1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập về khảo sát hàm số (có lời giải)

13 327 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 641,12 KB

Nội dung

www.DETHITHU.NET - Đ THI TH DeThiThu.Net - Đ Thi Th Đ i H c - THPT Qu c Gia - Tài Li u Ôn Thi.C p nh t h ng ngày! www.DeThiThu.Net Chuyên đề De Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số www.DeThiThu.Net Th §1 Tính Đơn Điệu Của Hàm Số Bài tập 1.1 Tìm khoảng đơn điệu hàm số sau a) y = 2x3 − 3x2 + b) y = −x3 − 3x + d) y = x4 − 2x2 + e) y = −x4 + 2x3 − 2x − 2x + x+2 g) y = h) y = x+2 3x − c) y = √ x3 + 3x2 + 3x f) y = x2 − 2x − x2 − 4x + i) y = 1−x Lời giải −∞ x www.DeThiThu.Net x=0 Bảng biến thiên: x=1 iTh a) Tập xác định: D = R Đạo hàm: y = 6x2 − 6x; y = ⇔ + y +∞ − + +∞ y −∞ x −∞ −1 − y +∞ y et u.N Vậy hàm số đồng biến khoảng (−∞; 0), (1; +∞) nghịch biến (0; 1) b) Tập xác định: D = R Đạo hàm: y = −3x2 − < 0, ∀x ∈ R Do hàm số nghịch biến R c) Tập xác định: D = R Đạo hàm: y = 3x2 + 6x + ≥ 0, ∀x ∈ R Do hàm số đồng biến R x=0 d) Tập xác định: D = R Đạo hàm: y = 4x3 − 4x; y = ⇔ Bảng biến thiên: x = ±1 + +∞ − + +∞ Vậy hàm số đồng biến khoảng (−1; 0) , (1; +∞) nghịch biến khoảng (−∞; −1) , (0; 1) x=1 e) Tập xác định: D = R Đạo hàm: y = −4x3 + 6x2 − 2; y = ⇔ Bảng biến thiên: x = − 12 x − 12 −∞ + y +∞ − − − 16 y −2 −∞ −∞ www.DETHITHU.NET - Đ THI TH Tham gia ngay! Group : ÔN THI ĐH TOÁN - ANH : Facebook.com/groups/onthidhtoananhvan www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu Vậy hàm số đồng biến khoảng −∞; − 12 nghịch biến khoảng − 12 ; +∞ x−1 f) Tập xác định: D = (−∞; −1] ∪ [3; +∞) Đạo hàm: y = √ ; y = ⇔ x = Bảng biến thiên: x − 2x − x −∞ −1 +∞ − y + +∞ +∞ De y 0 Vậy hàm số đồng biến khoảng (3; +∞) nghịch biến khoảng (−∞; −1) g) Tập xác định: D = R\ {−2} Đạo hàm: y = > 0, ∀x ∈ D (x + 2)2 Do hàm số đồng biến khoảng (−∞; −2) (−2; +∞) h) Tập xác định: D = R\ 13 Đạo hàm: y = − < 0, ∀x ∈ D (3x − 1)2 Do hàm số nghịch biến khoảng (−∞; 13 ) ( 13 ; +∞) −x2 + 2x x=0 i) Tập xác định: D = R\ {1} Đạo hàm: y = ;y =0⇔ Bảng biến thiên: x=2 (1 − x)2 www.DeThiThu.Net Th x −∞ − y + +∞ +∞ + +∞ 0 − y −∞ −∞ iTh Vậy hàm số đồng biến khoảng (0; 1), (1; 2) nghịch biến khoảng (−∞; 0), (2; +∞) Bài tập 1.2 Tìm m để hàm số y = x3 + (m − 1) x2 + m2 − x + đồng biến R et u.N Lời giải Tập xác định: D = R Đạo hàm: y = 3x2 +2(m−1)x+m2 −4; ∆ = (m−1)2 −3(m2 −4) = −2m2√ −2m+13  −1 − 3  m≤ √ Hàm số đồng biến R ⇔ y ≥ 0, ∀x ∈ R ⇔ ∆ ≤ ⇔ −2m2 − 2m + 13 ≤ ⇔  −1 + 3 m≥ √ √ −1 − 3 −1 + 3 Vậy với m ∈ −∞; ∪ ; +∞ hàm số cho đồng biến R 2 Bài tập 1.3 Tìm m để hàm số y = −mx3 + (3 − m) x2 − 2x + nghịch biến R Lời giải Tập xác định: D = R • Với m = 0, ta có: y = 3x2 − 2x + parabol nên nghịch biến R • Với m = 0, ta có: y = −3mx2 + 2(3 − m)x − 2; ∆ = (3 − m)2 − 6m = m2 − 12m + Hàm số nghịch biến R ⇔ y ≤ 0, ∀x ∈ R ⇔ m 0, ∀x ∈ D ⇔ m − > ⇔ m≤− √ √ Vậy với m ∈ −∞; − ∪ 2; +∞ hàm số cho đồng biến khoảng xác định Bài tập 1.5 Tìm m để hàm số y = mx − nghịch biến khoảng xác định x+m−3 www.DETHITHU.NET - Đ THI TH Tham gia ngay! Group : ÔN THI ĐH TOÁN - ANH : Facebook.com/groups/onthidhtoananhvan www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát m2 − 3m + (x + m − 3)2 Hàm số nghịch biến khoảng xác định ⇔ y < 0, ∀x ∈ D ⇔ m2 − 3m + < ⇔ < m < Vậy với m ∈ (1; 2) hàm số cho nghịch biến khoảng xác định m Bài tập 1.6 Tìm m để hàm số y = x + + đồng biến khoảng xác định x−1 Lời giải Tập xác định: D = R\ {3 − m} Đạo hàm: y = De Lời giải Tập xác định: D = R\ {1} m x2 − 2x + − m Đạo hàm: y = − = ; y = ⇔ x2 − 2x + − m = 0; ∆ = m (x − 1) (x − 1)2 Hàm số đồng biến khoảng xác định y ≥ 0, ∀x ∈ D ⇔ x2 − 2x + − m ≥ 0, ∀x ∈ D ⇔ ∆ ≤ ⇔ m ≤ Vậy với m ≤ hàm số cho đồng biến khoảng xác định Bài tập 1.7 Tìm m để hàm số y = mx + nghịch biến (−∞; 1) x+m m2 − (x + m)2 Hàm số nghịch biến (−∞; 1) y < 0, ∀x ∈ (−∞; 1) www.DeThiThu.Net Th Lời giải Tập xác định: D = R\ {−m} Đạo hàm: y = ⇔ −m ∈ / (−∞; 1) ⇔ m2 − < −m ≥ ⇔ −2 < m ≤ −1 −2 < m < Vậy với m ∈ (−2; −1] hàm số cho đồng biến khoảng xác định Bài tập 1.8 Tìm m để hàm số y = mx − nghịch biến (1; +∞) x+m−3 iTh m2 − 3m + (x + m − 3)2 Hàm số nghịch biến (1; +∞) ⇔ y < 0, ∀x ∈ (1; +∞) www.DeThiThu.Net Lời giải Tập xác định: D = R\ {3 − m} Đạo hàm: y = ⇔ 3−m∈ / (1; +∞) ⇔ m2 − 3m + < 3−m≤1 ⇔m∈∅ 1 ⇔ m < −3, y có hai nghiệm x1 , x2 (x1 < x2 ) Theo định lý vi-ét có x1 + x2 = 2; x1 x2 = − m Bảng biến thiên: www.DETHITHU.NET - Đ THI TH Tham gia ngay! Group : ÔN THI ĐH TOÁN - ANH : Facebook.com/groups/onthidhtoananhvan www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu x1 −∞ x − y x2 + +∞ +∞ − y(x2 ) y −∞ y(x1 ) De Từ bảng biến thiên ta có hàm số đồng biến [x1 ; x2 ] Do hàm số đồng biến đoạn có độ dài |x1 − x2 | = ⇔ (x1 − x2 )2 = ⇔ (x1 + x2 )2 − 4x1 x2 = ⇔ + Vậy với m = 15 4m 15 =9⇔m= (thỏa mãn) hàm số cho đồng biến đoạn có độ dài www.DeThiThu.Net §2 Cực Trị Của Hàm Số Lời giải Th Bài tập 1.11 Tìm cực trị hàm số sau a) y = 2x3 − 3x2 + b) y = −x3 − 3x + d) y = x − 2x + e) y = −x4 + 2x3 − 2x − 2x + x+2 g) y = h) y = x+2 3x − a) Tập xác định: D = R Đạo hàm: y = 6x2 − 6x; y = ⇔ −∞ x=0 Bảng biến thiên: x=1 + y +∞ iTh x c) y = √ x3 + 3x2 + 3x f) y = x2 − 2x − x2 − 4x + i) y = 1−x − + +∞ y −∞ x −∞ −1 − y et u.N Vậy hàm số đạt cực đại x = 0; yCĐ = đạt cực tiểu x = 1; yCT = b) Tập xác định: D = R Đạo hàm: y = −3x2 − < 0, ∀x ∈ R Do hàm số cực trị c) Tập xác định: D = R Đạo hàm: y = 3x2 + 6x + ≥ 0, ∀x ∈ R Do hàm số cực trị x=0 d) Tập xác định: D = R Đạo hàm: y = 4x3 − 4x; y = ⇔ Bảng biến thiên: x = ±1 + +∞ y +∞ − + +∞ Vậy hàm số đạt cực đại x = 0; yCĐ = đạt cực tiểu x = ±1; yCT = x=1 e) Tập xác định: D = R Đạo hàm: y = −4x3 + 6x2 − 2; y = ⇔ Bảng biến thiên: x = − 12 x − 12 −∞ + y − 16 y +∞ − − −2 −∞ −∞ Vậy hàm số đạt cực đại x = − 12 ; yCĐ = − 16 x−1 f) Tập xác định: D = (−∞; −1] ∪ [3; +∞) Đạo hàm: y = √ ; y = ⇔ x = Bảng biến thiên: x2 − 2x − www.DETHITHU.NET - Đ THI TH www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát x −∞ −1 +∞ − y + +∞ +∞ y 0 De Vậy hàm số cực trị > 0, ∀x ∈ D Do hàm số cực trị (x + 2)2 h) Tập xác định: D = R\ 13 Đạo hàm: y = − < 0, ∀x ∈ D Do hàm số cực trị (3x − 1)2 −x2 + 2x x=0 i) Tập xác định: D = R\ {1} Đạo hàm: y = ;y =0⇔ Bảng biến thiên: x=2 (1 − x)2 g) Tập xác định: D = R\ {−2} Đạo hàm: y = x − y +∞ Th www.DeThiThu.Net −∞ + +∞ + +∞ − 0 y −∞ −∞ Vậy hàm số đạt cực đại x = 2; yCĐ = đạt cực tiểu x = 0; yCT = Bài tập 1.12 Tìm m để hàm số y = x3 − 3mx2 + (2m − 1) x − b) Đạt cực trị x = a) Có cực trị c) Đạt cực đại x = et u.N iTh Lời giải Tập xác định: D = R Đạo hàm: y = 3x2 − 6mx + 3(2m − 1); ∆ = 9m2 − 18m + a) Hàm số có cực trị ⇔ y có hai nghiệm phân biệt ⇔ 9m2 − 18m + > ⇔ m = b) Hàm số đạt cực trị x = ⇒ y (0) = ⇔ 3(2m − 1) = ⇔ m = 12 Với m = 12 ⇒ y = 3x2 − 3x; y = 6x − 3; y (0) = −3 < ⇒ hàm số đạt cực đại x = ⇒ m = 12 thỏa mãn Vậy với m = 12 hàm số cho đạt cực trị x = c) Hàm số đạt cực đại x = ⇒ y (1) = ⇔ − 6m + 3(2m − 1) = ⇔ = (đúng ∀m ∈ R) Lại có: y = 6x − 6m; y (1) = − 6m Với y (1) > ⇔ m < ⇒ hàm số đạt cực tiểu x = ⇒ m < không thỏa mãn Với y (1) < ⇔ m > ⇒ hàm số đạt cực đại x = ⇒ m > thỏa mãn Với y (1) = ⇔ m = 1, ta có y = 3x2 − 6x + = 3(x − 1)2 ≥ 0, ∀x ∈ R ⇒ hàm số cực trị Vậy với m > hàm số cho đạt cực đại x = Bài tập 1.13 Cho hàm số y = 13 x3 − mx2 + m2 − m + x + Với giá trị m hàm số a) Đạt cực đại x = b) Có cực đại, cực tiểu c) Không có cực trị Lời giải Tập xác định: D = R Đạo hàm: y = x2 − 2mx + m2 − m + 1; ∆ = m − a) Hàm số đạt cực đại x = ⇒ y (1) = ⇔ − 2m + m2 − m + = ⇔ m2 − 3m + = ⇔ m=1 m=2 • Với m = ⇒ y = x2 − 2x + = (x − 1)2 ≥ 0, ∀x ∈ R ⇒ hàm số cực trị • Với m = ⇒ y = x2 − 4x + 3; y = 2x − 4; y (1) = −2 < ⇒ hàm số đạt cực đại x = Vậy với m = hàm số cho đạt cực đại x = b) Hàm số có cực đại, cực tiểu ⇔ y có hai nghiệm phân biệt ⇔ ∆ > ⇔ m − > ⇔ m > c) Hàm số cực trị ⇔ y hai nghiệm phân biệt ⇔ ∆ ≤ ⇔ m − ≤ ⇔ m ≤ Bài tập 1.14 Cho hàm số y = x4 − (m + 1) x2 + 2m + Với giá trị m hàm số c) Đạt cực trị x = a) Có ba điểm cực trị b) Đạt cực tiểu x = Lời giải Tập xác định: D = R Đạo hàm: y = 4x3 − 4(m + 1)x x=0 a) y = ⇔ Hàm số có ba điểm cực trị ⇔ y có ba nghiệm phân biệt ⇔ m + > ⇔ m > −1 x2 = m + b) Hàm số đạt cực tiểu x = ⇒ y (0) = ⇔ = (đúng ∀m ∈ R) Lại có: y = 12x2 − 4(m + 1); y (0) = −4(m + 1) Với y (0) > ⇔ m < −1 ⇒ hàm số đạt cực tiểu x = ⇒ m < −1 thỏa mãn Với y (0) < ⇔ m > −1 ⇒ hàm số đạt cực đại x = ⇒ m > −1 không thỏa mãn Với y (0) = ⇔ m = −1, ta có y = 4x3 ; y = ⇔ x = www.DETHITHU.NET - Đ THI TH DeThiThu.Net - Đ Thi Th Đ i H c - THPT Qu c Gia - Tài Li u Ôn Thi.C p nh t h ng ngày! www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu x −∞ +∞ − y + +∞ +∞ y −1 De Suy hàm số đạt cực tiểu x = Vậy với m ≤ −1 hàm số cho đạt cực tiểu x = c) Hàm số đạt cực trị x = ⇒ y (1) = ⇔ − 4(m + 1) = ⇔ m = Với m = ⇒ y = 4x3 − 4x; y = 12x2 − 4; y (1) = > ⇒ hàm số đạt cực tiểu x = ⇒ m = thỏa mãn Vậy với m = hàm số cho đạt cực trị x = Bài tập 1.15 Tìm m để hàm số y = −x4 + (2m − 1) x2 + có cực trị Lời giải Tập xác định: D = R Đạo hàm: y = −4x3 + 4(2m − 1)x = 4x(−x2 + 2m − 1) y = ⇔ x=0 x2 = 2m − Hàm số có cực trị ⇔ y có nghiệm ⇔ 2m − ≤ ⇔ m ≤ 12 Bài tập 1.16 (B-02) Tìm m để hàm số y = mx4 + m2 − x2 + 10 có ba điểm cực trị Th Lời giải Tập xác định: D = R Đạo hàm: y = 4mx3 + 2(m2 − 9)x = 2x(2mx2 + m2 − 9) • Với m = 0, ta có y = −18x có nghiệm nên hàm số có ba cực trị x=0 • Với m = 0, ta có y = ⇔ x2 = 9−m 2m − m2 Hàm số có ba cực trị ⇔ y có ba nghiệm phân biệt ⇔ > Bảng xét dấu: 2m −∞ −3 | − − + | || + − − + + + iTh m − m2 2m VT | www.DeThiThu.Net +∞ − + − Từ bảng xét dấu ta có m ∈ (−∞; −3) ∪ (0; 3) www.DeThiThu.Net x2 + mx + Bài tập 1.17 Xác định giá trị m để hàm số y = x+m a) Không có cực trị b) Đạt cực tiểu x = c) Đạt cực đại x = x −∞ −1 + y −2 et u.N Lời giải Tập xác định: D = R\{−m} x2 + 2mx + m2 − a) Đạo hàm: y = ; y = ⇔ x = −m ± ⇒ hàm số có cực trị (x + m)2 Vậy giá trị m để hàm số cực trị m2 + 2m m=0 b) Hàm số đạt cực tiểu x = ⇒ y (1) = ⇔ =0⇔ m = −2 (m + 1)2 x2 − • Với m = ⇒ y = ; y = ⇔ x = ±1 x2 − +∞ − + +∞ y −∞ +∞ −∞ Từ bảng biến thiên suy hàm số đạt cực tiểu x = ⇒ m = thỏa mãn x2 − 4x + • Với m = −2 ⇒ y = ; y = ⇔ x = x = (x − 2)2 x −∞ + y 0 − www.DeThiThu.Net +∞ − +∞ + +∞ y −∞ −∞ www.DETHITHU.NET - Đ THI TH www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát Từ bảng biến thiên suy hàm số đạt cực đại x = ⇒ m = −2 không thỏa mãn Vậy với m = hàm số cho đạt cực tiểu x = m2 + 4m + m = −1 c) Hàm số đạt cực đại x = ⇒ y (2) = ⇔ =0⇔ m = −3 (m + 2)2 x − 2x • Với m = −1 ⇒ y = ; y = ⇔ x = x = (x − 1)2 x De −∞ + y − −1 +∞ − + +∞ +∞ y −∞ −∞ Từ bảng biến thiên suy hàm số đạt cực tiểu x = ⇒ m = −1 không thỏa mãn x2 − 6x + • Với m = −3 ⇒ y = ; y = ⇔ x = x = (x − 3)2 −∞ Th x + y − +∞ − +∞ + +∞ y −∞ −∞ Từ bảng biến thiên suy hàm số đạt cực đại x = ⇒ m = −3 thỏa mãn Vậy với m = −3 hàm số cho đạt cực đại x = iTh §3 Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số Bài tập 1.18 Tìm giá trị lớn giá trị nhỏ (nếu có) hàm số sau: a) y = + 8x − 2x2 [−1; 3] b) y = x3 − 3x2 + [−2; 3] c) y = + 4x3 − 3x4 [−2; 1] e) y = x − + x (0; +∞) f) y = x − x1 (0; 2] d) y = x − 3x + (1; 4) √ g) y = h) y = x4 + 2x2 − i) y = x + − x2 + x2 Lời giải a) Ta có: y = − 4x; y = ⇔ x = 2; y(−1) = −9, y(2) = 9, y(3) = Vậy max y = y(2) = 9; y = y(−1) = −9 [−1;3] [−1;3] [−2;3] [−2;3] et u.N b) Ta có: y = 3x2 − 6x; y = ⇔ x = x = 2; y(−2) = −19, y(0) = 1, y(2) = −3, y(3) = Vậy max y = y(0) = y(3) = 1; y = y(−2) = −19 c) Ta có: y = 12x2 − 12x3 ; y = ⇔ x = x = 1; y(−2) = −79, y(0) = 1, y(1) = Vậy max y = y(1) = 2; y = y(−2) = −79 [−2;1] [−2;1] d) Ta có: y = 3x − 6x; y = ⇔ x = x = x − y −1 y + 17 −3 Vậy y = y(2) = −3; hàm số giá trị lớn (1;4) e) Ta có: y = − x2 ; y = ⇔ x = ±1 x − y +∞ +∞ + +∞ y −3 www.DETHITHU.NET - Đ THI TH www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu Vậy y = y(1) = −3; hàm số giá trị lớn (0;+∞) f) Ta có: y = + x2 > 0, ∀x ∈ (0; 2] x + y De y −∞ Vậy max y = y(2) = 32 ; hàm số giá trị nhỏ (0;2] g) Tập xác định: D = R Ta có: y = − x 8x ; y = ⇔ x = (1 + x2 )2 −∞ +∞ + y Th − y 0 Vậy max y = y(0) = 4; hàm số giá trị nhỏ R h) Tập xác định: D = R Ta có: y = 4x3 + 4x; y = ⇔ x = −∞ x +∞ iTh − y + +∞ +∞ y −1 Vậy y = y(0) = −1; hàm số giá trị lớn R √ √ √ x i) Tập xác định: D = [−2; 2] Ta có: y = − √ ; y = ⇔ x = 2; y(−2) = 0, y( 2) = 2, y(2) = 4−x √ √ Vậy max y = y( 2) = 2; y = y(±2) = [−2;2] [−2;2] et u.N Bài tập 1.19.√Tìm giá trị lớn giá trị nhỏ (nếu có) hàm số sau b) y = sin x − 43 sin3 x [0; π] a) y = x + cos x 0; π2 c) y = sin4 x − 4sin2 x + 4 e) y = sin x − 12 cos x − d) y = sin x + cos x f) y = sin2 x + sin 2x + 2cos2 x Lời giải √ √ a) Ta có: y = − sin x; y = ⇔ sin x = √12 ⇔ x = π4 ; y(0) = 2, y( π4 ) = √ Vậy max y = y( π4 ) = π4 + 1; y = y(0) = [0; π2 ] [0; π2 ] b) Đặt sin x = t, t ∈ [0; 1] Hàm số trở thành y = f (t) = 2t − 43 t3 Ta có: f (t) = − 4t2 ; f (t) = ⇔ t = Vậy max y = max f (t) = f ( √12 ) = [0;π] [0;1] √1 ; f (0) = 0, f ( √12 ) = √ 2 y ; [0;π] √ 2 , y(1) π + 1, y( π2 ) = π = 23 = f (t) = f (0) = [0;1] c) Tập xác định: D = R Đặt sin x = t, t ∈ [−1; 1] Hàm √ số trở thành y = f (t) = t − 4t + Ta có: f (t) = 4t − 8t; f (t) = ⇔ t = t = ± (loại); f (0) = 5, f (±1) = Vậy max y = max f (t) = f (0) = 5; y = f (t) = f (±1) = R [−1;1] R [−1;1] d) Tập xác định: D = R Ta có: y = sin4 x + cos4 x = − 12 sin2 2x Đặt sin 2x = t, t ∈ [−1; 1] Hàm số trở thành y = f (t) = − 12 t2 Đạo hàm: f (t) = −t; f (t) = ⇔ t = 0; f (±1) = 12 , f (0) = Vậy max y = max f (t) = f (0) = 1; y = f (t) = f (±1) = 21 R [−1;1] R [−1;1] e) Ta có: y = sin x − 12 cos x − ⇔ sin x − 12 cos x = y + Phương trình có nghiệm ⇔ 52 + 122 ≥ (y + 5)2 ⇔ y + 10y − 144 ≤ ⇔ −18 ≤ y ≤ www.DETHITHU.NET - Đ THI TH www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát Vậy max y = 8; y = −18 R R − cos 2x f) Ta có: y = + sin 2x + + cos 2x = sin 2x + cos 2x + ⇔ sin 2x + cos 2x = 2y − 2 √ √ Phương trình có nghiệm ⇔ 22 + 12 ≥ (2y − 3)2 ⇔ 4y − 12y + ≤ ⇔ 3−2 ≤ y ≤ 3+2 √ √ Vậy max y = 3+2 ; y = 3−2 R R De Bài tập 1.20 Cho parabol (P ) : y = x2 điểm A (−3; 0) Tìm điểm M ∈ (P ) cho khoảng cách AM ngắn tính khoảng cách √ −−→ Lời giải Ta có: M ∈ (P ) ⇒ M (t; t2 ) ⇒ AM = (t + 3; t2 ) ⇒ AM = (t + 3)2 + t4 = t4 + t2 + 6t + Xét hàm số f (t) = t4 + t2 + 6t + R; f (t) = 4t3 + 2t + 6; f (t) = ⇔ t = −1 Bảng biến thiên: −∞ t +∞ −1 − f (t) + +∞ +∞ f (t) Th Từ bảng biến thiên ta có f (t) = f (−1) = R √ Suy AM đạt giá trị nhỏ t = −1 ⇒ M (−1; 1) Vậy M (−1; 1) Bài tập 1.21 Tìm m để hàm số y = x3 + 3x2 − mx − đồng biến (−∞; 0) Lời giải Ta có: y = 3x2 + 6x − m Hàm số đồng biến (−∞; 0) ⇔ 3x2 + 6x − m ≥ 0, ∀x ∈ (−∞; 0) ⇔ m ≤ 3x2 + 6x, ∀x ∈ (−∞; 0) Xét hàm số f (x) = 3x2 + 6x (−∞; 0] có f (x) = 6x + 6; f (x) = ⇔ x = −1 Bảng biến thiên: x −∞ −1 iTh − f (x) (1) + +∞ f (x) −3 Từ bảng biến thiên ta có f (x) = f (−1) = −3 Do (1) ⇔ m ≤ f (x) ⇔ m ≤ −3 (−∞;0] (−∞;0] Bài tập 1.22 (BĐT-79) Tìm m để hàm số y = − 13 x3 + (m − 1) x2 + (m + 3) x − đồng biến (0; 3) Lời giải Ta có: y = −x2 + 2(m − 1)x + m + = m(2x + 1) − x2 − 2x + Xét hàm số f (x) = x2 + 2x − , ∀x ∈ (0; 3) (2) 2x + et u.N Hàm số đồng biến (0; 3) ⇔ m(2x + 1) − x2 − 2x + ≥ 0, ∀x ∈ (0; 3) ⇔ m ≥ x2 + 2x − 2x2 + 2x + [0; 3] có f (x) = > 0, ∀x ∈ [0; 3] Bảng biến thiên: 2x + (2x + 1)2 x + f (x) 12 f (x) −3 Từ bảng biến thiên ta có max f (x) = f (3) = [0;3] 12 12 Do (2) ⇔ m ≥ max f (x) ⇔ m ≥ 7 [0;3] Bài tập 1.23 Tìm m để hàm số y = mx3 − (m − 1) x2 + (m − 2) x + đồng biến [2; +∞) Lời giải Ta có: y = 3mx2 − 6(m − 1)x + 9(m − 2) = 3m(x2 − 2x + 3) + 6x − 18 Hàm số đồng biến [2; +∞) 3m(x2 − 2x + 3) + 6x − 18 ≥ 0, ∀x ∈ [2; +∞) ⇔ m ≥ Xét hàm số f (x) = x2 − 2x , ∀x ∈ [2; +∞) − 2x + (3) √ − 2x 2x2 − 12x + [2; +∞) có f (x) = ; f (x) = ⇔ x = ± x2 − 2x + (x2 − 2x + 3)2 Bảng biến thiên: www.DETHITHU.NET - Đ THI TH www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu x 3+ − f (x) √ +∞ + 0 f (x) f (3 + De Từ bảng biến thiên ta có max f (x) = f (2) = [2;+∞) √ 6) 2 Do (3) ⇔ m ≥ max f (x) ⇔ m ≥ 3 [2;+∞) Bài tập 1.24 Tìm m để hàm số y = x3 + 3x2 + (m + 1) x + 4m đồng biến (−∞; −2) (2; +∞) Lời giải Ta có: y = 3x2 + 6x + m + Hàm số đồng biến (−∞; −2) (2; +∞) 3x2 + 6x + m + ≥ 0, ∀x ∈ (−∞; −2) ∪ (2; +∞) ⇔ m ≥ −3x2 − 6x − 1, ∀x ∈ (−∞; −2) ∪ (2; +∞) (4) Th Xét hàm số f (x) = −3x2 − 6x − (−∞; −2] ∪ [2; +∞) có f (x) = −6x − 6; f (x) = ⇔ x = −1 Bảng biến thiên: −∞ x −2 +∞ − + f (x) −1 −25 f (x) −∞ f (x) = f (−2) = −1 Do (4) ⇔ m ≥ max iTh Từ bảng biến thiên ta có −∞ (−∞;−2]∪[2;+∞) Bài tập 1.25 (BĐT-50) Tìm m để hàm số y = max f (x) ⇔ m ≥ −1 (−∞;−2]∪[2;+∞) mx2 + 6x − nghịch biến [1; +∞) x+2 mx2 + 4mx + 14 m(x2 + 4x) + 14 = (x + 2)2 (x + 2)2 m(x2 + 4x) + 14 −14 Hàm số nghịch biến [1; +∞) ⇔ ≤ 0, ∀x ∈ [1; +∞) ⇔ m ≤ , ∀x ∈ [1; +∞) (x + 2)2 x + 4x −14 28x + 56 Xét hàm số f (x) = [1; +∞) có f (x) = > 0, ∀x ∈ [1; +∞) Bảng biến thiên: x + 4x (x + 4x)2 Lời giải Hàm số xác định [1; +∞) Đạo hàm: y = et u.N x +∞ + f (x) f (x) − Từ bảng biến thiên ta có f (x) = f (1) = − [1;+∞) Bài tập 1.26 Tìm m để hàm số y = 14 14 14 Do (5) ⇔ m ≤ f (x) ⇔ m ≤ − 5 [1;+∞) x2 − 2mx + 2m2 − đồng biến (1; +∞) x−m Lời giải Tập xác định: D = R\ {m} Đạo hàm: y = x2 − 2mx + 2 (x − m) Hàm số đồng biến (1; +∞) ⇔ y ≥ 0, ∀x ∈ (1; +∞) ⇔ Xét hàm số f (x) = (5) m∈ / (1; +∞) ⇔ x2 − 2mx + ≥ 0, ∀x ∈ (1; +∞) m≤1 +2 m ≤ x 2x , ∀x ∈ (1; +∞) (1) √ x2 + x2 − (1; +∞) có f (x) = ; f (x) = ⇔ x = Bảng biến thiên: 2x 2x www.DETHITHU.NET - Đ THI TH 10 www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát x √ − f (x) +∞ + +∞ f (x) √ De m≤1 √ ⇔ m ≤ Vậy với m ≤ hàm số đồng biến (1; +∞) m≤ Do (1) ⇔ Bài tập 1.27 Tìm a để hàm số y = x2 − 2ax + 4a2 đồng biến (2; +∞) x − 2a Lời giải Tập xác định: D = R\ {2a} Đạo hàm: y = x2 − 4ax (x − 2a) Hàm số đồng biến (2; +∞) ⇔ y ≥ 0, ∀x ∈ (2; +∞) 2a ∈ / (2; +∞) ⇔ x2 − 4ax ≥ 0, ∀x ∈ (2; +∞) Th ⇔ Vậy với m ≤ 2a ≤ ⇔ a ≤ x4 , ∀x ∈ (2; +∞) a≤1 a ≤ 12 ⇔a≤ hàm số đồng biến (2; +∞) §4 Đường Tiệm Cận Của Đồ Thị Hàm Số Bài tập 1.28 Tìm tiệm cận (nếu có) hàm số sau 2x − x−3 a) y = b) y = x − −x √ √ +2 x+3 x2 + x e) y = d) y = x+1 x−1 x − 4x + g) y = h) y = x2 + x − 1−x c) y = − 4x x+1 iTh f) y = 2x − + i) y = x + x x2 + 2x Lời giải a) Tập xác định: D = R\ {2} Ta có lim y = ⇒ TCN y = 2; lim+ y = +∞, lim− y = −∞ ⇒ TCĐ x = x→±∞ x→2 x→2 Vậy hàm số có tiệm cận ngang y = tiệm cận đứng x = b) Tập xác định: D = R\ {2} Ta có lim y = −1 ⇒ TCN y = −1; lim y = +∞, lim y = −∞ ⇒ TCĐ x = x→2+ x→2− et u.N x→±∞ Vậy hàm số có tiệm cận ngang y = −1 tiệm cận đứng x = c) Tập xác định: D = R\ {−1} Ta có lim y = −4 ⇒ TCN y = −4; lim + y = +∞, lim − y = −∞ ⇒ TCĐ x = −1 x→±∞ x→−1 x→−1 Vậy hàm số có tiệm cận ngang y = −4 tiệm cận đứng x = −1 d) Tập xác định: D = R\ {1} Ta có lim y = ±1 ⇒ TCN y = ±1; lim+ y = +∞, lim− y = −∞ ⇒ TCĐ x = x→±∞ x→1 x→1 Vậy hàm số có hai tiệm cận ngang y = ±1 tiệm cận đứng x = e) Tập xác định: D = R\ {−1} Ta có lim y = ⇒ TCN y = 0; lim + y = +∞, lim − y = −∞ ⇒ TCĐ x = −1 x→±∞ x→−1 x→−1 Vậy hàm số có tiệm cận ngang y = tiệm cận đứng x = −1 2x2 − x + f) Tập xác định: D = R\ {0} Hàm số viết thành y = x Ta có lim [y − (2x − 1)] = ⇒ TCX y = 2x − 1; lim y = +∞, lim y = −∞ ⇒ TCĐ x = x→±∞ x→0+ x→0− Vậy hàm số có tiệm cận xiên y = 2x − tiệm cận đứng x = 1−x Ta có lim [y − (−x + 3)] = ⇒ TCX y = −x + 3; lim+ y = −∞, lim− y = +∞ ⇒ TCĐ x = g) Tập xác định: D = R\ {0} Hàm số viết thành y = −x + + x→±∞ x→1 x→1 Vậy hàm số có tiệm cận xiên y = −x + tiệm cận đứng x = √ √ −1 − −1 + h) Tập xác định: D = −∞; ∪ ; +∞ Ta có 2 www.DETHITHU.NET - Đ THI TH 11 www.DETHITHU.NET - Đ THI TH Nguyễn Minh Hiếu De √ x2 + x − 1 • lim = 1; lim x2 + x − − x = ⇒ TCX y = x + x→+∞ x→+∞ x 2 √ x2 + x − 1 • lim = −1; lim x2 + x − + x = − ⇒ TCX y = −x − x→−∞ x→−∞ x 2 Vậy hàm số có hai tiệm cận xiên y = x + 12 y = −x − 12 i) Tập xác định: √ D = (−∞; −2] ∪ [0; +∞) Ta có x + x2 + 1 • lim = 2; lim x + x2 + − 2x = ⇒ TCX y = 2x + x→+∞ x→+∞ x 2 2 x − x + 2x √ • lim x + x2 + 2x = lim = −1 ⇒ TCN y = −1 x→−∞ x→−∞ x − x2 + 2x Vậy hàm số có tiệm cận xiên y = 2x + tiệm cận ngang y = −1 Bài tập 1.29 Tìm m để đồ thị hàm số y = mx2 − 2m (m − 1) x − 3m2 + m − có tiệm cận xiên qua A (−1; −3) x+2 m2 + m − x+2 Do với m = 0, m = 1, m = −2 hàm số có tiệm cận xiên y = mx − 2m m = (loại) Khi tiệm cận xiên qua A(−1; −3) ⇔ −3 = −m − 2m2 ⇔ m = − 32 Vậy với m = − 32 tiệm cận xiên hàm số cho qua A(−1; −3) Lời giải Tập xác định: D = R\ {−2} Hàm số viết thành y = mx − 2m2 + Th Bài tập 1.30 Tìm m để hàm số y = 2x2 + (m + 1) x − có giao hai tiệm cận nằm parabol (P ) : y = x2 +2x−1 x+m m2 − m − x+m √ Do với m = 1±2 hàm số có tiệm cận xiên y = 2x − m + tiệm cận đứng x = −m Suy giao hai tiệm cận I(−m; − 3m) m=1 Khi I ∈ (P ) ⇔ − 3m = m2 − 2m − ⇔ (thỏa mãn) m = −2 Vậy với m = m = −2 hàm số có giao hai tiệm cận thuộc (P ) Lời giải Tập xác định: D = R\ {−m} Hàm số viết thành y = 2x − m + + iTh mx2 + 3m2 − x − 450 x + 3m 6m − Lời giải Tập xác định: D = R\ {−3m} Hàm số viết thành y = mx − + x + 3m • Với m = hàm số tiệm cận nên không thỏa mãn yêu cầu toán • Với m = hàm số có tiệm cận ngang y = −2 tiệm cận đứng x = −3m Khi góc hai tiệm cận 900 nên không thỏa mãn yêu cầu toán • Với m = 13 , m = hàm số có tiệm cận xiên y = mx − tiệm cận đứng x = −3m Khi góc hai tiệm cận 450 ⇔ góc tiệm cận xiên tia Ox 450 1350 ⇔ m = ±1 Vậy với m = ±1 hàm số có góc hai tiệm cận 450 Bài tập 1.31 (A-08) Tìm m để góc hai tiệm cận hàm số y = diện tích et u.N Bài tập 1.32 Tìm m để đồ thị hàm số y = www.DeThiThu.Net x2 + mx − có tiệm cận xiên tạo với trục toạ độ tam giác có x−1 Lời giải Tập xác định: D = R\ {1} Hàm số viết thành y = x + m + + m x−1 Do với m = hàm số có tiệm cận xiên y = x + m + Tiệm cận xiên cắt Ox A(−m − 1; 0) ⇒ OA = |m + 1| cắt Oy B(0; √ m + 1) ⇒ OB = |m + 1| 2 Khi S∆OAB = 12 OA.OB = 12 (m + 1) ⇒ 12 (m + 1) = ⇔ m = −1 ± 2 √ Vậy với m = −1 ± 2 tiệm cận xiên tạo với hai trục tọa độ tam giác có diện tích Bài tập 1.33 Tìm m để đồ thị hàm số y = độ tam giác có diện tích 2x2 − (5m − 1) x + 4m2 − m − có tiệm cận xiên tạo với trục toạ x−m Lời giải Tập xác định: D = R\ {m} Hàm số viết thành y = 2x − 3m + + m2 − x−1 Do với m = ±1 hàm số có tiệm cận xiên y = 2x − 3m + |3m−1| Tiệm cận xiên cắt Ox A( 3m−1 cắt Oy B(0; −3m + 1) ⇒ OB = |3m − 1| ; 0) ⇒ OA = m = −1 (loại) 2 Khi S∆OAB = 12 OA.OB = 14 (3m − 1) ⇒ 14 (3m − 1) = ⇔ m = 53 Vậy với m = tiệm cận xiên tạo với hai trục tọa độ tam giác có diện tích www.DETHITHU.NET - Đ THI TH 12 DeThiThu.Net - Đ Thi Th Đ i H c - THPT Qu c Gia - Tài Li u Ôn Thi.C p nh t h ng ngày! www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề Khảo Sát Bài tập 1.34 Cho hàm số y = 3x − Chứng minh tích khoảng cách từ điểm M nằm đồ thị hàm số đến x−2 hai tiệm cận không đổi Lời giải Tập xác định: D = R\ {2} Hàm số có tiệm cận ngang y = ⇔ y−3 = tiệm cận đứng x = ⇔ x−2 = 0 −1 Lấy M (x0 ; 3x x0 −2 ) thuộc đồ thị ta có d (M, TCN) = De ; d (M, TCĐ) = |x0 − 2| ⇒ d (M, TCN) d (M, TCĐ) = |x0 − 2| Vậy tích khoảng cách từ M đến hai tiệm cận số (đpcm) −x2 + 4x − Chứng minh tích khoảng cách từ điểm M nằm đồ thị hàm x−2 số đến hai tiệm cận số Lời giải Tập xác định: D = R\ {2} Hàm số viết thành y = −x + + x−2 Do hàm số có tiệm cận xiên y = −x + ⇔ x + y − = tiệm cận đứng x = ⇔ x − = Lấy M (x0 ; −x0 + + x01−2 ) thuộc đồ thị ta có Bài tập 1.35 Cho hàm số y = www.DeThiThu.Net ; d (M, TCĐ) = |x0 − 2| ⇒ d (M, TCN) d (M, TCĐ) = |x0 − 2| Th d (M, TCN) = Vậy tích khoảng cách từ M đến hai tiệm cận số (đpcm) 3x − Bài tập 1.36 Tìm M thuộc đồ thị hàm số y = để tổng khoảng cách từ M đến hai tiệm cận nhỏ x−2 iTh Lời giải Tập xác định: D = R\ {2} Hàm số có tiệm cận ngang y = ⇔ y−3 = tiệm cận đứng x = ⇔ x−2 = −1 Lấy M (x0 ; 3x x0 −2 ) thuộc đồ thị ta có d (M, TCN) = |x0 −2| ; d (M, TCĐ) = |x0 − 2| x0 = Khi d (M, TCN) + d (M, TCĐ) = |x01−2| + |x0 − 2| ≥ Dấu xảy ⇔ |x01−2| = |x0 − 2| ⇔ x0 = Vậy tổng khoảng cách từ M đến hai tiệm cận nhỏ M (1; 2) M (3; 4) Bài tập 1.37 Tìm điểm M thuộc đồ thị hàm số y = nhỏ x2 + 2x − để tổng khoảng cách từ M đến hai tiệm cận x−1 www.DeThiThu.Net x−1 Do hàm số có tiệm cận xiên y = x + ⇔ x − y + = tiệm cận đứng x = ⇔ x − = Lấy M (x0 ; x0 + + x01−1 ) thuộc đồ thị ta có d (M, TCN) = |x01−1| ; d (M, TCĐ) = |x0 − 1| Lời giải Tập xác định: D = R\ {1} Hàm số viết thành y = x + + Khi d (M, TCN) + d (M, TCĐ) = |x0 −1| + |x0 − 1| ≥ Dấu xảy ⇔ |x0 −1| = |x0 − 1| ⇔ x0 = x0 = et u.N Vậy tổng khoảng cách từ M đến hai tiệm cận nhỏ M (0; 2) M (2; 6) §5 Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số www.DeThiThu.Net Bài tập 1.38 Khảo sát biến thiên vẽ đồ thị hàm số sau a) y = x3 + 3x2 − b) y = −x3 + 3x − c) y = −x3 + 3 e) y = x + x − f) y = −2x − x − g) y = −x3 + 3x2 − d) y = x3 + 3x2 + 3x + h) y = 13 x3 − x2 − 3x − 53 Bài tập 1.39 Khảo sát biến thiên vẽ đồ thị hàm số sau c) y = 12 x4 + x2 − 32 a) y = x4 − 2x2 − b) y = x4 + 2x2 − 4 e) y = −x + 2x − f) y = 2x − 4x + g) y = −2x4 − 4x2 + d) y = − 2x2 − x4 h) y = x4 − 4x2 + Bài tập 1.40 Khảo sát biến thiên vẽ đồ thị hàm số sau x−3 x+3 a) y = b) y = c) y = 2−x 2−x x−1 x x+2 x e) y = f) y = g) y = x+1 x−1 x+1 −x + 2x + x+3 h) y = x−2 Bài tập 1.41 Khảo sát biến thiên vẽ đồ thị hàm số sau x2 + 2x + x2 − 2x − 2x2 + 5x + a) y = b) y = c) y = x+1 x−2 x+2 x2 − 2x 2x2 − x + g) y = −x + + e) y = f) y = x−1 x−1 1−x d) y = −x2 − 2x x+1 h) y = x − + x+1 d) y = Học sinh tự giải www.DETHITHU.NET - Đ THI TH 13 Tham gia ngay! Group : ÔN THI ĐH TOÁN - ANH : Facebook.com/groups/onthidhtoananhvan [...]... ±1 Vậy với m = ±1 thì hàm số có góc giữa hai tiệm cận bằng 450 Bài tập 1.31 (A-08) Tìm m để góc giữa hai tiệm cận của hàm số y = diện tích bằng 4 et u.N Bài tập 1.32 Tìm m để đồ thị hàm số y = www.DeThiThu.Net x2 + mx − 1 có tiệm cận xiên tạo với các trục toạ độ một tam giác có x−1 Lời giải Tập xác định: D = R\ {1} Hàm số viết thành y = x + m + 1 + m x−1 Do đó với m = 0 hàm số có tiệm cận xiên y... (0; 2) và M (2; 6) §5 Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số www.DeThiThu.Net Bài tập 1.38 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau a) y = x3 + 3x2 − 4 b) y = −x3 + 3x − 2 c) y = −x3 + 1 3 3 e) y = x + x − 2 f) y = −2x − x − 3 g) y = −x3 + 3x2 − 1 d) y = x3 + 3x2 + 3x + 1 h) y = 13 x3 − x2 − 3x − 53 Bài tập 1.39 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau c) y = 12 x4 +...www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề 1 Khảo Sát x √ 2 1 − f (x) +∞ + 0 +∞ 3 2 f (x) √ 2 De m≤1 √ ⇔ m ≤ 1 Vậy với m ≤ 1 thì hàm số đồng biến trên (1; +∞) m≤ 2 Do đó (1) ⇔ Bài tập 1.27 Tìm a để hàm số y = x2 − 2ax + 4a2 đồng biến trên (2; +∞) x − 2a Lời giải Tập xác định: D = R\ {2a} Đạo hàm: y = x2 − 4ax 2 (x − 2a) Hàm số đồng biến trên (2; +∞) ⇔ y ≥ 0, ∀x ∈ (2; +∞) 2a... tiệm cận là một hằng số (đpcm) −x2 + 4x − 3 Chứng minh tích các khoảng cách từ điểm M nằm trên đồ thị hàm x−2 số đến hai tiệm cận là một hằng số 1 Lời giải Tập xác định: D = R\ {2} Hàm số viết thành y = −x + 2 + x−2 Do đó hàm số có tiệm cận xiên y = −x + 2 ⇔ x + y − 2 = 0 và tiệm cận đứng x = 2 ⇔ x − 2 = 0 Lấy M (x0 ; −x0 + 2 + x01−2 ) thuộc đồ thị ta có Bài tập 1.35 Cho hàm số y = www.DeThiThu.Net... THPT Qu c Gia - Tài Li u Ôn Thi.C p nh t h ng ngày! www.DETHITHU.NET - ĐSự Biến THIThiên TH Và Vẽ Đồ Thị Hàm Số Chuyên đề 1 Khảo Sát Bài tập 1.34 Cho hàm số y = 3x − 1 Chứng minh tích các khoảng cách từ điểm M nằm trên đồ thị hàm số đến x−2 hai tiệm cận không đổi Lời giải Tập xác định: D = R\ {2} Hàm số có tiệm cận ngang y = 3 ⇔ y−3 = 0 và tiệm cận đứng x = 2 ⇔ x−2 = 0 0 −1 Lấy M (x0 ; 3x x0 −2 ) thuộc... (−1; −3) x+2 m2 + m − 2 x+2 2 Do đó với m = 0, m = 1, m = −2 hàm số có tiệm cận xiên y = mx − 2m m = 1 (loại) Khi đó tiệm cận xiên qua A(−1; −3) ⇔ −3 = −m − 2m2 ⇔ m = − 32 Vậy với m = − 32 thì tiệm cận xiên của hàm số đã cho qua A(−1; −3) Lời giải Tập xác định: D = R\ {−2} Hàm số viết thành y = mx − 2m2 + Th Bài tập 1.30 Tìm m để hàm số y = 2x2 + (m + 1) x − 3 có giao hai tiệm cận nằm trên parabol... 1±2 5 hàm số có tiệm cận xiên y = 2x − m + 1 và tiệm cận đứng x = −m Suy ra giao hai tiệm cận là I(−m; 1 − 3m) m=1 Khi đó I ∈ (P ) ⇔ 1 − 3m = m2 − 2m − 1 ⇔ (thỏa mãn) m = −2 Vậy với m = 1 và m = −2 thì hàm số có giao hai tiệm cận thuộc (P ) Lời giải Tập xác định: D = R\ {−m} Hàm số viết thành y = 2x − m + 1 + iTh mx2 + 3m2 − 2 x − 2 bằng 450 x + 3m 6m − 2 Lời giải Tập xác định: D = R\ {−3m} Hàm số viết... 2x − 4x + 1 g) y = −2x4 − 4x2 + 1 d) y = 3 − 2x2 − x4 h) y = x4 − 4x2 + 3 Bài tập 1.40 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau 4 x−3 x+3 a) y = b) y = c) y = 2−x 2−x x−1 x 2 x+2 2 x e) y = f) y = g) y = x+1 x−1 x+1 −x + 2 2x + 1 x+3 h) y = x−2 Bài tập 1.41 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau x2 + 2x + 2 x2 − 2x − 3 2x2 + 5x + 4 a) y = b) y = c) y = x+1 x−2... (1; 2) và M (3; 4) Bài tập 1.37 Tìm điểm M thuộc đồ thị hàm số y = nhỏ nhất x2 + 2x − 2 để tổng khoảng cách từ M đến hai tiệm cận là x−1 www.DeThiThu.Net 1 x−1 Do đó hàm số có tiệm cận xiên y = x + 3 ⇔ x − y + 3 = 0 và tiệm cận đứng x = 1 ⇔ x − 1 = 0 Lấy M (x0 ; x0 + 3 + x01−1 ) thuộc đồ thị ta có d (M, TCN) = |x01−1| ; d (M, TCĐ) = |x0 − 1| Lời giải Tập xác định: D = R\ {1} Hàm số viết thành y = x... ≤ x4 , ∀x ∈ (2; +∞) a≤1 a ≤ 12 ⇔a≤ 1 2 thì hàm số đồng biến trên (2; +∞) §4 Đường Tiệm Cận Của Đồ Thị Hàm Số Bài tập 1.28 Tìm tiệm cận (nếu có) của các hàm số sau 2x − 1 x−3 a) y = b) y = x − 2 −x √ √ +2 x+3 x2 + x e) y = d) y = x+1 x−1 2 x − 4x + 4 g) y = h) y = x2 + x − 1 1−x c) y = 3 − 4x x+1 iTh f) y = 2x − 1 + i) y = x + 1 x x2 + 2x Lời giải a) Tập xác định: D = R\ {2} Ta có lim y = 2 ⇒

Ngày đăng: 24/05/2016, 01:14

TỪ KHÓA LIÊN QUAN

w