak B k Vớ d 1) Gii phng trỡnh : 3x x 3x Gii: k: x ú pt cho tng ng 3 10 10 : x 3x x x x 3 3 Vớ d 2) Gii phng trỡnh sau : x x x Gii: k: x phng trỡnh tng ng : x x x x 9x2 x 97 x x 18 Vớ d 3) Gii phng trỡnh sau : 3 x x x 3 x x Gii : PT x 3x x II PHNG PHP T N PH Phng phỏp t n ph thụng thng * i vi nhiu phng trỡnh vụ vụ t , gii chỳng ta cú th t t f x v chỳ ý iu kin ca t nu phng trỡnh ban u tr thnh phng trỡnh cha mt bin t quan trng hn ta cú th gii c phng trỡnh ú theo t thỡ vic t ph xem nh hon ton Núi chung nhng phng trỡnh m cú th t hon ton t f x thng l nhng phng trỡnh d http://megabook.vn Vớ d 1) Gii phng trỡnh: iu kin: x Nhn xột x x2 x x2 x x x x 1 x x thỡ phng trỡnh cú dng: t t t Thay vo tỡm c x Vớ d 2) Gii phng trỡnh: x x x t t Gii iu kin: x t2 t t x 5(t 0) thỡ x Thay vo ta cú phng trỡnh sau: t 10t 25 2 (t 5) t t 22t 8t 27 16 (t 2t 7)(t 2t 11) Ta tỡm c bn nghim l: t1,2 2; t3,4 Do t nờn ch nhn cỏc gỏi tr t1 2, t3 T ú tỡm c cỏc nghim ca phng trỡnh l: x vaứ x Cỏch khỏc: Ta cú th bỡnh phng hai v ca phng trỡnh vi iu kin x x Ta c: x ( x 3) ( x 1) , t ú ta tỡm c nghim tng ng n gin nht l ta t : y x v h) v a v h i xng (Xem phn dt n ph a Vớ d 3) Gii phng trỡnh sau: x x iu kin: x t y x 1( y 0) thỡ phng trỡnh tr thnh: y y y 10 y y 20 ( vi y 5) ( y y 4)( y y 5) y T ú ta tỡm c cỏc giỏ tr ca x 21 17 (loaùi), y 2 11 17 Vớ d 4) Gii phng trỡnh sau : x 2004 x 1 x Gii: k x t y x PT y y y 1002 y x http://megabook.vn 3x x Vớ d 5) Gii phng trỡnh sau : x x x Gii: iu kin: x Chia c hai v cho x ta nhn c: x x 1 x x , ta gii c x t t x Vớ d 6) Gii phng trỡnh : x x4 x2 2x Gii: x khụng phi l nghim , Chia c hai v cho x ta c: x x x x 1 , Ta cú : t t t x x t t= x Vớ d 7) Gii phng trỡnh sau: x x x x x x x2 x Li gii: iu kin x ; 0;1 2 Nu x t (1) suy x0 h cng vụ nghim Xột x[...]... 2 Xây dựng phương trình vô tỉ bằng phương pháp lượng giác như thế nào ? Từ công phương trình lượng giác đơn giản: cos 3t  sin t , ta có thể tạo ra được phương trình vô tỉ Chú ý : cos 3t  4cos3 t  3cos t ta có phương trình vô tỉ: 4 x 3  3 x  1  x 2 Nếu thay x bằng 1 ta lại có phương trình : 4  3x 2  x 2 x 2  1 x (1) (2) Nếu thay x trong phương trình (1) bởi : (x-1) ta sẽ có phương trình vố tỉ... 2  3)  VT Nếu x  1  VT  2; Suy ra mọi nghiệm phương trình đều thuộc  1;1 đặt x= cost t   0;   Phương trình trở thành cos 3t  1   5 7  cos  t1  ; t2  ; t3  2 3 9 9 9 Vậy phương trình có 3 nghiệm Ví dụ 4) Giải phương trình: Giải: Điều kiện x  8 3 ( x  1)2  2 3 x  1  ( x  5) x  8  3x  31  0 29 http:/ /megabook. vn Phương trình đã cho có dạng ( x  1)  3 ( x  1)2  2 3 x... là nghiệm của phương trình là x  {2;3} 1 Ví dụ 2) Giải phương trình: 2 1  x  4 x  4 2 Điều kiện: 0  x  2  1  2  1  x  u Đặt  0u 2  1, 0  v  4 2  1  4 x  v 1  u  v 1   4 u  v  2   4 2 Ta đưa về hệ phương trình sau:   2 u 2  v 4  2  1  1  v   v 4  2  1    4 2  Khi đó phương trình chuyển về hệ phương trình sau:  2 1   Giải phương trình thứ 2: (v... giải 1 trong 2 phương trình: n a  f  x   u hoặc m b  f  x  v 5.2 Xây dựng phương trình vô tỉ từ hệ đối xứng loại II  Ta hãy đi tìm nguồn gốc của những bài toán giải phương trình bằng cách đưa về hệ đối xứng loại II  x  12  y  2  Ta xét một hệ phương trình đối xứng loại II sau :  2  y  1  x  2 (1) việc giải hệ này (2) thì đơn giản Bây giời ta sẽ biến hệ thành phương trình bằng cách... 4 2 24 http:/ /megabook. vn 2 B  3B 2  * Do A2  AB  B 2   A     0 nên (5) không thể xảy ra 2 4  5 3 Phương trình có 3 nghiệm x  2; x  4 Ví dụ 4) Giải phương trình: 3 3x  4  x 3  3 x 2  x  2 Phương trình đã cho tương đương với 3 3 3x  4  2 x  3   x  1  x  13  2 x  y  4 Đặt y  1  3 3 x  4 Ta có hệ phương trình  3  y  1  3x  4 Trừ hai phương trình của hệ,... viết lại phương trình: 2  x 2  4 x  5   3  x  4   5 ( x 2  4 x  5)( x  4) Đến đây bài toán được giải quyết Đây là ví dụ điểm hình về phương trình:  u   v  mu 2  nv 2 học sinh cần chú ý 3 Phương pháp đặt ẩn phụ không hoàn toàn  Từ những phương trình tích x 1 1 x 1  x  2  0 , 2x  3  x 2x  3  x  2  0       Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không... sau:  2  y  2 y  2( x  1) Trừ hai vế của phương trình ta được ( x  y )( x  y )  0 Giải ra ta tìm được nghiệm của phương trình là: x  2  2 Ví dụ 2) Giải phương trình: 2 x 2  6 x  1  4 x  5 Giải Điều kiện x   5 4 Ta biến đổi phương trình như sau: 4 x 2  12 x  2  2 4 x  5  (2 x  3) 2  2 4 x  5  11 Đặt 2 y  3  4 x  5 ta được hệ phương trình (2 x  3) 2  4 y  5 sau:   ( x... thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát Thông thường các phương trình này thường xuất hiện theo dạng :  ax 2  bx  c  (mx  n) px  q   ax 2  bx  c  (mx  n) px 2  qx  r   ax3  bx 2  cx  d  (mx  n) ax3  qx 2  rx  s  Để giải các phương trình dạng này ta thường đặt f ( x )  t sau đó đưa phương trình về dạng:  t 2  (mx ... x  2   0  x  1  x  2 Thử lại thấy thỏa mãn Vậy phương trình đã cho có hai nghiệm phân biệt là x=1 và x=-2 III PHƯƠNG PHÁP ĐÁNH GIÁ 1 Dùng hằng đẳng thức :  Từ những đánh giá bình phương : A2  B 2  0 , ta xây dựng phương trình dạng A2  B 2  0 Từ phương trình  2   5x  1  2x   2 9  5 x  2  x  1  0 ta khai triển ra có phương trình :  4 x 2  12  x  1  4 x 5 x  1  9  5 x ... Vấn đề ở đây là ta phải chọn  như thế nào để phương trình (*) có  chẵn  ( x  h( x ))2 2 Tức là   (mx  n)  4 g ( x)   (Điều kiện cần là “hệ số của x 2 trong  phải 2  (2 x  h( x)) là số chính phương ) Phương pháp giải được thể hiện qua các ví dụ sau 13 http:/ /megabook. vn   Ví dụ 1) Giải phương trình : x 2  3  x 2  2 x  1  2 x 2  2 Giải: Đặt: t  x 2  2 , ta có phương trình

Ngày đăng: 12/06/2016, 22:07

TỪ KHÓA LIÊN QUAN

w