1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề bồi dưỡng học sinh giỏi giá trị lớn nhất, giá trị nhỏ nhất phan huy khải (phần 5)

30 378 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 11,88 MB

Nội dung

Chuyen dg BDHSG Join g\i tr| Ifln nh^t va gia trj nh6 nhat - Phan Huy Khil (x;y)eD P = min< P; [(x; y)eD| (x; y)eD2 P > Cty TNHH MTV DWH Khang Vijt p i Tim gia tri I6n nhat va nho nha't cua ham so: (2) J ' + 4X^+3X^ f(x) = - Do iha'y D, - {(x; y ) : y = va x^ < } , va P = x^ (x; y) e D, vdi X e • (l + x ^ ) ' Tirdo suy ra; Hudiig dan giai max P = 3x = ± > / ; y = , •>>' (3) Goi m la gia trj y cua ham so: f(x) = (x;y)eD| P = o x = y==0.(4) u , + 4x^ H-Sx'' Khi phifdng trmh sau (an x): —- m l + 2x^ +x'* Xet (x; y) e D j Liic do: x^ + xy + y^ > 0, vi the: P= X -xy-3y / ^(x^+xy.y^) X + xy + y c6 nghipm Ta c6: Xet hai kha nang: Neu m = 3, (2) c6 dang x^ = 0, vay (2) c6 nghiem -xy-3y ^^:„2 2 x"^-xy-Sy"^ < x^ + x y + y Do m = la mot gi^ trj cua f(x) yj X , + - +1 s/ r +t+l t^-t-3 ce fa w "^"^ < m < y m-3 = > , d day S va P tiTdng tfng la long va tich hai nghiem m>— 2 0, 3.^:;^^;^0 Ta c6: (4) o - m >0 m-3 ww Tilfdosuyra: Dieu xay DoP = c Dc'n day gpi m la gia tri luy y cua ham so: f(t) = Neu m ^ 3, (2) c6 nghiem va chi phiTcfng trinh (m - 3)t^ + 2(m - 2)t + m - = ro X N2 /g / up t^-t-3 om " ' - " y - y , X,2• + xy + y (2) « ( m - 3)x* + 2(m - 2)x^ + m - = X Tac6: ' Ta P^3^ (1) (1) o + 4x^ + Sx" = m + 2mx^ + mx"* p ^ ^ x ^ j c j ^ J j ^ x - x y - y > X +xy+ y Do X + x y + y < , nen -, X G (iH-x^)' iL ie uO nT hi Da iH oc 01 / (x;y)eD| + 4x^+3x^ Khim = 3,thi(l)c6dang khix'-xy-3y' U+ V + w (1) gia tri ham so O/l Cty TNHH MTV DWH Khang Vi?t Chuyen BDHSG To^n gia tr| Ifln nhft v i g\i tr| nh6 nhflt - Phan Huy Khii (dal t = ( X + y + z)' Do < x + y + z < => < I < 1) 'I (x + y + z) + — + — + X v = k2W,k2 > '1-.' Ta c6: f'(t) = - — , va bang bien thien sau: y u, v, w la cac vectd cung phiTdng, cung chieu ' (3) :\iu>,ii int't ri^'^rhb ;:5iim) ,0,': 'mM' uw-i 1 = 81(x + y + z)^ + - ri n y zj x fi',; Theo bat dang thuTc Cosi, ta c6 VAb '1 ^1 iV —+ —+ - X z) y 1 h'un ipj'O - 1^ - >9 HUifiig dan giai ro Cho ham so f(x) = x + yfi-x^ trcn mien xac dinh cua no om c Hiiifng dan giai ok bo ce fa Tim gia tri nho nhat cua ham so f(x) = Vx^ - x + + Vx^ - V x + , vdi w e R ww X Hiidng dan giai f(x)= 1 Ap dung bat dang thuTc Cosi cd ban, la c : - + - + - > X y z x+y+z 81 (x + y + z) • ^ X 2J N2 (10) j Viet lai ham so' f(x) diTdi dang sau day j > (x + y + z)' + Tim gia trj Idn nhat va nho nhat cua ham so sach bien thien ham so nhi/ sau: ZJ mien gia trj ham so de giai bai toan trcn bai toan 1, §1, chU'dng I cuon Thay cho phiTdng phap bat dang thtfc ta c6 the sOr dung phiTdng phap chieU - „ Bai (De thi tuyen sink Dai hoc, Cao dang khoi B) phi/dng phap siir dung ba't dang thtfc de giai bai toan dat —+ — + X y , > Xem Idi giai ket hdp giiJa phifdng phap thi, hmh hoc va phifdng phap Trong bai trcn ta da kct hdp phiTdng phap suf dung vectd hinh hoc phang V i the (x + y + z) + i tr ; (8) (9) Nhirthe minP = >/82 o x = y = z = ^ + |y - 2| •' bai loan Xem Idi giai bai 13, §2, chi/dng cuon sach dong thcfi co dau bang (3), (5) (6) h': Ta kct hdp phi^dng phap suT dung vectd va chieu bicn ihien ham so' de giai (7) > 162 o x = y = z= - (l ^^.si^'K^'^Ai^-piih thi tuyen sinh Dai hoc, Caoddnfi khoi B) V; ZJ - Nh4n xet: ^ P = V ( X - l ) ^ +y^ + ^{X + lf+y^ /g i I'' Cho x y la cac so thifc tiiy y Tim gia tri nho nhat cua bicu thtfc (6) , TCr gia thiet < x + y + z < I = > 80(x + y + zf < 80 T i r ( ) ( ) ( ) ( ) t a c P > >/82 fiiii2.(De (5) TJ —+ — + X y Ta thu lai kct qua trcn up Ttr (5) (6) suy 81 ( X + y + /.Y + —+ —+ X y Thco bat dang thuTc Cosi cd ban thi (x + y + z) A Dau bang (9) xay 'i0M> (ii 81(x + y + /.)' + [ - + - + - >18(x + y + z) U y 7.) Vaytuf(lO) suyraminP= ^^min f(t) = - ( x + y + z)^ (4) — + — + - , Ta —+ — + s/ (x + y + /.)' + I'd) 1(1) Dc thay , t iL ie uO nT hi Da iH oc 01 / Dau bang (2) xay o X., ,1 t, ^ I (2) + X - + — Xet he true toa Oxy, va tren xet cac diem A (1) va C(x;0),xe K 81 Xet ham so f(l) = t^ + y, Khi tir (1), ta c6 f(x) = CA + CB d day < t < 245 Chuyen dg BDHSG ToAn gia tri I6n nhat va gia tri nh6 nhS't - Phan Huy Khai Cty TNHH MTV D W H Khang Vi§t R6 rang ta co C A + CB > A B , -> O M „ = OC + AB = V^^' siin45|^^N/2 I sin75" • +cos 30 ,0 73 V2 + 73 V Nhir the ta C O f(x) > N / ^ Vx G E Goi C„ = A B n Ox Ta c6 C„A + C B = 74-273 (2) AB =J(73-1)" Ti( suy minICx) = 72 o Nhir vay ncu dat Xo = OC,, , thi l'{xn) = >/2 = 73-1 rt>;yrtq o.^{^U-wwrt,:-; x = 73 - Ta thu l a i kc't quii trcn ' xeR iL ie uO nT hi Da iH oc 01 / Nhif vay la eo = 1+ x = Xd = 73 - Cac ban Ihijr x c m eo the giai bai toan trcn bang each khac ma l a i dOn giiin hdn hai each tren khong? Nhqn xet: \ ' X|) C O the linh nhif sau: ,c Bai Cho x, y la cac so thiTc thoa man dieu k i c n < x + y + > DifcJng thang qua A B eo phlfdng trinh y+ ] X - r^! , 73 - i n ! m-^X ^m , • nhui R6 rang phu'rtng phap ihj to ro day uy life eiia no qua RJi giai trcn < 0, k h i ta c6 om X ••:(*>Y i " ( - x ) - V x ^ + X + + Vx^ + N/3X + I " (**) bo V i the chi quan l a m den m i n f ( x ) , ta chi can xet x > I S noi tren chinh la giac A B C j>f K h i ta eo: I'M ^ MA+ MC > AC = sfl ^ Thco dinh ! i ham so sin A M O C , ta c6 ba max ' ^ i ! n.f OM, sin 75" sin 45" max OM' MeAABC = max O A ^ ; OB^; OC^} = max {20; 16; 4} = 20 = O A ^ , minP = O M ^ = O H ^ (d day ta ke O H B C ) " '" -'t' " MeAABC Theo cong thi?e linh khoang each tif O den difdng thang y - 2x - = 0, ta c6 oh j i o i :)i.n,} M OC Ro rang (x + y ) = (x;y)eAABC X c l diem M cho M O C = 60"; M O A = 30", v i O M = x f(x) = N/2 M = M„ e A C ca maxP= Do ap dung djnh l i ham so cosin, xet h m h vuong O A B C vd'\A = OC = ' : r diem Ta c(') x ' + y ' = OM^ T a c o r(x) = J x - - - x l c o s " + l - + J x - - x c o s " + l ^ \„i "'^ A = ( - ; 2), B = (0; 4) va C = ( - ; 0) ^ -'-a w ^ ''''Wb ' I \ t : ^ canh), ww I ^' tap y) (kc ce fa Do X < 0, ncn lit (*) va (**) suy IXx) > f ( - x ) thay M(x; lam ok | - { x ) - V x ^ - x + + V x ^ V x + l , •.tjiri ' ^• - - - ''^ kien da cho hdp cac c Ncu ^ c' - phang toa thoa m a n he dieu De /g X c l C c i c h gi£u bang phifdng phap hinh hoc sau day Ta x„ + — = ~ =>xn= yfi 2(1+ V3) s/ Cho y = + y^ Hu0 vJv»- T i m gia t r i Idn nhat va nho nhat cua bieu thiJe P = ' "yf" -x + 2y-8 0; y > { r > > t ^ f < - i 3, t minP = + - m i n O M ^ T i m gia t r i Idn nha't va nho nhat cua b i c u thtfc P = x^ + y^ - 4x - 8y ^ t*M'*'-,:xl'- MeQ Hudiigddngiai a day Q 1^ difdng tron t a m 1(4; 3) Cac d i e m M ( x ; y) thoa man he da cho la toan bo ti? giac A B C D v d i A = (1; 9).B = (0;2), • va ban kinh R = C = (0; 3), D = (9; 0) V i e t lai P diTdi dang: P = (x - 2)^ + (y - Af - De thay m a x O M ^ = M ^ ; m i n O M ^ = M ? 20 Men up '1 1 « om fa M = H x = — ; y = — 2 = 32 24 y =- minP = o M s M , = o \ (*) - (**) ' = -59 Cac ban c6 the tU" nghiem lai cac ket qua (*) va (**) mot each de dang ^Hn xet: Ta co the SIJT dung phiTdng phap lifdng giac hoa de giai bai toan tren " h l 'sau: Tsan- Tiif ( I ) suy '''^i X - = sin , • vdi < (p < 271 y - = 3cos(p T i m gia trj Idn nha't va nho nha't ciia bieu thuTc P = 4x + 3y Tiif P = 4x + 3y = 4(4 + 3sincp) + 3(3 + coscp) = 25 + 12sin(p + 9cos9 Htidiig ddn giai V i e t l a i dieu k i e n da cho diTdi dang (x - 4)^ + (y - 3)^ = 2=10 B a i Cho cac so thiTc x, y thoa man dieu k i e n : x^ + y^ + 16 = 8x + 6y * M = M2 o • X bo B2 = ; y = minP = - — Nhir the maxP = 40 o ce M = D I w o x -A C3 T i r d o suy maxP = 45 o X c cua I tren C D Tir suy maxP = 8^+ 32 = ; P = + ok ^ d day H la hinh chic'u /g m i n M I ^ = H I ^ -' ^' ww i (xem hinh ve) Do = => OM2 = + = 8; O M , = - = ro De thay m a x M I ' = D I ' = 65; : d day M | , M2 Ian li/dt la cac giao diem cua va difdng tron s/ ABCD Ta Gpi I la d i e m I = (2; 4), k h i P = M l ' - 20, d day M ( x ; y) thuoc tiir giac • Men C) (1) (3) Ap dung ba't d^ng thufc quen bie't: V a , ta c6: Tilf d6 suy cac d i e m M ( x ; y) thoa man (1) n ^ m tren diTdng tron tam ta' ~-\/a^ + b^ < a s i n a + b c o s a < Va^ + b^ d i e m 1(4; 3) va ban k i n h R = T a c : - < 12sin(p + 9cos(p< 15 * ^"^^ Cliuyen BDHSG To^n gia tri I6n nha't va gia trj nhd nha't - Phan Huy KhSi Cty TMHH MTV DWH Khang Vlgt Bay gic( liT (3) (4) suy maxP = 40; minP = 10 xet: Ta c6 the giai bai toan tren bang phiTdng phap mien gia trj ham so Ta thu lai ket qua Ucn (vdi phep giai raft gpn gang) X + 3y-10>0 Bai Cho x va y la cac so' thifc thoa man dieu kien • X +y- 6 nhu^sau: : ,•„ ,.v,.;;,r \ iL ie uO nT hi Da iH oc 01 / ' \ ,^ ' : \• / [x-y+2> CO nghiem ' JM.J '•• \ • • !' -y+ = X • f^, j j ^ , ^ j j ~ ' ^ V i l M ' ( l ) ( ) (3) ( ) « , y+ ra-10>0 -y + m - < o y>10 m (6) y>m-6 (7) ''M- y ^ i ^ (8) «^^-^.'^ Ta , ' Ne'um>8thi - m < - m = : > ( ) ( ) o y > - m y>10-m ro i , /g , ' • y m - => (6) (7) o y > 10 - m c i' \r + IS \ • up s/ / 1^-t) (4) x = m - y (5) = m-2y Xet he (6) (7) ta CO / (1) T u f ( l ) s u y r a x = m - 2y • -3y + m + > / fX + 2y = m ^ ^'.^^^'.1 i Goi m la gia tri tiiy y cua P, he ,sau day (an x; y) • ^ ^ "^^ 10 > (2) x +y-6m-6ol0>m>8 / w ^ ; ' Tir suy maxP = 10 o x = 2; y = 4; minP = o x = : l ; y = ^^nh luqn: R6 rang phuTcfng phap giai bang thi va hinh hoc to ro hieu qua Khi m = + 2.3 = Diem cuo'i ciing ma du'dng x + 2y = m gap chinh la diem B(4; 2) Khi m = + 2.4 = 10 Vay maxP =10x = 2;y = 4; P = < = > x = l ; y = AAB*- hcfn h^n so vdi phifdng phap mien gia tri ham so j ^ ^ i Cho X, y la cac so' thiTc thoa man dieu kien sinx + siny = ^ Tim gia tri Idn nha't va nho nha't cua bieu thtfc P = cos2x + cos2y BDHSG Toan gia tr| I6n nhS't vi g\& tr| nh6 nhSit - Phan Huy Hiidng ddn gidi Khai Cty TNHH MTV DWH Khang Vi§t xet: Ta c6 the suT dung phuTdng phap "chicu bien Ihien ham so " de giai bai toan tren nhU'sau: Dat u = sinx; v = siny Khi ta c6 cos2x + cos2y = - 2sin^x + -2sinV = - 2(u^ + v^) Bai loan da cho trd thanh: \'y A-.:.,-':! \ Tim gia tri Idn nha't va nho nha't cua bieu thiJc Q = + 4 :i lit 4 1 smy = V = — u = —;v = l 4sinx = -—;siny = l M s A m m ? = - - = — 2 MsB u = 1; V = — sinx = l;siny = -— w ww MeAB s/ Ta /g ok bo OM^ - O H ^ 4= -1 B om MeAB Ta CO max OM^ - O A ^ = B ^ = + - = - , MeAB u up "\ O c MeAB u ^ ON > OH (1) I c6 the giai each khac l a i hay hdn each giai tren khong? '^^J11 Cho • ' 1 vdi < a < y = t = - - a ^Hn xet: Phu-png phap thj to ro hieu qua viec giai bai l o a n tren Cac hn 10 Cho bon so thiTc x, y, z, t thoa man dieu k i e n x + y + z + t = « • Scr d i CO I d i g i a i nhif vay, v i bai toan cai hon " h i n h h o c " da the hicn 10 qua cdc dieu k i c n x + y = 6; y = t = - - a vdi < a < - bo Tilfdo suy r a m i n P = - 6^2 c L nen ta CO x + y = z + t = - (4) >I nhih itim ^ •••• M•• ~ (4) om Do OMo = 3V2 ; ONo = ro min(MN-) = M o N f , - Bai U'2j Ta tron ddn v j t a i - * Pafu b^ng (2) xay t) thuoc dirdng 6, (2) iL ie uO nT hi Da iH oc 01 / vdi • ' ^6 rang A A B C ton t a i v i thoa " l a n cac tien dc vc dp d a i canh ^"Ja mot tam giac A OB, Cty TMHH MTV DWH Khang Vigt BDHSG Toan gia tri Idn nhit va gia lii nh6 nhS't - Phan Huy Khii Chuygn PhiTdng trinh (1) xac dinh m i e n < x < Ta CO f (X) = _76^-N/2^ 2 2>/2x 276-X 72x(6-x) X + '">'^" ^"'^ ^^"^ f i m m de phiTOng trinh S V x - l + mVx + = 4\/x^ - c6 nghic icm , nen C O bang bie'n thien sau- HUdng dan gidi f'(x) P»i 3- phiTdng trinh 3Vx - + mVx + = V x ^ ^ - p i c u k i e n de (1) c6 nghla la x > Do x > 1, nen V x T T > 0, vay f(x) (1) /2 , ok () nen dieu k i e n dat x+1 i x+1 ,f £ ^ m nghiem f'(x) ^•""•? if :ji> ' ,:>• nh6 nhat ciaa ham so de gi^i b^i toan day hieu qua: Ldi giai gon gang, sang Ban tha'y the nao vc tinh hieu qua cua hai each giai vijfa tnnh bay! iL ie uO nT hi Da iH oc 01 / Ta hay x6t them cdc each giai khac dc nhan thay cdch giai tren la thich hdp nhS't § sCr D g N G G I A TR! LCJN NHAT V A NHO NHAT C U A HAM SO 2: Bai toan da cho CO dang: D E BIEN LUAN PHUCING TRJNH V A BAT PHl/ONG TRJNH C O Tim m de he 3t - t - - m = (4) 00 t| +t2 0 Dieu xay va chi -{t, +12 > up Hitting ddn giai Vie't lai phiTdng fA'>0 ' y'iU mot n g h i c m thupc d o a n Ta T i m m de a (4) CO nghiem t|, t2 m^ < ti < t2 < I Bai l o a n da cho trd thanh: w ww Ta CO f'(0 = 6l - va CO bang b i e n thien sau: • c 3m + 10>0 : Tur ta c6 ce f(t) = t ^ - t - = m (2) c6 nghiem 0 < sin2x < Dira vao djnh Ii Viet, thi t, + ta = | ; t,t2 = om /g ^ -> l - - s i n ^ x + l - s i n ' ^ x + 2sin2x + m o s i n ^ x - s i n x - = m ( ) -3-m>0 o 10 -Y i ^ ; ; , ^ X f'(x) oA'>0o3m+10>0c:>m>-^ Tir suy - V m + 10 /g Vay he (4) (5) c6 nghiem Nhanxet: Tim m de he sau s • f ;;(.,, l i m f(x) = + « ok bo fa - ( m + l)x + 5m + l = (6) , C O nghiem x>3 • ' (7) X ww He (6) (7) v6 nghiem hai tru"dng help sau: a (6) v6 nghiem A ' < o m ' - 3m < o O < m < B a i T i m m de phiTdng trinh 72x^ - ( m + 4)x + 5m + + - x = c6 nghiem b (6) C O nghiem X i , X2 va X| < X2 < >f ,^ * (2) , ^ ,, [A'>0 (1) X|+X20 Do X | + X2 = 2(m + 1); X|X2 " (8) (9) (8)xayrac::> j ( x , - ) ( X - ) > " (10) lit hi t \ ,1 (11) = 5m + 1, nen 2x^ - 2(m + 4)x + 5m + = (x - 3)^ 275 Cty TrjUII MTV DVVH Khang Vi?t (9)(10)(11)« m^-3m>0 < m hoac m > 5m + l - ( m + l) + o m he (6) (7) c6 nghicm m > Ta thu lai ket qua tren Ban thay the nao? ; V(t + 3)' +V(i ^)^ = Bai Cho phiTdng trinh V - x + -Jl + x - 7(2-x)(2 + x) = m '; t+3+ , HUdng ddn giai ^ f| ' D a t t = V - X +V2 + X ^2() Ta =m up -r+ 2l + = 2m ro Bai toan da cho tn'nhanh: om ok bo Id) w - , ft' • i/2 - < m < 276 (2) ^hqii xet: Thco chung toi khong the c6 phUcJug phiip niio khac lai ddn gian hdn max f(t) = f(2) = ; f(t) - f(272) = V - i ihi ( V a y m < — la c a c g i a I r j c a n t i m c u a l h a m so m Uiiiin^ , 1 o - m > — < = > m < — 4 B a i ( h o phiTctng I r i n h ( l o g , \/x | - l o g , x + m = „ - r ! " ' i - m > m i n 1(1) i-4 n,2 o h o a c la phiTdng I r i n h 1(1) = m c6 n g h i e m I r e n D, ( d d a y D i = { t : t < - } c6n D2 = { l : t > } ) 2V2 m - l * om • /g A^/ia/i xet: v d i D = D, u D fa , ft^+mt + 2m-2=-0 T i m m de he ^2 w (6) CO nghiem Trirdc het ta t i m m de he (5) (6) vo nghiem — m>4^-2^/2 , j Ta thu l a i ket qua tren Ban doc tiT danh gia ve tinh hieu qua cua tijrng j ,= »ft ' ^' ' X6t mot bai toan tiftfng tiT sau: Cho phi/dng trinh — — sin ^ ^ B ^ + m(tan x + cot x) - = X T i m m de phu'dng trinh c6 nghiem 3(tan^ + col^x) + m(tanx + cotx) + = « •'•/ft (8) 3(tanx + cotx)^ + m(tanx + cotx) - = )at t = tanx + cotx => t tan x + c o t x tanx cotx (do tanxcotx = > 0) >2 • rtr (8) 3t^ + mt - = mt = - t \ c> 4-3t^ t He (5) (6) v6 nghiem hai triTdng hdp sau: a (5) v6 n g h i c m A = m ^ - m + < o - lyfl m < 3[(tanx + cotx)^ - 2] + m(tanx + cotx) + = ww (5) (iVI'*^'?" [m>-4 DiTa phifdng trinh da cho ve dang: nghiem tren D , , hoSc la phiTdng trinh f(x) = m c6 nghiem tren D2 B a i toan c6 dang m d i sau day: o phiTdng phap t r e n ! R6 rang he c6 nghiem k h i va chi k h i hoac la phiTdng trinh f(x) = m c6 X e t each g i a i khac cho bai toan tren ! f I S t =v Lc(i gidi nhU sau: bo xeD ce cho tru'dng hdp he ok c Trong bai tap tren ta da mcl rong ke't qua suT dung gia t r i Idn nhat va nho nhat 'f(x)-m I' up ,' ro nghiem h o a c la phu"dng t r i n h f ( t ) = m c6 n g h i e m t r e n Dj m >4+ *fe ,! V a y he (5) (6) vo n g h i c m - ^ < m < + 2>/2, ttfc la he (5) (6) co f ( t ) = - c o Ta ;:iYVrt» o m i n f ( t ) = S cosx = - => V T = vo l i ) '•SI-J'" sinx = => sin2x K"? i Do dU'a phufdng trinh da cho ve diing tuTdng du'dng sau: ( l + sin2x) (1 + cosx)^ = m D = {x: + 2cosx > 0, + 2sinx > 0} \ 1\i sinx > - — va cosx > -— 2 n 27t suy — < x < — ^ (1) Vay D = {x: X Ihoa man (1)) Ta X ' 2t — t^ D a t tan — = t A p dung cong thuTc sinx = vk cosx = k h i l + l^ 1+t• 1-t^^ = m o -({^ - f ^ + t ^ + t + l)==m ^ /g n6n ( ) o 1-t^ om 1+ up 2t -lQVte X tf4 Q SR m+24>0om>6 , s/ up /g om c ok 1; bo -4 Vx G [-4; 6] Xet cac each giai khiic niJa nhuT sau: ' Theo bat ding thufc Cdsi, vdi moi x e [-4; 6] tW Cdch 2: Da11 = V(x + 4)(6-x) = V-x^ +2x + 24 (•1.' Xet g(x) = - x ' + 2x + 24 vdi - < x < => g'(x) = - x + 2, va cd bang bic" thicn sau: Tiirdd suy m > thi V(x + 4)(6-x) la cac gia tri can tim cua tham so m + g'(x) '^o rang each giai cung v6 ciing ddn gian va sang sua! f g(x) %h 4: (PhircJng phap thi) ^ ^ ^ ^ y = 7(x + ) ( - x ) , thi ta cd y > va cd: '? ^ 286 I ChuySn dg BDHSG Toan gia tr| lOn nha't Cty TNHH MTV D W H Khang Vi$t gia tr| nh6 nhat - Phan Huy Khii V-x^ +2x + Xet g(x) = -x^ + 2x + vdi - y >0 y >() Pat I = - x ^ + x + 24 = y^ ( x - l ) ^ + y ^ =25 Ta CO g'(x) = - x + 2, va c6 bang bien thien sau: tarn tai diem 1(1; 0) va ban kinh R = : + ^ max g(x) = g(l) = 3; ^ ^ iL ie uO nT hi Da iH oc 01 / Taco true do'i xiJng ^ ' f -2 12m^ - 24m dung vdi Viet lai bat phu'dng trinh da eho du'di dang ( x ^ - x - 8)+ 4V-x^+2X + 8-10 > - m ^ 3cos''x - 20cos^x + 36cos\ 12m^ - 24m moi X e [-2; ] (3) () m ^ - m (2) -i2 • •' ^ ^ ^ ^ f(t) = f(0) = , -i•>j u r^, loan da cho Cdc ban CO tin dieu khon^y Bai Cho bat phuTdng trinh sin3x + msin2x + 3sinx > ,i Ta s/ D a t f ( x ) = Vx + l - V - X v d i - < x < 2>/x+T > Vx e (-1;4) 2^/4^ Tir suy bang bien thien sau: Vay max f(x) = f(4) = Vs max -l m c6 nghiem m < \/5 16 rang each giai vifa phuTc tap, vifa khong sang sua nhi/cach giai bang Nhan xet: Chac chan day la phuTdng phap hieu qua va ddn gian nha't de giai bai f(x) = V x + T - V - x > m jV I Do m > \/5 , nen - m^ < vay (4) v6 nghiem => he (3) (4) v6 nghiem Tiir(2)(3)tac6 m ^ - m < o < m < Tim m de he (3) - m ^ >27(x + l ) ( - x ) (4) iL ie uO nT hi Da iH oc 01 / sail:• • • Taco f'(t) = 21^-1 va CO bang bic'n thien sau phifdng trinh c6 nghiem (vi it nha't x = la nghiem) * X t k h i m > >/5.Tac6 291 Chuy6n 6i BDHSG To^n giA tr| Idn nha't glA tr| nh6 nh^t - Phan Huy Khai 0 f'(t) Vay f(t) ^ ^ ^ f'(x) f(x) ^ = 2%/2 f(t) - f + ' (5) t V I -00 max f ( x ) = Tiif ta suy 0 m t + > VI t e [ I ; 2] OK: ^B^'"*^ '^^"'^ Ta c6 f ' ( t ) = t^+2t + f(t) — + l m (1) f(t) = t+i C O nghiem l[...]... f(t) = max {f(0); f(l)} = max{-3; - 2} = - 2 o0 ^.^ -t^ - 4 t - 2 I f(l) (3) iL ie uO nT hi Da iH oc 01 / Ta = m PWH >2 nen (8) t = m < m < 4 + 272 b (5) CO n g h i c m t| < Ij va khong thoa man (5), tiJc la - 2 < l | < tj < 2 (7) 281 Chuyfin... (vi khi do it nha't x = 4 la nghiem) * X 6 t k h i m > >/5.Tac6 291 Chuy6n 6i BDHSG To^n giA tr| Idn nha't glA tr| nh6 nh^t - Phan Huy Khai 0 0 1 f'(t) Vay 0 1 f(t) 1 ^ ^ ^ f'(x) f(x) 1 ^ = 2%/2 min f(t) - f 1 + 2 ' (5) t 1 V I -00 max f ( x ) = 1 Tiif do ta suy ra 0 A B = sjy + 3 ' = 3 V2 ^ :l,:o;>... trinh da cho co nghiem tren D => dpcm - • 263 Cty TNHH MTV DWH Khang Vigt Chuy6n dg BOHSG Toati gia tii Idn nha't va gia trj nho nha't - Phan Huy KhJIi 2 Gia sur he da cho Ro rang c6 n g h i c m , ttfc la ion tai x„ e D sao cho f(X(,) > X a m a x f ( x ) > IXx,,) > a r'(x) xeD Dao l a i gia sur m a x f ( x ) > a i xeD Gia thie't phan chi?ng he da cho vo nghiem, ttfc la f(x) < a V x e D •a' TO T i j rdo... tai M ( l ; 5) Bai toan da eho CO dang: • -2 ... kien dc he (4) (5) v6 nghiem i He (4) (5) v6 nghiem hai triTcing hPp sau: 07^ Cty TIMHH MTV DVVH Khang Vi$t ChuySn 6i BDHSG Toan gJA t r j dn nhaft vA g& M nh6 nhSt - Phan Huy KhSi fx>3 U)... t = m < m < + 272 b (5) CO n g h i c m t| < Ij va khong thoa man (5), tiJc la - < l | < tj < (7) 281 Chuyfin dfi BDHSG Join gia tri Idn nhat va gi trj nhd nhat - Phan Huy KhSi l(t) = B ^ i... IVITV DVVH Khang Vi$t Chuy§n dS BDHSG Toan gia trj Idn nhat va gia tri nhd nha't - Phan Huy Kh^i + >/5

Ngày đăng: 26/12/2015, 19:32

TỪ KHÓA LIÊN QUAN

w