1. Trang chủ
  2. » Công Nghệ Thông Tin

Bài giảng lập trình hệ điều hành chương 7 main memory

57 642 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 57
Dung lượng 4,25 MB

Nội dung

• Một cặp thanh ghi nềnbase và giới hạn limit xác định không gian địa chỉ của tiến trình trên bộ nhớ • CPU phải kiểm tra tất cả truy cập bộ nhớ từ không gian người dùng nằm trong khoảng

Trang 1

Khoa Công Nghệ Thông Tin & Truyền Thông

Đại học Cần Thơ

Giảng viên: Hà Duy An

Trang 2

1.Tổng quan

2.Hoán vị (Swapping)

3.Cấp phát bộ nhớ liên tục

4.Phân đoạn (Segmentation)

5.Phân trang (Paging)

6.Cấu trúc bảng trang

Trang 4

• Chương trình phải được mang vào bộ nhớ và được đặt vào một tiến trình để thực thi.

Bộ nhớ chính và các thanh ghi là hai thiết bị lưu trữ mà CPU

có thể truy cập trực tiếp

Đơn vị bộ nhớ (memory unit) chỉ nhìn thấy một luồng địa chỉ

+ yêu cầu đọc, hay địa chỉ + dữ liệu và yêu cầu ghi

• Các thanh ghi có thể được truy cập chỉ với một chu kỳ CPU (hay ít hơn)

• Truy cập bộ nhớ chính cần nhiều chu kỳ CPU hơn

Cache nằm ở giữa bộ nhớ chính và các thanh ghi

• Các thao tác trên bộ nhớ cần được đảm bảo chính xác

Trang 5

Một cặp thanh ghi nền

(base) và giới hạn (limit)

xác định không gian địa chỉ

của tiến trình trên bộ nhớ

• CPU phải kiểm tra tất cả

truy cập bộ nhớ từ không

gian người dùng nằm trong

khoảng giới hạn của thanh

ghi nền và giới hạn

Trang 7

• Tập hợp các chương trình trên đĩa, sẵn sàng được mang vào bộ

nhớ để thực thi hình thành một hàng đợi nhập (input queue)

o Nếu không có sự hỗ trợ nào, chương trình phải được nạp vào từđịa chỉ: 0000

• Hầu hết các hệ thống máy tính cho phép các tiến trình có thể nằm ở bất kỳ phần nào trong bộ nhớ vật lý

• Các địa chỉ ở trong các dạng thức khác nhau tại mỗi giai đoạn khác nhau của chương trình:

o Các địa chỉ tượng trưng trong chương trình nguồn.

o Các địa chỉ tái định vị khi biên dịch.

o Các địa chỉ tuyệt đối khi nạp (loading) hoặc nối kết (linking).

=> Mỗi giai đoạn, việc gắng kết sẽ ánh xạ từ một không gian địa chỉ này sang một không gian địa chỉ khác.

Trang 8

• Việc gắn kết địa chỉ (address binding) của các chỉ thị và dữ liệu vàođịa chỉ bộ nhớ có thể diễn ra tại 3 giai đoạn khác nhau:

o Thời điểm biên dịch (compile time): Nếu vị trí vùng nhớ được biết

trước, thì có thể sinh ra mã lệnh tuyệt đối (absolute code); tuy nhiên chương trình phải được biên dịch lại nếu vị trí bắt đầu của vùng nhớ thay đổi.

o Thời điểm nạp (load time): trình biên dịch phải sinh ra mã lệnh có thể

tái định vị (relocatable code) nếu không thể biết được vị trí vùng nhớ tại thời điểm biên dịch Trong trường hợp này việc gắng kết bị trì hoãn cho đến thời điểm nạp Chương trình phải được nạp lại nếu vị trí bắt đầu của vùng nhớ thay đổi

o Thời điểm thực thi (execution time): Việc gắn địa chỉ bị trì hoãn cho

đến thời điểm thực thi nếu tiến trình có thể phải di chuyển được từ phân đoạn bộ nhớ (segment) này đến phân đoạn bộ nhớ khác khi thực thi Cần thêm sự hỗ trợ của phần cứng để ánh xạ địa chỉ(ví dụ như các

Trang 10

• Cơ chế cho phép không gian địa chỉ luận lý tách biệt khỏi không gian địa chỉ vật lý, chính là trọng tâm của cơ chế quản

lý bộ nhớ.

o Địa chỉ luận lý (logical address): được sinh ra bởi CPU, cũng

được xem là địa chỉ ảo (virtual address)

o Địa chỉ vật lý (physical address): địa chỉ được nhìn thấy bởi bộ

Trang 11

Bộ quản lý bộ nhớ (Memory management Unit – MMU): thiết

bị phần cứng làm nhiệm vụ ánh xạ địa chỉ ảo sang địa chỉ vật

lý => nhiều phương thức có thể được sử dụng

Một sơ đồ ánh xạ đơn giản là dùng thanh ghi tái định vị

(relocation/base register): giá trị của thanh ghi tái định vị được cộng vào bất cứ địa chỉ nào sinh ra bởi tiến trình người dùng vào thời điểm nó được gửi đến bộ nhớ

o MS-DOS trên Intel 80x86 sử dụng 4 thanh ghi tái định vị

Chương trình người dùng thực thi với các địa chỉ luận lý; nó không bao giờ thấy được địa chỉ vật lý thật sự

Trang 13

Nạp tĩnh (static loading): toàn bộ chương trình và dữ liệu được nạp một lần

vào bộ nhớ vật lý cho tiến trình để chạy.

Nạp động (dynamic loading): thường trình (routine) chỉ được nạp khi nó được

gọi.

o Tất cả các thường trình được lưu trên đĩa theo định dạng nạp có thể tái định vị.

o Bộ nạp liên kết tái định vị (relocatable linking loader) được dùng để nạp các thường trình mong muốn.

• Điều này làm tăng hiệu năng sử dụng bộ nhớ; các thường trình không được sử dụng sẽ không bao giờ được nạp.

• Hữu ích khi một số lượng lớn các mã lệnh được cần để giải quyết các tình huống không thường xuất hiện.

• Không cần sự hỗ trợ đặc biệt của hệ điều hành:

o Nạp động được cài đặt thông qua cách thiết kế chương trình.

o HĐH có thể hỗ trợ bằng cách cung cấp các thư viện để cài đặt nạp động

Trang 14

Liên kết tĩnh (static linking): các thư viện hệ thống và mã chương

trình được kết hợp với nhau bởi bộ nạp (loader) thành một chươngtrình nhị phân có thể thực thi (executable image)

Liên kết động (dynamic linking): việc liên kết bị hoãn lại đến tận

thời điểm thực thi

Một đoạn mã lệnh nhỏ, stub, được sử dụng để định vị thường trình

thư viện thường trú (memory-resident library routine) tương ứng

hay cách thức nạp thư viện cần thiết vào nếu thường trình cần thamchiếu chưa được nạp vào bộ nhớ

Stub thay thế chính nó bằng địa chỉ của thường trình và thực thi thường trình đó

• Hệ điều hành cần phải kiểm tra thường trình có nằm trong khônggian địa chỉ của các tiến trình hay không

o Nếu không, thêm nó vào

• Liên kết động hữu ích đặc biệt cho các thư viện chia sẻ (shared libraries).

Trang 15

Một tiến trình có thể được hoán vị tạm thời ra khỏi bộ nhớ, đến

vùng lưu trữ phụ (backing store) và rồi lại được mang trở lại bộ nhớ

để tiếp tục thực thi

Vùng lưu trữ phụ: đĩa tốc độ cao, đủ lớn để sao chép tất cả ảnh bộ

nhớ (memory image) cho tất cả người dùng; phải cho phép truy cậptrực tiếp đến các ảnh này

Hàng đợi sẳn sàng bao gồm tất cả các tiến trình sẳn sàng để thực thi

nằm trong bộ nhớ và nằm trong vùng lưu trữ phụ

• Nếu tiến trình kế tiếp được cấp CPU không nằm trong bộ nhớ =>cần phải hoán vị một tiến trình ra, và mang tiến trình cần thiết vào

bộ nhớ

• Thời gian chuyển ngữ cảnh trường hợp này là rất cao

• Giả sử tiến trình 100MB hoán vị ra đĩa với tốc độ 50MB/sec

o Thời gian hoán vị ra: 2000ms

o Cộng thời gian hoán vị vào một tiến trình có cùng kích thước

o Tổng thời gian chuyển đổi ngữ cảnh: 4000ms

Trang 17

• Phần chính của thời gian hoán vị là thời gian chuyển dữ liệu; tổngthời gian chuyển dữ liệu tỷ lệ thuận với lượng bộ nhớ được hoán vị.

o Giảm kích thước dữ liệu cần hoán vị – nếu biết chính xác dung lượng

bộ nhớ thật sự cần dùng

• Các ràng buộc khác:

o Có cần hoán vị tiến trình vào chính xác vùng nhớ trước đó hay không?

o Khi tiến trình đang thực hiện tao tác I/O

• Phiên bản chuẩn của hoán vị không được dùng trong HĐH hiện đại.Tuy nhiên, các phiên bản cải tiến của kỹ thuật này được dùng trongnhiểu hệ thống (như: Unix, Linux, và Windows):

o Hoán vị thông thường được vô hiệu hóa

o Chỉ bắt đầu khi số lượng bộ nhớ đã cấp phát lớn hơn một ngưỡng nào đó

Trang 19

• Là một trong các phương pháp cấp phát bộ nhớ được dùng đầu tiên

• Bộ nhớ chính thường được chia làm 2 phần:

o Phần thường trú của hệ điều hành: thường được tổ chức trong vùng nhớ thấp với các vector ngắt.

o Các tiến trình người dùng được tổ chức trong vùng nhớ cao;

 mỗi tiến trình được cấp phát duy nhất một vùng nhớ liên tục trong bộ nhớ

• Sơ đồ thanh ghi tái định vị được sử dụng để bảo vệ các tiến trìnhngười dùng với nhau, và để chống việc thay đổi mã lệnh và dữ liệucủa hệ điều hành:

o Thanh ghi tái định vị (relocation register) chứa giá trị của địa chỉ vật lý nhỏ nhất

o Thanh ghi giới hạn (limit register) chỉ ra phạm vi cho phép của các địa chỉ luận lý - mỗi địa chỉ luận lý phải nhỏ hơn giá trị trong thanh ghi giới hạn.

o MMU ánh xạ động địa chỉ luận lý > vật lý

Trang 21

• Cấp phát đa phân khu:

o Mức độ đa chương được xác định bởi số lượng phân khu

o Kích thước phân khu thay đổi tùy thuộc vào nhu cầu của tiến trình

o Lỗ hổng (hole): các lỗ hổng với kích thước khác nhau nằm rải rác trong bộ nhớ.

o Khi một tiến trình xuất hiện, nó được cấp cho lỗ hổng đủ chứa nó.

o Khi tiến trình kết thúc vùng nhớ tương ứng được giải phóng, và được kết hợp với lỗ hổng lân cận (nếu có)

o Hệ điều hành duy trì thông tin về:

a) Những phân khu đã được cấp b) Các lỗ hổng

process 2 process 9

process 10

Trang 22

Làm thế nào để thỏa mãn yêu cầu bộ nhớ có kích thước n từ số các lỗ

hổng hiện tại?

First-fit: cấp lỗ hổng đầu tiên đủ lớn.

Best-fit: cấp lỗ hổng nhỏ nhất nhưng đủ lớn; phải tìm kiếm toàn bộ

danh sách các lỗ hổng, trừ khi danh sách này được sắp thứ tự theokích thước lỗ hổng Chiến lược này sinh ra lỗ hổng còn lại nhỏ nhất

Worst-fit: cấp lỗ hổng lớn nhất; cũng phải tìm cho ra lỗ hổng có

kích thước lớn nhất trong toàn bộ danh sách Chiến lược này sinh ra

lỗ hổng còn lại lớn nhất

First-fit và best-fit thì tốt hơn worst-fit khi ta quan tâm đến tốc độ và hiệu quả sử dụng bộ nhớ Hiệu quả sử dụng bộ nhớ là như nhau với First-fit và best-fit, tuy nhiên first-fit nhìn chung nhanh hơn.

Trang 23

Phân mảnh ngoài: tổng không gian bộ nhớ còn đủ để thỏa

mãn yêu cầu nhưng chúng không nằm liền nhau.

Phân mảnh trong: phần bộ nhớ cấp cho tiến trình lớn hơn bộ

nhớ yêu cầu một ít Phần sai khác này nằm bên trong của phân khu và không được sử dụng.

Khử phân mảnh ngoài bằng cách cô đặc bộ nhớ

o Sắp xếp lại nội dung bộ nhớ để gom các lỗ hổng lại thành một lỗhổng duy nhất lớn hơn

o Sự khử phân mảnh chỉ có thể làm được khi việc tái định vị là

động

• Cách tiếp cận khác để khử phân mảnh ngoài là cho phép vùng nhớ của tiến trình nằm không liên tục trong bộ nhớ => cấp phát không liên tục.

Trang 25

• Sơ đồ quản lý bộ nhớ hỗ trợ việc phân chia bộ nhớ theo góc độngười dùng.

• Một chương trình bao gồm một tập hợp các đoạn (segment)

o Một đoạn là một đơn vị luận lý, ví dụ như:

main program, procedure,

function, method, object, local variables, global variables, common block,

stack, symbol table arrays

Trang 26

3

Không gian người dùng Không gian bộ nhớ vật lý

Trang 27

• Địa chỉ luận lý bao gồm một bộ đôi:

<segment-number, offset>

Bảng đoạn (Segment table): ánh xạ các địa chỉ luận lý hai

chiều định nghĩa bởi người dùng vào các địa chỉ vật lý một chiều.

• Mỗi mục từ trong bảng gồm hai phần:

o base – chứa địa chỉ vật lý khởi đầu của đoạn trong bộ nhớ vật lý.

o limit – chỉ định chiều dài của đoạn.

Segment-table base register (STBR): là thanh ghi chỉ đến vị

trí của bảng đoạn trong bộ nhớ.

Segment-table length register (STLR): là thanh ghi chỉ ra số

lượng các đoạn đang được sử dụng bởi chương trình; một đoạn

có số hiệu s là hợp lệ nếu s < STLR.

Trang 30

Bảo vệ (Protection):

o Cơ chế bảo vệ: Kết hợp với mỗi mục từ trong bảng quản lý đoạn:

• Bit hợp lệ (validation bit) = 0 ⇒ đoạn không hợp lệ

• Các bit kiểm soát các quyền read/write/execute

• Việc chia sẻ mã lệnh được thực hiện ở mức đoạn.

• Do các đoạn có độ dài khác nhau, việc cấp phát bộ nhớ là kiểu bài toán cấp phát động.

Trang 32

• Không gian địa chỉ vật lý của một tiến trình có thể không liên tục;tiến trình được cấp bộ nhớ vật lý khi nó sẵn dùng.

o Tránh dược phân mãnh ngoài trong bộ nhớ và vùng lưu trữ phụ (backing store)

• Chia bộ nhớ vật lý thành các khối có kích thước cố định gọi là các

khung (frame): có kích thước là lũy thừa của 2, giữa 512 bytes và

16 Mbytes

• Chia bộ nhớ luận lý thành các khối có cùng kích thước với khung

trang gọi là trang (page).

• Theo dõi tất cả các khung trang còn rảnh

Để chạy một chương trình có N trang, cần phải tìm đúng N khung

trang còn trống và nạp chương trình vào

Cần thiết lập một bảng trang (page table) để dịch các địa chỉ luận

lý thành địa chỉ vật lý

• Vẫn tồn tại phân mảnh trong

Trang 33

• Địa chỉ được sinh ra bởi CPU được chia làm 2 phần:

o Số hiệu trang – page number (p): được sử dụng như là một chỉ

mục đến bảng trang, mà bảng trang này chứa địa chỉ nền của

mỗi trang trong bộ nhớ vật lý

o Độ dời trong trang – offset number (d): được kết hợp với địa

chỉ nền để xác định địa chỉ vật lý dùng để gởi đến bộ nhớ

• Kích thước của không gian địa chỉ là 2 m

• Kích thước của trang là 2 n

page number page offset

Trang 38

• Phân mãnh trong: khung cuối cùng được cấp phát có thể không hoàntoàn đầy.

o Kích thước trang = 2,048

o Kích thước tiến trình = 72,766 bytes

o 35 trang + 1,086 bytes

o Phân mãnh trong 2,048 - 1,086 = 962 bytes

o Trường hợp phân mãnh xấu nhất = 1 frame – 1 byte

o Trung bình kích thước bị phân mãnh = 1/2 frame size

o Kích thước khung nhỏ thì tốt hơn?

=> Kích thước bảng trang tăng

o Kích thước của trang ngày càng tăng

• Solaris hỗ trợ hai kích thước trang – 8 KB và 4 MB

• Tách biệt không gian địa chỉ của chương trình và địa chỉ vật lý thật

Trang 39

• Bảng trang được giữ trong bộ nhớ chính.

Thanh ghi nền của bảng trang (PTBR - Page-table base register)

chỉ tới bảng trang

Thanh ghi chỉ chiều dài bảng trang (PRLR - Page-table length

register) chỉ định kích thước của bảng trang.

• Trong sơ đồ này, mỗi truy cập đến dữ liệu/chỉ thị yêu cầu 2 truy cập

bộ nhớ: một cho bảng trang và một cho việc truy cập dữ liệu/chỉ thị

• Vấn đề truy cập bộ nhớ hai lần có thể giải quyết được bằng cách sử

dụng một kiểu cache phần cứng tìm kiếm nhanh gọi là bộ nhớ kết

hợp hoặc là bộ đệm tìm kiếm phụ cho việc dịch địa chỉ (TLBs

-Translation look-aside buffers)

Vài TLBs lưu trữ các định danh không gian địa chỉ

(address-space identifiers - ASIDs) trong mỗi mục từ của TLB – là các định

danh duy nhất của mỗi tiến trình để bảo vệ cho tiến trình đó

o Mặc khác nếu TLBs không hỗ trợ ASIDs, cần phải xóa tất cả TLBs khi chuyển ngữ cảnh

Trang 40

• TLBs thường nhỏ (64-1024 mục từ)

Khi truy cập đến mục từ trong bảng trang không có trong TLB (TLB miss),

nó sẽ được nạp vào trong TLB cho lần truy cập sau

o Có nhiều chính sách thay thế các mục từ trong TLB được dùng

o Vài TLB cho phép một số mục từ không thể thay thế

• Bộ nhớ kết hợp (Associative Memory) – tìm kiếm song song

• Dịch địa chỉ (p, d)

Page # Frame #

Trang 42

• Thời gian tìm kiếm trên thanh ghi kết hợp = ε đơn vị thời gian (cóthể < 10% thời gian truy cập bộ nhớ)

Giả sử chu kỳ bộ nhớ (thời gian truy cập bộ nhớ) là m

• Tỉ lệ chập α (hit ratio): phần trăm số lần số hiệu trang được tìm thấytrong các thanh ghi kết hợp Tỉ lệ này liên quan đến số lượng thanhghi kết hợp

Trang 43

• Việc bảo vệ bộ nhớ được cài đặt bằng cách kết hợp bit bảo vệ

(protection bit) với mỗi khung để xác định khung là read-only hay read-write.

Bit hợp lệ - không hợp lệ (Valid-invalid bit) được gắn vào

mỗi đầu mục trong bảng trang:

o “valid” chỉ ra rằng khung tương ứng đang nằm trong không gianđịa chỉ luận lý của tiến trình, và do đó là trang hợp lệ

o “invalid” chỉ ra rằng trang đó không nằm trong không gian địachỉ luận lý của tiến trình

o Hay sử dụng page-table length register (PTLR)

Trang 45

o Mỗi tiến trình có một bản sao mã và dữ liệu riêng

o Các trang cho mã và dữ liệu riêng có thể xuất hiện bất kỳ đâutrong không gian địa chỉ luận lý của tiến trình

Trang 48

• Lượng bộ nhớ cho cấu trúc của cơ chế phân trang có thể rất lớn nếu áp dụng trực tiếp cơ chế này như trên:

o Giả sử một không gian địa chỉ luận lý 32-bit trên hệ thống máytính hiện đại

o Trang có kích thước 4 KB (212)

o Bảng trang có thể có 1 triệu mục từ (232/212)

o Nếu mỗi mục từ là 4 bytes -> 4 MB bộ nhớ vật lý cho bảng trang

o Không muốn cấp phát vùng nhớ liên tục cho bảng trang

Bảng trang phân cấp (hierachical page table).

Bảng trang được băm (hashed page table).

Bảng trang đảo (inverted page table).

Trang 49

• Phân không gian địa chỉ luận lý vào nhiều bảng trang.

(two-level page table) => Phân trang bảng trang

Trang 51

• Một địa chỉ luận lý trên máy 32 bit Một trang có kích thước 4K Địa chỉ luận lý bao gồm:

o Số hiệu trang (page number): 20 bits.

o Độ dời trong trang (page offset): 12 bits.

• Vì bảng trang được phân trang, số hiệu trang lại được chia thành 2 phần:

o Số hiệu trang dài 10 bit.

o Độ dời trong trang dài 10 bit.

• Do đó, một địa chỉ luận lý có dạng sau:

Ngày đăng: 05/05/2016, 17:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w