SỞ GD & ĐT TP HỒ CHÍ MINH TRƯỜNG THPT TRẦN HƯNG ĐẠO ĐỀ THI THỬ THPT LẦN I- NĂM HỌC 2015-2016 MÔN TOÁN Ngày thi: 13/10/2015 Thời gian làm bài: 180 phút Bài 1: (2đ) Cho hàm số:ᄃ y = − x3 + 3x − a) Khảo sát biến thiên vẽ đồ thị (C) hàm số k = −9 tuyến có hệ số góc ᄃ b) Viết phương trình tiếp tuyến (C) biết tiếp 2x + Bài 2: (1đ) Cho hàm số có đồ thị (C) Gọi (d) y= x +1 đường thẳng qua H(3,3) có hệ số góc k Tìm k để (d) cắt (C) điểm phân biệt M,N cho tam giác MAN vuông A(2,1) Bài 3: (1đ) −1 a) Tính 4 −2 42 AB== 32log a÷− log + 16 − 64 b) Rút gọn biểu thức: a log a 25 625 Bài 4: (3đ) Cho hình vuông ABCD cạnh 4a Lấy H, K AB, AD cho BH=3HA, AK=3KD Trên đường thẳng vuông góc với mặt phẳng ABCD H lấy S cho góc SBH = 30o Gọi E giao điểm CH BK a) Tính VS.ABCD b) Tính VS.BHKC d(D,(SBH)) c) Tính cosin góc SE BC Bài 5: (2đ) Giải phương trình bất phương trình sau a) − x2 + x + ≥ x − b) ᄃ x +6 + 4− x = x +8 Bài 6: (1đ) Cho số thực x,y thay đổi thỏa x + y = Tìm giá trị lớn giá trị nhỏ biểu thức: ( ) P = x + y − 3xy .Hết Đáp án đề thi thử đại học lần (2015 – 2016) Bài 1: a) Khảo y = − x + x − sát biến thiên vẽ đồ thị (C) hàm số: Tập xác định: D = R ; (0,25) y ' = −3 x 2+x 6=x0 ⇔y= −∞ lim y = +∞ ; y ' = lim x →−∞ x →+∞ x = Bảng biến thiên: −∞ +∞ x 02 y’ – +0– +∞ y −∞ -4 (0,25) Hàm số đồng biến khoảng ( 0; 2) ; Hàm số nghịch biến (-∞; 0); (2; +∞) Hàm số đạt cực đại x = ; yCĐ = ; Hàm số đạt cực tiểu x = 0; yCT = -4(0,25) uuuu r uuur ∆AMN vuông ⇔ AM.AN = A(0,25) (0,25) ⇔−5k 2−−1 −k + 41 2=0 (n) k = Bài 10 3a ⇔ b) B = 3−2log −3log a log 25 2 −13 +a 41 a ) A = log3 a÷ + 16 − 2k−=2.64 (n) = 625 − log a log a 10 (0.25) = a 1− (0.25) = ( 54 ) + ( 24 ) − 4−1 ( 43 ) (0.25) = + 23 − = 12 (0.25) Bài 4: y -1 x (0,25) -4 b) Cách 1:Tiếp tuyến k = −9 có hệ số góc ᄃ (∆) : y⇒ = 9x + b Pttiếp tuyến có dạng (0,25) − x + x(∆−) = −9 x + b ⇔ −3 x + x = −9 tiếp xúc với (C)có nghiệm (0,25) V (0,25) xx==3−1 ⇔ (0,25) ( ∆ ) −−99x − :byb===23 ⇒ Cách 2: (∆) : y = −9 x + 23 Phương trình y =y '( xo )( x − xo ) + yo tiếp tuyến (C) M(xo, yo) có dạng: (0,25) y '( xo ) = −9 ⇔ −3x o2 + 6x o = −9 (0,25) ⇔ xo = −1 ∨ xo = Với xo = -1 ⇒ yo = y = −9 x − Pttt : (0,25) Với xo = ⇒ yo = −4 Pttt : y = -9x +23(0,25) Bài : (d) : y = k(x – 3) + 3(0,25) 2x + k+≠30⇔ kx + − 2k x − 3k = x ≠ −1 = kx⇔ − 3k ( )⇔ k ≠ ( ) x +1 ∆ = 16k − 4k + > Pt hoành độ giao điểm (C) (d) : (d) cắt (C) điểm phân biệt (0,25) M ( x1 , kx1 − 3k +3) , 2k N − 1( x , kx − 3k + ) x1 + x = k với x1.x = −3 S BHKC= =(4SaABCD − SCKD a )bS)ABCD )2 = − 16SaAHK SH 25a = 16a:2t−an30 a.3= a − a=> 4aSH = = BH ∆SBH =a 2 BH 16a 3 VS ABCD = SH S ABCD = 3 25a 3 VS BHKC = SH S BHKC = AD ⊥ AB, AD ⊥ SH => AD ⊥ ( SBA) => d ( D, ( SBH )) = d ( D, ( SBA)) = AD = 4a BC ()I ⇒ ∈ BH EI )⊥ SI c) Cách 1: ⇒ EIEI⊥/ (/ SAB Dựng · => ( SE , BC ) = ( SE , EI ) = SEI (0.25) HK ⊥ CH Ta chứng minh E (0.25) (0.25) (0.25) (0.5) (0.25) (0.25) (0.25) P = ( x + y ) − 3xy EI HE HE.HC HB = = = = 2 BC HC HC HB + BC 25 (0.25) EI 18 36a = => EI = BC = cos E; = SE 39 25 25 9 9a HE = HC = HB + BC = 25 25 = ( x + y ) ( x − xy + y ) − 3xy = ( x + y ) ( − xy ) − 3xy (0.25) đặt t = x + y ĐK : , với 81a 2a 39 SE = SH + HE = 3a + = (0.25) 25 (0.25) uur uuur Cách 2: uur uuur SE.BC cos( SEHK ; BC⊥) CH = Ta chứng SE.BC minh E HE HE.HC HB = = = 2 HC HC HB + BC 25 (0.25) uur uuur uuur uuuur uuur uuur uuur 9 ).BC 2= HE.BC 9a SH =+ HE => SE HE.BC = = (HC HB + BC = 25 ur uuur 925uuur uuu r uu = HC.BC = CH CB = (0.25) 81a 2a 39 25 2 25 SE = SH + HE = 3a + = (0.25) 9 CB 25 · = CH CB.cos HCB = CH CB 25 25 CH 144a = CB = 25 25 = 2 (0.25) Xét [2,2] f’(t) = f(2) = f(-2) = - t ≤2 t2 − xy = P = −t −t ≤ t222 + 6t + 23 f (t ) = −t − t + 6t + f '(t ) = −3t − 3t + ⇔ t = ∨ t = −2 13 f ( 1) = 113 − max 1max + xf+3P( ty=) ==13 ⇔ x = [ −2,2] x = x + y2 2=22 2 ⇔ ∨ y = 1− y = 1+ 2 t = nên (0.25) ⇔ t = -2 nên x x+f=y( ty=) =−2−17 −2,2 ] [ minP = - (0.25) 2 x + y = uur uuur ; BC ) 18 (0.25) 144a cos( SE = 25 2a 39.4a a) − x + x + ≥ x − 39 x ≥ x ≤ ⇔ ∨ (0.25) 2 − x + x + ≥ ( x − 2) − x + x + ≥ x ≤ x ≥ ⇔ ∨ (0.25) −2 x + x ≥ 1 − ≤ x ≤ + x ≥ ⇔ ∨1− ≤ x ≤ 0 ≤ x ≤ (0.25) ⇔ 1− ≤ x ≤ (0.25) b) (1) x +6 + 4− x = x +8 ĐK: x + ≥ ⇔ −6 ≤ x ≤ ( x − 3)( x + 6) 4( x − 3) ( x + 6) − 9( x 6+ 6) ⇔ 6+++ +42−−4(4 4− −x)=x =0=0=0 4− x ≥ ⇔(1)(⇔ x⇔ − 3)x+ − x + x6 + 63 +x3+ 6x + 62 2++2 2+ 424−−4x x− x ÷ (0,5) (0,25) ⇔ x = 43 x+6 Do + > ∀x ∈ [−6; 4] ÷ x+6+3 x+6 2+2 4− x (nhận) x = trình có nghiệm : Vậy phương (0,25) Bài 6: ( ) ( )