TS IMGUYỄN VĂN PHƯỢNG Cơ HỌC KẾT CẤU T Â P I I N H À XUẤT B Ả N XÂY D ự N G HÀ N Ò I - LỜI NÓI ĐẦU C ( ỉ h ọ c k ế ỉ c ẩ u l â t ì ì ô / ỉ k ĩ t l ì i i ậ í c s } ì l ì ằ m Ịrcỉiỉi^ b ị CÌỈO k ĩ s v ù s i ỉ ỉ l i v i é ỉ ỉ t ì ì i i ộ c ì ì í ị ủ n l ỉ x ú y d ự ỉ ỉ i ỉ CÔỈỈỊỈ t r ì n l ỉ ììlìữìỉiỊ k i ế n í l ỉ c c o ’ h ã n c ầ ì ì ĩ l ì ì ể l d ê k ế t iiợp vcYi c c m ô n c h u y ê n m ô n k h c ị ị i i q u y ể í c ú c v ấ ỉ ì d ê ỉ i ê n ( l a a ỉ ỉ cỉ cn v i ợ c ỉ ì ì ì ế ỉ k ế c ù ỉ ỉ í Ị ỉ i l ỉ i í v i ệ c í l i i c ô ỉ i ị j c c c ô ỉ ì Ịị í r ì t ỉ l i x â y clựỉỉ^^ \'â m ôỉì n ộ i c lu ỉỉí> sú c lì c íi('ọ 'c C V / Ììọc kếĩ cấỉi p h iê n so n p lỉìi h ợ p \'(' )i c lỉiiV ìì^ trìỉilì iỊÌả ỉiiị d y d i i ỉ ì ^ ( ' h o h ệ d o ĩ ụ o k ĩ s c ủ c ỉ ỉ g ã ỉ ì l ỉ x â y (lựỉỉi> c ô ỉiíỉ irin lì Đ ế p h ỉ ) h ợ p y(yi c c h ọ c p ì ỉ ầ t ì C/IÌỴ d ị i ì l ì v ù d i é i ỉ kiựềì â i ì l o t , s c h d ợ c h i ê ì i s o n ỉ l ì ủ n l ỉ lìcỉì ĩ ậ p : 'r o Ịi^ ĩỉììh ÍO C U Ì Cơ học kết cấUy tập I Co học kết cấu, tập ề ìỉỏ ị c lỉiíơ ỉìiỊ n ỉK c , tlc h ù i ịậ p ỊỊi^ o i n ộ i d iiỊĩ^ liỉv ệ n / c i/ ) n h ủ ì n n ộ i c ỉin ií^ l í í h t ỉ v ế ĩ c íồ n ^ ỉ l ỉ i n â ỉ i i ỉ c a o c ó Ịilỉiẻ ii c ỏ ỉ^ id x i ỉ ì d ọ c c lìâ ỉỉ iịả n ^ íro ỉỉiỊ h iê tì s o n ílìà n li v ù c c d ỉi^ c n ì (/n s ự ìí th iix c ỉ c ò n iỊÌììp (/u a n //!*//'()■/ d ụ c k ĩ ỉìủ n iị ilỉự c lỉà ỉìh ỉìlìtfỉìí^ k h ó íá m Ịrìỉi/i h ủ y Ịim lìic ỉi vận iic h ìlì k h ó i lìliữ n ^ n h ữ ỉiỊị ỷ k iế n (ú c sâ u v í c lii liliữ ỉiịị c lụ n ^ H y d ã ỉliiê n c lỏ ììịỊ ị ịỏ p só í, củ a ỉỉ\ịììỉệ p r*m‘> ✓ • > l c giá íá c h tiỉì Chương PHƯƠNG PHÁP Lực TÍNH CÁC HỆ PHẲNG s i ê u t ĩ n h 5.1 K H Á I N IỆM VỀ HỆ P H Ẳ N G SIÈU TĨNH Địn h nghĩa hệ siêu tĩnh N hư biết mội hệ kết cấu biến hình đủ liẽn kết gọi hệ lĩnh dịnh Klìi hệ tính clịnh (hình la, b) chịu lải trọng cần dùng ba phương irình cân lĩnh học có thê xác định phán lực nội lực hệ a) p r b) K )A c) c D B Ầ , dì _ A , K e) 1' c ' D B ỉỉin h 5.1 Tuv nhiên, troiig thực tế ihường gập hệ kết cấu dùng phưưna (rình cán tĩnh học chưa thể xác định phản lực nội lực troag hệ>V í dụ hệ dầm hệ khung trẽn hình 5.1c, d Mỗi hệ xem m ột m iếng cứng đ cu nối với mặt đất bốn liên kết ihanh nên với ba phương trình cân bằng'tĩnh học chưa đủ đc tìm bốn phản lực Irong bốn liên kết ihanh, không thê xác định nội lực hệ Riêng phần đầu thừa CD khung hình 5.1d ũ n h định nên có thê xác định nội lực phần hệ nàv lừ ba phương trình cân bàng tĩnh học Về cấu tạo hình học đế hệ bất biến hình hệ chí cần nối với mặt đất ba licn kết bố trí hợp lí vừa đủ Như mổi hệ thừa liên kết ktiông cẩn thiết cho cấu tạo hình học cần cho làm việc hệ N hũng hệ kếl cấu có chung đặc điểm irên gọi hộ siêu tĩnh Vậy: ■5 Hộ siêu tĩnh hệ chi dùng phưưiia trình cân bằnỉz lĩnh học thi chưa thó xác địn h phàn lực nội lực troníí toàn hệ hay \'ài phán cứa hõ Hệ siêu tĩnh hệ bất biên hình \’à có liên kết thừa Bậc siêu íĩnh Đ ế đặc trưng cho số lièn kết thừa hệ siêu lĩnh, irong học kcì cấu sử dune khái niệm bậc siêu tĩnh B ậ c s i ê u t ĩ n h c ủ a h ệ sièii t ĩ nh b n g s ố l i ê n kẽì i h a tu'ưng d ư n u s ô l icn kcì t h a n h số liên kết cần thiốl \'ừa đii để hệ bất biến hình Nếu kí hiệu bậc siêu lĩnh n từ công thức (1-5) chưưng suy cỏniỉ ihiit xác định bậc siêu tĩnh n hệ siêu tĩnh là; n = 3H + 2K + T + Q , - D (V I) M ỗi hộ hình 5.1c, d có thừa liên kết thuộc liên kẽì tưa nên dcLi có bậc siêu tĩnh n = Tuy nhiên, licn kếl Ihanh irong hệ siêu lĩnh có Ihc xcin liên k ế t t h a V í d ụ l i ê n k ế t i h a n h n ằ m n a a n g g ố i A c ứ a d ầ m s i c u l ĩ n h I r ê n h i n h 'i.lc kh ôn g phai liên kêì thừa bị loại bỏ hệ chí nôi với mặt dất bần2 > '1 H ìn h 5.7 có liên kết thừa B ngăn cản Tại liên kết xuất phản lực dầm xuất nỏi lực nhiệt - Khi liên kết lựa có chuyển vị cưỡng bức, dầm aj tĩnh định hình 5.8a bị nghiêng tự do, d ầ m có chuyên vị không xuất biến d ạn g nội lực, dầm siêu tĩnh hình 5.8b b) kliông thể nghiêng có liên kết thừa c ngãn cản D ầm bị biến dạng Tại liên kết xuất H ìn h 5.8 phản lực dầm xuất hiện-các nội lực chuyển vị gối tựa gây t - Khi hệ siêu tĩnh có c h ế tạo lắp ráp không ch ín h xác, cháng hạn chiều dài chế tạo E F hệ siêu tĩnh hình 5.9 ngắn chiều dài thiết k ế đoạn A, sau lắp ráp E F bị dãn làm AB bị uốn cong, liên kết xuất phản lực hệ H ìn h 5.9 xuất nội lực c h ế tạo không xác gây Tính chất hệ siêu tĩnh có thê sử dụng để trước hệ chịu tải trọng tạo hệ trạng thái biến dạng nội lực ban đầu ngược chiều với trạng thái biến dạng nội lực hệ chịu tải trọng, làm cho biến dạng nội lực tổng cộng hệ nh ỏ phân bố hợp lí Do tiết kiệm vật liệu tăng khả chịu lực hộ Kết cấu có trạng thái chuyển vị nội lực ban đầu trước chịu tải trọng gọi kết cấu có ứng suất trước hay gọi tắt kết cấu ứng suất trước Nội lực hệ siêu tĩnh phụ thuộc vào vật liệu hình dáng, kích thước tiết diện cúa cấu kiện hệ Nội dung trình bày mục cho thấy rõ để xác đ ịnh phản lực nội lực hệ siêu tĩnh phưcíng trình cân tĩnh học cần bổ sung thêm phương trình biểu thị điều kiện biến dạng c h u y ể n vị m ộ t số tiết diện hệ Biến dạng chuyến vị lại phụ thuộc vào vật liệu, hlnh d n g kích thước tiết diện cấu kiện, tức phụ thuộc vào độ cứng EA , EI, G A cấu kiện Do việc tính siêu lĩnh phức tạp hưn việc tính liệ tĩnh dịnh, cụ th£- cần giả định trước hình dáng kích thước tiêì diện chọn vật liệu Trẽn S(V xác định nội lực chuyển vị, theo kết nhận kiếm tra lại kích Uuiớc tiết diện chọn 5.2 NỘI DUNG PHƯƠN í ; TRỌN(Ỉ BẤT ĐÔNG pháp L ự c TÍNH HỆ S IÊ U TĨNH CHIU TẢI Hệ Giả sử cần xác định nội lực chuvển \'ị hệ siêu lĩnh bâì kì chịu tái trọiis Iiliư hình 5.1 Oa Để dể dàng xác định nội lực chuyển vị, trình tính không thực trực tiếp hệ siêu tĩnh mà Ihực hệ tương ứng suy từ hệ siêu ũnh cho cách loại bò bớt liên kếl thừa thiết lập điều kiC'n bố sung cho hai hệ làm việc giông lực chuycn vị, Hệ tương ứng suy từ hệ siêu tĩnh cách loại bò bớt liên kéì thừa dưi.íc gọi hệ Nếu chí loại bỏ số liên kếl thừa hệ cư siêu tĩnh cỗ bậc sièu tĩnli th.ip Nếu loại bỏ tất liên kết Ihừa Ihì hệ tĩnh định nên có ihế dẻ dàng xac định nội lực chuyến vị Vì váy Irong đa sô trường hợp thường chon dùng liệ bán tĩnh định Có nhiều cách loại bỏ tất liên kết thừa để có hệ bán tĩnh dinh Trên hình 5.10b c, d số hò bán lĩnh định suy từ hệ siêu tĩnh liìiih 5.1 Oa Vì trình tính thực hệ nên thường chọn hệ cư bán cho phép dễ dàng xác định nội lực chẳng hạn chọn hệ hệ tĩnh định dưn giản có liên kết ngàm B hình lOb Để thiết lập điểu kiện bổ sung cần so sánh hệ siêu tĩnh hệ bán cho hai hệ làm việc giống lực chuyên vị Ẩ ' Ẩ _ ^ A K ỉ/ĩứ? c /7777? c) ứ) /fí777 H inh 5.10 10 Hình 5.11 - Vc lực: Tại vỊ trí loại bó liên kết hệ lực, hệ siêu lĩnh \'ị trí tương ứng nói chung có phản lực Do trẽn hệ cần đặt lực tưoìig ứng \'ào vị trí liên kết bị loại bỏ kí hiệu X |, X , X hìiìh 5.11 Nhữiig lực chưa biết chiều trị sô' nên giả định có chiều xem án số cần tìm VI lấy lực làm ẩn số nên phương pháp gọi phương pháp lực • Vể chuyển vị; Cliuvèn vị vỊ trí theo phương liên kết bị loại bỏ hệ tồn tại, tròn hệ siêu tĩnh chuyến vị tương ứng không Do hệ cần thiêì lập điểu kiện chuyến vị tưoTig ứng với vị trí phương liên kết bị loại b(') phái khòng, hay nói cách khác hệ bán chuyển vị tương ứng với vị tn' \’ù phương cúa ấn sổ lực X |, X , lực X |, X X lải trọng cho gây phải bàng không A = v i K = 1, , , ^K(\ i \ \5.p) • 7'rưừng hợp lổng quát hệ siêu tĩnh có n bậc siêu lĩnh chịu tải trọng bất động Ihực iưcmg lự trên, sau chọn hộ tĩnh định từ việc so sánh hệ siêu tĩnh hệ đế hai hệ làm việc giống nhau, điều kiện chuyển vị tương ứng với vị trí phương cúa ẩn số lực X|^ lực X |, X , X|^ X|^ tải trọng gây hệ phái không, là: X x„ , , , = - ™ K = I K , , n (5-3) II điều kiện (5-3) dược gọi liệ phương trình phưcíng pháp lực Hệ phương trình nghiệm với tất hệ luân theo không luân theo nguyên lí cộng lác dụng Sau giải n phương trình tìm ẩn số lực X |, Xị, X| , k K, k Suy ra: MĨk = ^ °^'k K ìk ^a|Km,KM;'K Zw “ iK m |K K ,K r r Kể đến (f) có: _ 'K ~ \ / i» Đặt: V - ' TT M ,+ Ia iK ( M ;K + M K ,) ^ X ^ iK ^ ìk K ìk I ^ ^iK^iK (7-17) r Công thức xác định mômen M"|^ chuyển vị thẳng iK là; M"k = (7-18) VịK gọi hệ số phân phối mômen chuyển vị thẳng hay gọi tắt hệ số chuyển vị thẳng 186 Từ (7-17) dẻ dàng suy điều kiện kiểm tra kết tính hệ số chuyển vị thẳng đứng thuộc tầng thứ r là: V' = “Ỷ Như vậv đế lính irị sô mômen uốn M,|^ tiết diên đấu tiết diện cần tính mômen xoay M'( g iá trị m ò m c n d o x o a v tính d ợ c v o vị trí c c đ ầ u th an h tưcmg ứng quanh nút sơ dồ phán phối inòmen (hình 7.23) - Chuven sanỉi xét nút vứi M M3 K = = (kNm I [^1 + (M ' 43 - +K ,3 )]■ K == 4, 2, 189 M = - 2,0 vừa tính xét nút M = nút khớp xoay tự M'23 chưa biết nên giả thiết không Do đó: [M 3+M 43 + = [ - 2] M' 23] = 1,0 M ' = ^ [ , ] = -0 ,2[l,0 ] - -0,2 (kNm) M ' 36 = ^^36 [1- 0] = - ’ 1[1-0] = -0-1 (kNm) M ;^2 = ^32 [1-0] = -0 [l,0 ] = -0,2 (kNm) Ghi giá trị mômen xoay vừa tính vào vị trí đầu tương ứng quanh nút sơ đồ phân phối mômen (hình 7.23) •8.8975 -1,8223 -0,5376 -0,5376 9,4376 1,5119 -0,5376 -0,5376 9,00 -0,5376 -0,5324 -0,4934 •020 -6,5138 -0,5376 1.5119 1.5119 -9,00 •6 , 0 o “ Õ o ư-> Uf5 i n h«- r ^ o ' o ' co o o u i o " (£> o CNJ r* - in o “ cd' 6,0000 -1,8223 -1,8353 -1,9331 -0,5376 -0.5324 -0>934 -0 , - o 1,8178 -0.5376 -1,8283 -1,8223 - 2,0000 6,0000 6.0000 o CN co ^C Õ Tầng 1: h | = li2 s = li : ,6 = hi = nỵàin nên theo (7-14) có: - -14 Các đứng có hai đầu nút cứng m,.,^ = ni ^- = «14^,4 1.0.2.-SE1 ( ^ + I 1U Ỗ •0,.5 + 111.0,2^)1: V,- = V3 , -0,5 Kicm tra kct tính hệ sô' chuvến vị thắng cua ihanh (íứng thuộc tầng I: a | ' T l 17^14 + 25^25 « = 1.1 ' - , ) + ] ( -0, ) + 1.1 (-0,5) = - Trên sơ đồ phân phối mỏmen hình 7.27 ghi Ìá tiị hệ số chuyển vị tháng vào ỏ chữ nhật khoáng đứng tương ứng lẩng tưc/ng ứng Xác định mômen nút cứng tiết diện đầu Chốt nút cứng, xem nút hệ chuyển thẳng, theo số liệuchotrong báng , tải Irọng tác dụng hệ quy định \ ’ề dấu cùa mỏmen uốn phươii'4 pháp G Kani, có mômcn nút cứng (hình 7.26): Mp = - ^ = - — M,, — 12 Mp_ = M , , = , = -6,75 (kNm), M7 , = = (kN) M , = - kN 12 M,, = M ,3 = , 193 M3 = =0 ^3X ~ Trên sơ đồ phân phối mômen hình 7.27, ghi giá trị mômen nút cứng vào vị trí đầu tương ứng dùng đường kẻ ngang để phân biệt với mômen xoay ghi tiếp sau Xác định tổng mômen nút cứng nút - Tại nút có; M|2 M| = - Tại nứt có: - Tại nút có; - , == 1,25 ( k N m ) + M|4 + M,7 = 0+ M = M ,| + + M j = + - = - (kNm) M3 = M32 + M3X + = + + = (kNm) Trên sơ đồ phân phối mômen hình 7.27 ghi giá trị tổng rnômen nút cứng vào ò khung nút tương ứng •rn m ® H ìn h 5.Xác định mômen tầng theo công thức (7-13) (7-16) có: M Q,h, h, iK Tầng II: Cắt đứng thuộc tầng II mặt cắt 2-2 sát nút nút rên hình 7.25, với phần mặt cắt có: r My|+M|-y ^ Mg3+M3^ Z P n * - {Q V Q ẵ ,) + 3 \ 6.3 ^ -6 ,7 ■— + + J h|7 h3x 0+0 ^— Tầng I: Cắt đứng thuộc tầng thứ I bàng mặt cắt 1-1 sát nút 1, ihư irên hình 7.25 với phần mặt cắt có: 194 M, I - ( Q i + Qí, + Q i ) I " u 6.4 - ''*25 "2 + (-8 ) + 0 - ^ — + = 40(kNm) 4 + + + ^ Trẽn sơ đổ phân phối inỏmen hình 7.27 shi giá trị mỏmen tầng vào vị trí bên cạnh tầng tươiig ứng khung chữ nhật Thực phân phối mômen sơ đồ 'ínli dán giá trị inômen xoay M-|, ruìi liết diên đẩu quy tụ nút mỏmen chuvcn vị thẳng M"|^ tiếí diện đầu đứng theo cõng thức (7-12) (7-18) Thứ tự tính M'|^ M''|^ trước hay sau, từ nút nàỵ sang nút khác, từ tđng sang tầng khác tuv ý Cần áp dụng công ihức bẽn xen kẽ thực nhiều chu trình tính cho đếii kết hội lụ \'ới đv) xác đươc chọn trước tuỳ ý Trước phân phối mổnien theo chu trình nên lính chuán bị bầno cách phân phối inômen nút có giá trị cúa tổng inỏmen nút cứng lỚTi tầng có giá trị môinen tầng lớn nlìàì 'ĩrt)ng ví dụ dang xét tính liưóc mỏmen !VI"|^ tronu đứng thuộc tầng I, rổi Ihuộc tầns 11, tiếp tính niómcn M'|^ tai dđii quy tụ nút 3, nút đến nút Đó chu trình Đô' tiện lợi tính t(Mn ị ự ả trị đại lượng irong móc vuông cúa côiig thức (7-12) (7-lS), tính Iư(íng ứng với nút, với lấng chu Irình phán phối mỏincn Iihưthẽ bảng 7.7 Báiiịí 7.7 Cliu trình Tầng,nút II Mr + Z a , K ( M Ì k + M k, )] r M , + (r) + M' k ) (i) 40 + + + = 40 6,75 + + = 6,75 + - ,1 - , c = -25,125 - + 6,2812 + - 20 = - 18,71875 1,25 + 3,7437 - 10,125 - 20,0 = - 25,1313 II 40+ 1.3,1406+ 1.1,872 + 1.3,1414 = 48,154 6,75 + 2/3.3,1406 + 2/3.3.141^ = 10,938 © + 3,7437 - 16,407 - 24,077 = - 1,7403 -5 + 7,9351 + 6,2828-24,077 = - 14,859 I II 1.25 + 2,9718 - 16,407 - 0-77 36,2622 195 Chu trình Tầng,nút 40 + 1.3,9675 + 1.1,4859 + 1.4,5328 = 49,9862 6,75 + 2/3.3,9675 + 2/3.4,5328 = 12,4168 + 2,9718 - 18,6253 - 24,9931 = - 35,6466 III - + 8,9116 + 9.0655 - 24,9931 = - 12,016 © 1,25 + 2,4032 - 18,6253 - 24,9931 = - 39,9652 40+ 1.4,4558+ 1.1,2016+ 1.4,9956 = 50,653 II 6,75 + 2/3.4,4558 + 2/3.4,9956 = 13,051 + 2,4032 - 19,5765 - 25,3265 = - 37,5 iV - + 9,375 + 9,9913 - 25,3265 = - 10,9602 © 1,25 + 2,192 - 19,5765 - 25.3265 = - 41,461 40+ 1.4,6874+ 1.1,096+ 1.5,1826 = 50.966 6,75 + 2/3.4,6874 + 2/3.5,1826 = 13,33 + 2,1920 - 19,995 - 25,4830 = - 38.286 V - + 9,5715 + 10,3652-25,483 = - 10,5463 © 1,25 + 2,1092 - 19,995 - 25,4830 = - 42,119 I 40+ 1.4,7857+ 1.1,0546+ 1.5,2649 = 51,1052 II 6,75 + 2/3.4,7857 + 2/3.5,2649 = 13,4504 + 2,1092 - 20,1756 - 25,5526 = - 38,619 VI ~ + 9,6547 + 10.5297 - 25,5526 = - 10,3682 © 1,25 + 2,0736 - 20,1756 - 25,5526 = - 42,4046 I 40+ 1.4,8273 + 1.1,0368 + 1.5,3005 = 51,1646 II 6,75 + 2/3.4,8273 + 2/3.5,3005 = 13,5018 + 2,0736 - 20,2528 - 25,5823 = - 38,7615 VII - + 9,6904 + 10,601 - 25,5823 = - 10,2908 VIII © 1,25 + 2,0581 - 20,2528 - 25,5823 = - 42,527 I 40+ 1.4,8452+ 1.1,0291 + 1,5,3158 = 51,1901 II 6,75 + 2/3.4,8452 + 2/3.5,3158 = 13,524 + 2,0581 - 20,286 - 25,595 = - 38,8229 - + 9,7057 + 10,6317 - 25,595 = - 10,2576 1,25 + 2,0515 - 20,286 - 25,595 = - 42,5795 196 -10,1250 ọ ( ) - ,1 7K -16,407 -16^4070 -18'6253 -18,6253 -19^5765 -19,5765 ■I9 I9 -19,9950 -20.1756 -20,1756 M„= 6,75 10,6445 10,6317 2,0515 2,0515 9,7057 -20.2528 2,0581 '6 9, 904 -20,2860 2,0736 2.1092 2,0736 9,6547 oj CNJ 10,6011 10.5297 /0 10,3652 2,1920 2,'920 9.5^15 373 coư^corí-r^cocsicp or-iO rC io^ừ5cN J ■ tí-c o m c o o o c ^ ^ ^ ^-«đ-cor^cõcoco ưS ưS ư^' UI ưì 9,9913 2,4032 2-032 3.91ie c õ 9,0655 2,9718 2.9715 3,-437 5,2312 -5 0000 5.000C -20.2528 -20,2860 00 U -)ơi ỵD cọ 03N ■»o 10 aS i ' CNJ Cvi cô CM M,= 4Ũ 15) 7 : s< r ( ĩổ p h t i p l ì o i ỉh ô i/ ỉe H Tính siá trị mỏmcn uốn lại tiết diện đầu Ihanh ^ - V 20,00 -24,077 -24.9931 Ịỉiììh cõ TT* xiý -Cír '«7-’ co cô - (4 ró ■«í-’ 7.9351 20,00 -24,077 20.00 -24,077 co co rr cocNcor^^^opu-itp c\juoh^uTh~-Lor^o ữ5rfộ^cócgư-ii 00 o C3' ^ 00 QD CN ỌD ừ> V 5,0000 ■ (3) o co 00 o [...]... có: A,, = ( M " ) ( M , ) + a " ( K m ) = ị j a > ( 1- + 1 lli / y EI / 9 , = — a t/ ( 1- + 1 ^ 2 16 Ih j 27 ■a (2 t - t ) /./ 2t + t , , , - — + a — — • l./ = a t / I 3 ~2h ^2 r (1 ' Act = — a t / - + 1 + a t / 16 ^ u y D o đó: G ối c di động theo chiều lực P(^= / 1 3^ + — = — a i / ( 1- + 33 ì 2h Ih J 2 y 16 1 sang bên phải BÀI TÂP L U Y Ệ N TẬP Vẽ các biếu đồ nội lực và tìm c hu yển vị đứng, chuyển... ^1( X| x , X,) = A,X, ^2( X, , XT, X3) + ^ 1X, ^= ỗ,,x, + 0 , 2 X 2 + Ô , , X 3 = - a + ^ 2X + ^ 2X3 = ô,_,x, + S22X, + 23 X,: = b ^?(X| , X T , X 3 ) = A.,X, + ^3X3 + ^3Xì = Ô3 ,X, + Ô32X, + 0,3X3 == (p 28 (a) Xi A /TýĩT? B _ _ Q gỴ- /7W ? o m M d; / 77^ VỶ B b1 , t m >