Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 50 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
50
Dung lượng
910,5 KB
Nội dung
Bài 1: Cho ∆ABC có đường cao BD CE.Đường thẳng DE cắt đường tròn ngoại tiếp tam giác hai điểm M N Chứng minh:BEDC nội tiếp Chứng minh: góc DEA=ACB Chứng minh: DE // với tiếp tuyến tai A đường tròn ngoại tiếp tam giác Gọi O tâm đường tròn ngoại tiếp tam giác ABC.Chứng minh: OA phân giác góc MAN Chứng tỏ: AM2=AE.AB Gợi ý: 1.C/m BEDC nội tiếp: C/m góc BEC=BDE=1v Hia điểm y D E làm với hai đầu đoạn A thẳng BC góc vuông x 2.C/m góc DEA=ACB N Do BECD nt⇒DMB+DCB=2v E D Mà DEB+AED=2v M O ⇒AED=ACB B C 3.Gọi tiếp tuyến A (O) đường thẳng xy (Hình 1) Hình Ta phải c/m xy//DE Do xy tiếp tuyến,AB dây cung nên sđ góc xAB= sđ cung AB Mà sđ ACB= sđ AB ⇒góc xAB=ACB mà góc ACB=AED(cmt) ⇒xAB=AED hay xy//DE 4.C/m OA phân giác góc MAN Do xy//DE hay xy//MN mà OA⊥xy⇒OA⊥MN.⊥OA đường trung trực MN.(Đường kính vuông góc với dây)⇒∆AMN cân A ⇒AO phân giác góc MAN 5.C/m :AM2=AE.AB Do ∆AMN cân A ⇒AM=AN ⇒cung AM=cung AN.⇒góc MBA=AMN(Góc nội tiếp chắn hai cung nhau);góc MAB chung MA AE ⇒∆MAE ∽∆ BAM⇒ AB = MA ⇒ MA2=AE.AB Bài 2: Cho(O) đường kính AC.trên đoạn OC lấy điểm B vẽ đường tròn tâm O’, đường kính BC.Gọi M trung điểm đoạn AB.Từ M vẽ dây cung DE vuông góc với AB;DC cắt đường tròn tâm O’ I 1.Tứ giác ADBE hình gì? 2.C/m DMBI nội tiếp 3.C/m B;I;C thẳng hàng MI=MD 4.C/m MC.DB=MI.DC 5.C/m MI tiếp tuyến (O’) Gợi ý: D I A M O B E Hình O’ C 1.Do MA=MB AB⊥DE M nên ta có DM=ME ⇒ADBE hình bình hành Mà BD=BE(AB đường trung trực DE) ADBE ;là hình thoi 2.C/m DMBI nội tiếp BC đường kính,I∈(O’) nên Góc BID=1v.Mà góc DMB=1v(gt) ⇒BID+DMB=2v⇒đpcm 3.C/m B;I;E thẳng hàng Do AEBD hình thoi ⇒BE//AD mà AD⊥DC (góc nội tiếp chắn nửa đường tròn)⇒BE⊥DC; CM⊥DE(gt).Do góc BIC=1v ⇒BI⊥DC.Qua điểm B có hai đường thẳng BI BE vuông góc với DC ⊥B;I;E thẳng hàng •C/m MI=MD: Do M trung điểm DE; ∆EID vuông I⇒MI đường trung tuyến tam giác vuông DEI ⇒MI=MD C/m MC.DB=MI.DC chứng minh ∆MCI∽ ∆DCB (góc C chung;BDI=IMB chắn cung MI DMBI nội tiếp) 5.C/m MI tiếp tuyến (O’) -Ta có ∆O’IC Cân ⇒góc O’IC=O’CI MBID nội tiếp ⇒MIB=MDB (cùng chắn cung MB) ∆BDE cân B ⇒góc MDB=MEB Do MECI nội tiếp ⇒góc MEB=MCI (cùng chắn cung MI) Từ suy góc O’IC=MIB ⇒MIB+BIO’=O’IC+BIO’=1v Vậy MI ⊥O’I I nằm đường tròn (O’) ⇒MI tiếp tuyến (O’) Bài 3: Cho ∆ABC có góc A=1v.Trên AC lấy điểm M cho AMMC.Dựng đường tròn tâm O đường kính MC;đường tròn cắt BC E.Đường thẳng BM cắt (O) D đường thẳng AD cắt (O) S C/m ADCB nội tiếp C/m ME phân giác góc AED C/m: Góc ASM=ACD Chứng tỏ ME phân giác góc AED C/m ba đường thẳng BA;EM;CD đồng quy Gợi ý: A S D M B E C Hình 1.C/m ADCB nội tiếp: Hãy chứng minh: Góc MDC=BDC=1v Từ suy A vad D làm với hai đầu đoạn thẳng BC góc vuông… 2.C/m ME phân giác góc AED •Do ABCD nội tiếp nên ⇒ABD=ACD (Cùng chắn cung AD) •Do MECD nội tiếp nên MCD=MED (Cùng chắn cung MD) •Do MC đường kính;E∈(O)⇒Góc MEC=1v⇒MEB=1v ⇒ABEM nội tiếp⇒Góc MEA=ABD ⇒Góc MEA=MED⇒đpcm 3.C/m góc ASM=ACD Ta có A SM=SMD+SDM(Góc tam giác SMD) Mà góc SMD=SCD(Cùng chắn cung SD) Góc SDM=SCM(Cùng chắn cung SM)⇒SMD+SDM=SCD+SCM=MCD Vậy Góc A SM=ACD 4.C/m ME phân giác góc AED (Chứng minh câu 2) 5.Chứng minh AB;ME;CD đồng quy Gọi giao điểm AB;CD K.Ta chứng minh điểm K;M;E thẳng hàng •Do CA⊥AB(gt);BD⊥DC(cmt) AC cắt BD M⇒M trực tâm tam giác KBC⇒KM đường cao thứ nên KM⊥BC.Mà ME⊥BC(cmt) nên K;M;E thẳng hàng ⇒đpcm Bài 5: Cho tam giác ABC có góc nhọn AB r) Dựng tiếp tuyến chung BC (B nằm đường tròn tâm O C nằm đư ờng tròn tâm (I).Tiếp tuyến BC cắt tiếp tuyến A hai đường tròn E 1/ Chứng minh tam giác ABC vuông A 2/ O E cắt AB N ; IE cắt AC F Chứng minh N;E;F;A nằm đường tròn 3/ Chứng tỏ : BC2= Rr 4/ Tính diện tích tứ giác BCIO theo R;r Giải: 1/C/m ∆ABC vuông: Do BE AE hai tiếp tuyến cắt nênAE=BE; Tương tự B AE=EC⇒AE=EB=EC= E C N O F A I BC.⇒∆ABC vuông A 2/C/m A;E;N;F nằm trên… -Theo tính chất hai tiếp tuyến cắt EO phân giác tam giác cân Hình 10 AEB⇒EO đường trung trực AB hay OE⊥AB hay góc ENA=1v Tương tự góc EFA=2v⇒tổng hai góc đối……⇒4 điểm… 3/C/m BC2=4Rr Ta có tứ giác FANE có góc vuông(Cmt)⇒FANE hình vuông⇒∆OEI vuông E EA⊥OI(Tính chất tiếp tuyến).p dụng hệ thức lượng tam giác vuông có: AH2=OA.AI(Bình phương đường cao tích hai hình chiếu) Mà AH= BC BC = Rr⇒BC2=Rr OA=R;AI=r⇒ 4/SBCIO=? Ta có BCIO hình thang vuông ⇒SBCIO= ⇒S= OB + IC × BC (r + R ) rR 10 Phân giác hai góc trên⇒OBH=O’AH OHB=O’HA=45o HB OH ⇒∆HBO∽∆HAO’⇒ HA = O' H (1) ⇒đpcm 3/c/m ∆HOO’∽∆HBA Từ (1)⇒ HB HO HO' HO = = ⇒ (Tính chất tỉ lệ thức).Các cặp cạnh HO HO’ HA HO' HA HB ∆HOO’tỉ lệ với cặp cạnh ∆HBA góc xen BHA=O’HO=1v ⇒∆HOO’∽∆HBA 4/C/m:BMOH nt:Do ∆ HOO’∽∆HBA⇒O’OH=ABH mà O’OH+MOH=2v⇒MBH+MOH=2v⇒đpcm C/m NCHO’ nội tiếp: ∆HOO’∽∆HBA(cmt) hai tam giác vuôngHBA HAC có góc nhọn ABH=HAC(cùng phụ với góc ABC) nên∆HBA∽∆HAC ⇒∆HOO’ ∽∆HAC⇒OO’H=ACH.Mà OO’H=NO’H=2v ⇒NCH+NO’H=2v ⇒đpcm 5/C/m ∆AMN vuông cân:Do OMBH nt⇒OMB+OHB=2v mà AMO+OMB=2v⇒AMO=OHB mà OHB=45o⇒AMO=45o.Do ∆AMN vuông A có AMO=45o.⇒∆AMN vuông cân A Bài 37: Cho nửa đường tròn O,đường kính AB=2R,gọi I trung điểm AO.Qua I dựng đường thẳng vuông góc với AB,đường cắt nửa đường tròn K.Trên IK lấy điểm C,AC cắt (O) M;MB cắt đường thẳng IK D.Gọi giao điểm IK với tiếp tuyến M N C/m:AIMD nội tiếp C?m CM.CA=CI.CD C/m ND=NC Cb cắt AD E.C/m E nằm đường tròn (O) C tâm đường tròn nội tiếp ∆EIM Giả sử C trung điểm IK.Tính CD theo R D N M 1/C/m AIMD nội tiếp: Sử dụng hai điểm I;M làm với hai đầu đoạn AD… 2/c/m: CM.CA=CI.CD C/m hai ∆CMD CAI đồng dạng 3/C/m CD=NC: sđNAM= sđ cung AM (góc tt dây) sđMAB= sđ cung AM ⇒NAM=MAB 36 K E C A I O B Hình 37 Mà MBA=ACI(cùng phụ với góc CAI);CAI=KCM(đ đ)⇒NCM+NMC ⇒∆NMC cân N⇒NC=NM Do NMD+NMC=1v NCM+NDM=1v NCM=NMC ⇒NDM=NMD⇒∆NMD cân N⇒ND=NM⇒NC=ND(đpcm) 4/C/m C tâm đường tròn nội tiếp ∆EMI.Ta phải c/m C giao điểm đường phân giác ∆EMI (xem câu 35) 5/Tính CD theo R: Do KI trung trực AO⇒∆AKO cân K⇒KA=KO mà KO=AO(bán kính) KI R R ⇒CI=KC= = p dụng PiTaGo tam 2 3R R R + = giác vuông ACI có:CA= CI + AI = ⇒∆CIA∽∆BMA( hai tam 16 4 CA IA AB × AI R R = = giác vuông có góc CAI chung)⇒ ⇒MA= = 2R : BA MA AC ⇒∆AKO ∆ đều⇒KI= = 4R 9R 3R ⇒MC=AM-AC= áp dụng hệ thức câu 2⇒CD= 28 Bài 38: Cho ∆ABC.Gọi P điểm nằm tam giác cho góc PBA=PAC.Gọi H K chân đường vuông góc hạ từ P xuống AB;AC C/m AHPK nội tiếp C/m HB.KP=HP.KC Gọi D;E;F trung điểm PB;PC;BC.Cmr:HD=EF; DF=EK C/m:đường trung trực HK qua F A H K P 1/C/m AHPK nội tiếp(sử dụng tổng hai góc đối) 2/C/m: HB.KP=HP.KC C/m hai ∆ vuông HPB KPC đồng dạng 3/C/m HD=FE: Do FE//DO DF//EP (FE FD đường trung bình ∆PBC)⇒DPEF hình bình 37 hành.⇒DP=FE.Do D trung điểm BP⇒DH trung D E B F C Hình 38 tuyến ∆ vuông HBP⇒HD=DP⇒DH=FE C/m tương tự có:DF=EK 4/C/m đường trung trực HK qua F Ta phải C/m EF đường trung trực HK.Hay cần c/m FK=FH Do HD=DP+DB⇒HDP=2ABP(góc tam giác cân ABP) Tương tự KEP=2ACP ⇒ HDP=KEP(1) Mà ABP=ACD(gt) Do PEFD hình bình hành(cmt)⇒PDF=PEF(2) Từ (1) (2)⇒HDF=KEF mà HD=FE;KE=DF⇒∆DHF∽∆EFK(cgc)⇒FK=FH ⇒đpcm Bài 39: Cho hình bình hành ABCD(A>90o).Từ C kẻ CE;Cf;CG vuông góc với AD;DB;AB C/m DEFC nội tiếp C/m:CF2=EF.GF Gọi O giao điểm AC DB.Kẻ OI⊥CD.Cmr: OI qua trung điểm AG Chứng tỏ EOFG nội tiếp A G B E F O D J I C Hình 39 1/C/mDEFC nội tiếp: (Sử dụng hai điểm E;F làm với hai đầu đoạn thẳng CD) 38 2/C/m: CF2=EF.GF: Xét ∆ECF CGF có: -Do DE FC nt⇒FCE=FDE(cùng chắn cung FE);FDE=FBC(so le).Do GBCF nt (tự c/m)⇒FBC=FGC(cùng chắn cung FC)⇒FGC=FCE -Do GBCF nt⇒GBF=GCF(cùng chắn cùngG) mà GBF=FDC(so le).DoDEFC nội tiếp ⇒FDC=FCE(cùng chắn cùngC)⇒FCG=FEC⇒∆ECF∽∆CGF⇒đpcm 3/C/m Oi qua trung điểm AG.Gọi giao điểm đường tròn tâm O đường kính AC J Do AG//CJ CG⊥AG⇒AGCJ hình chữ nhật ⇒AG=CJ Vì OI⊥CJ nên I trung điểm CJ(đường kính ⊥ với dây…)⇒đpcm 4/C/m EOFG nội tiếp:Do CEA=AGC=1v⇒AGCE nt (O)⇒AOG=2GCE (góc nt nửa góc tâm chắn cung;Và EAG+GCE=2v(2góc đối tứ giác nt).Mà ADG+ADC=2v(2góc đối hbh)⇒EOG=2.ADC(1) Do DEFC nt⇒EFD=ECD(cùng chắn cungDE);ECD=90o-EDC(2 góc nhọn ∆ vuông EDC)();Do GBCF nt⇒GFB=GBC(cùng chắn cung GB);BCG=90oGBC().Từ ()và()⇒EFD+GFB=90o-EDC+90o-GBC=180o-2ADC mà EFG=180o-(EFD+GFB)=180o-180o+2ADC=2ADC(2) Từ (1) (2)⇒EOG=EFG⇒EOFG nt Bài 40: Cho hai đường tròn (O) (O’) cắt A B.Các đường thẳng AO cắt (O) C D;đường thẳng AO’ cắt (O) (O’) E F C/m:C;B;F thẳng hàng C/m CDEF nội tiếp Chứng tỏ DA.FE=DC.EA C/m A tâm đường tròn nội tiếp ∆BDE Tìm điều kiện để DE tiếp tuyến chung hai đường tròn (O);(O’) D E A O I O’ C B F Hình 40 1/C/m:C;B;F thẳng hàng: Ta có:ABF=1v;ABC=1v(góc nội tiếp chắn nửa đường tròn) ⇒ABC+ABF=2v⇒C;B;F thẳng hàng 2/C/mCDEF nội tiếp:Ta có AEF=ADC=1v⇒E;D làm với hai đầu đoạn CF… ⇒đpcm 39 3/C/m: DA.FE=DC.EA Hai ∆ vuông DAC EAF có DAC=EAF(đ đ) ⇒∆ DAC ∽∆ø EAF⇒đpcm 4/C/m A tâm đường tròn ngoại tiếp ∆BDE.Ta phải c/m A giao điểm đường phân giác ∆DBE (Xem cách c/m 35 câu 3) 5/Để DE tiếp tuyến chung đường tròn cần điều kiện là: Nếu DE tiếp tuyến chung OD⊥DE O’E⊥DE.Vì OA=OD ⇒∆AOD cân O⇒ODA=OAD.Tương tự ∆O’AE cân O’⇒O’AE=O’EA.Mà O’AE=OAD(đ đ) ⇒⇒ODO’=OEO’⇒D E làm với hai đầu đoạn thẳngOO’ góc nhau⇒ODEO’ nt ⇒ODE+EO’O=2v.Vì DE tt (O) (O’)⇒ODE=O’ED=1v⇒EO’O=1v⇒ODEO’ hình chữ nhật ⇒DA=AO’=OA=AE(t/c hcn) hay OA=O’A Vậy để DE tt chung hai đường tròn hai đường tròn có bán kính nhau.(hai đường tròn nhau) Bài 41: Cho (O;R).Một cát tuyến xy cắt (O) E F.Trên xy lấy điểm A nằm đoạn EF,vẽ tiếp tuyến AB AC với (O).Gọi H trung điểm EF Chứng tỏ điểm:A;B;C;O;H nằm đường tròn Đường thẳng BC cắt OA I cắt đường thẳng OH K.C/m: OI.OA=OH.OK=R2 Khi A di động xy I di động đường nào? C/m KE KF hai tiếp tyuến (O) B O I F y H E A C 1/ C/m:A;B;C;H;O nằm đường tròn: Ta có ABO=ACO(tính chất tiếp tuyến).Vì H l;à trung điểm dây FE nên OH⊥FE (đường kính qua trung điểm dây) hay kính AO Hình 41 40 K OHA=1v⇒5 điểm A;B;O;C;H nằm đường tròn đường kính AO 2/C/m: OI.OA=OH.OK=R2 Do ∆ABO vuông B có BI đường cao.p dung hệ thức lượng tam giác vuông ta có:OB2=OI.OA ;mà OB=R.⇒OI.OA=R2.(1) OA OH Xét hai ∆ vuông OHA OIK có IOH chung.⇒∆AHO∽∆KIO⇒ OK = OI ⇒OI.OA=OH.OK (2) Từ (1) (2)⇒đpcm 4/C/m KE KF hai tt đøng tòn (O) -Xét hai ∆EKO EHO.Do OH.OK=R2=OE2⇒ OH OE = EOH chung OE OK ⇒∆EOK∽∆HOE(cgc)⇒OEK=OHE mà OHE=1v⇒OEK=1v hay OE⊥EK điểm E nằm (O)⇒EK tt (O) -c/m Bài 42: Cho ∆ABC (ABAC A N F E M D 41 K B I C Hình 42 1/C/m AFDE nội tiếp.(Hs tự c/m) 2/c/m: AB.NC=BN.AB Do D giao điểm đường phân giác BN CM ∆ABN ⇒ Do CD phân giác ∆ CBN⇒ Từ (1) (2) ⇒ BD AB = (1) DN AN BD BC = (2) DN CN BC AB = ⇒đpcm CN AN 3/c/M fe//bc: Do BE phân giác ABI BE⊥AI⇒BE đường trung trực AI.Tương tự CF phân giác ∆ACK CF⊥AK⇒CF đường trung trực AK⇒ E F trung điểm AI AK⇒ FE đường trung bình ∆AKI⇒FE//KI hay EF//BC 4/C/m ADIC nt: Do AEDF nt⇒DAE=DFE(cùng chắn cung DE) DAI=DCI⇒ADIC nội tiếp Do FE//BC⇒EFD=DCI(so le) Bài 43: Cho ∆ABC(A=1v);AB=15;AC=20(cùng đơn vò đo độ dài).Dựng đường tròn tâm O đường kính AB (O’) đường kính AC.Hai đường tròn (O) (O’) cắt điểm thứ hai D Chứng tỏ D nằm BC Gọi M điểm cung nhỏ DC.AM cắt DC E cắt (O) N C/m DE.AC=AE.MC C/m AN=NE O;N;O’ thẳng hàng Gọi I trung điểm MN.C/m góc OIO’=90o Tính diện tích tam giác AMC 1/Chứng tỏ:D nằm đường thẳng BC:Do A ADB=1v;ADC=1v(gó O N O’ c nt chắn nửa đường tròn) ⇒ADB+ADC=2v⇒D I ;B;C thẳng hàng 42 B D Hình 43 E C M -Tính DB: Theo PiTaGo ∆ vuông ABC có: BC= AC + AB = 15 + 20 = 25 p dụng hệ thức lượng tam giác vuông ABC có: AD.BC=AB.AC⇒AD=20.15:25=12 2/C/m: DE.AC=AE.MC.Xét hai tam giác ADE AMC.Có ADE=1v(cmt) AMC=1v (góc nt chắn nửa đường tròn).Do cung MC=DB(gt)⇒DAE=MAC(2 góc nt chắn cung nhau) ⇒∆DAE∽∆MAC⇒ DA DE AE = = (1)⇒Đpcm MA MC AC 3/C/m:AN=NE: Do BA⊥AO’(∆ABC Vuông A)⇒BA tt (O’)⇒sđBAE= SđAED=sđ sđ AM (MC+AD) mà cung MC=DM⇒cung MC+AD=AM ⇒ AED =BAC ⇒∆BAE cân B mà BM⊥AE⇒NA=NE C/m O;N;O’ thẳng hàng:ON đường TB ∆ABE⇒ON//BE OO’//BE ⇒O;N;O’ thẳng hàng 4/Do OO’//BC cung MC=MD ⇒O’M⊥BC⇒O’M⊥OO’⇒∆NO’M vuông O’ có O’I trung tuyến ⇒∆INO’ cân I⇒IO’M=INO’ mà INO’=ONA(đ đ);∆OAN cân O⇒ONA=OAN⇒OAI=IO’O⇒OAO’I nt⇒OAO’+OIO’=2v mà OAO’=1v ⇒OIO’=1v 5/ Tính diện tích ∆AMC.Ta có SAMC= AB = ⇒DC=16 AM.MC Ta có BD= BC Ta lại có DA2=CD.BD=16.9⇒AD=12;BE=AB=15⇒DE=15-9=6⇒AE= AD + DE = Từ(1) tính AM;MC tính S Bài 44: Trên (O;R),ta đặt theo chiều,kể từ điểm A cung AB=60 o, cung BC=90o cung CD=120o C/m ABCD hình thang cân Chứng tỏ AC⊥DB Tính cạnh đường chéo ABCD 1/C/m:ABCD hình thang cân:Do Gọi M;N trung điểm cạnh DC AB.Trên DA kéo o dài phía A lấy điểm P;PN cung BC=90 ⇒BAC=45o (góc nt cắt DB Q.C/m MN phân giác góc PMQ nửa cung bò chắn).do cung AB=60o;BC=90o;CD=120o⇒ AD=90o ⇒ACD=45o P ⇒BAC=ACD=45o.⇒AB//CD A J N K B Vì cung DAB=150o.Cung ABC =150o.⇒ BCD=CDA ⇒ABCD Q thang cân 2/C/mAC⊥DB: I Gọi I giao điểm AC BD.sđAID= sđ cung(AD+BC)=180o=90o.⇒AC⊥DB 3/Do cung AB=60o⇒AOB=60o⇒∆AOB tam giác đều⇒AB=R 43 O D M C E Hình 44 Do cung BC=90o ⇒BOC=90o⇒ ∆BOC vuông cân O⇒BC=AD=R Do cung CD=120o DK R ⇒DK= ⇒CD=2DK=R OD 2 R R -Tính AC:Do ∆AIB vuông cân I⇒2IC2=AB2⇒IA=AB = Tương tự IC= ; AC = 2 R R (1 + 3) R DB=IA+IC = + = 2 ⇒DOC=120o.Kẻ OK⊥CD⇒DOK=60o⇒sin 60o= 4/PN cắt CD E;MQ cắt AB I;PM cắt AB J JN PN = ME PE AN PN = Do AN//DE ⇒ DE PE NI NQ = Do NI//ME ⇒ ME QE NB NQ = NB//ME ⇒ DE QE Do JN//ME ⇒ AN JN = DE ME Vì NB=NA ⇒ NI NB = ME DE JN NI = ME ME ⇒NI=NJ.Mà MN⊥AB(tc thang cân)⇒∆JMI cân ởp M⇒MN phân giác… Bài45: Cho ∆ ABC có cạnh a.Gọi D giao điểm hai đường phân giác góc A góc B tam giấcBC.Từ D dựng tia Dx vuông góc với DB.Trên Dx lấy điểm E cho ED=DB(D E nằm hai phía đường thẳng AB).Từ E kẻ EF⊥BC Gọi O trung điểm EB C/m AEBC EDFB nội tiếp,xác đònh tâm bán kính đường tròn ngoại tiếp tứ giác theo a Kéo dài FE phía F,cắt (D) M.EC cắt (O) N.C/m EBMC thang cân.Tính diện tích c/m EC phân giác góc DAC C/m FD đường trung trực MB Chứng tỏ A;D;N thẳng hàng Tính diện tích phần mặt trăng tạo cung nhỏ EB hai đường tròn E A 44 N O D B F C M 1/Do ∆ABC tam giác có D giao điểm đường phân giác góc A B⇒BD=DA=DC mà DB=DE⇒A;B;E;C cách D⇒AEBC nt (D) Tính DB.p dụng công thức tính bán kính đường tròn ngoại tiếp đa giác AB AB = = a o 180 sin 60 o ta có: DB= Sin n Do góc EDB=EFB=1v⇒EDFB nội tiếp đường tròn tâm O đường kính EB.Theo Pi Ta Go tam giác vuông EDB có:EB2=2ED2=2.( ⇒EB= a ) a a ⇒OE= 2/C/m EBMC thang cân: Góc EDB=90o góc tâm (D) chắn cung EB⇒Cung EB=90o⇒góc ECN=45o.⇒∆EFC vuông cân F⇒FEC=45o⇒MBC=45o(=MEC=45o) ⇒EFC=CBM=45o⇒BM//EC.Ta có ∆FBM vuông cân F⇒BC=EM ⇒EBMC thang cân Do EBMC thang cân có hai đường chéo vuông góc⇒SEBMC= BC.EM (BC=EM=a)⇒SEBMC= a2 3/C/m EC phân giác góc DCA: Ta có ACB=60o;ECB=45o⇒ACE=15o Do BD;DC phân giác ∆đều ABC ⇒DCB=ACD=30o ECA=15o ⇒ECD=15o ⇒ECA=ECD⇒EC phân giác góc ECA 4/C/m FD đường trung trực MB: Do BED=BEF+FED=45o FEC=FED+DEC=45o⇒BEF=DEC DEC=DCE=15o.Mà BE F=BDF(cùng chắn cung BF) NED=NBD(cùng chắn cung ND)⇒NBD=BDF⇒BN//DF mà BN⊥EC(góc nt chắn nửa đøng tròn (O) 45 ⇒DF ⊥EC.Do DC//BM(vì BMCE hình thang cân)⇒DF⊥BM nhưmg ∆BFM vuông cân F⇒FD đường trung trực MB 5/C/m:A;N;D thẳng hàng: Ta có BND=BED=45o (cùng chắn cung DB) ENB=90o(cmt);ENA góc ∆ANC⇒ENA=NAC+CAN=45o ⇒ENA+ENB+BND=180o⇒A;N;D thẳng hàng 6/Gọi diện tích mặt trăng cần tính là:S Ta có: S =Snửa (O)-S viên phân EDB a S(O)=π.OE =π.( ) a 2π a 2π = ⇒S (O)= 12 2 a 2π π × BD 90 o π a × = S quạt EBD= = 12 360 o a S∆EBD= DB2= a 2π a a (π − 2) Sviên phân=S quạt EBD - S∆EDB= - = 12 12 2 a π a (π − 2) a S = 12 - 12 = Bài 46: Cho nửa đường tròn (O) đường kính BC.Gọi a điểm nửa đường tròn;BA kéo dài cắt tiếp tuyến Cy F.Gọi D điểm cung AC;DB kéo dài cắt tiếp tuyến Cy E C/m BD phân giác góc ABC OD//AB C/m ADEF nội tiếp Gọi I giao điểm BD AC.Chứng tỏ CI=CE IA.IC=ID.IB C/m góc AFD=AED F A D E I B O Hình 47 C 1/* C/mBD phân giác góc ABC:Do cung AD=DC(gt)⇒ABD= FDBC(hai góc nt chắn hai Acung nhau)⇒BD phân giác góc ABC *Do cung AD=DC ⇒góc AOD=DOC(2 cung hai góc tâm nhau) 46 Hay OD phân giác ∆ cân AOC⇒OD⊥AC OD//BA Vì BAC góc nt chắn nửa đường tròn ⇒BA⊥AC 2/C/m ADEF nội tiếp: Do ADB=ACB(cùng chắn cung AB) ⇒ADB=AFE Do ACB=BFC(cùng phụ với góc ABC) Mà ADB+ADE=2v⇒AFE+ADE=2v⇒ADEF nội tiếp 3/C/m: *CI=CE: 1 Ta có:sđ DCA= sđ cung AD(góc nt chắn cung AD) Sđ ECD= sđ cung DC (góc tt dây) Mà cung AD=DC⇒DCA=ECD hay CD phân giác ∆ICE.Nhưng CD⊥DB (góc nt chắn nửa đt)⇒CD vừa đường cao,vừa phân giác ∆ICE⇒∆ICE cân C⇒IC=CE *C/m ∆IAD∽∆IBC(có DAC=DBC chắn cung DC) 4/Tự c/m: Bài47: Cho nửa đtròn (O);đường kính AD.Trên nửa đường tròn lấy hai điểm B C cho cung AB[...]... INCQ là hình vuông 21 2 Chứng tỏ NQ//DB 3 BI kéo dài cắt MN tại E;MP cắt AC tại F.C/m MFIN nội tiếp được trong đường tròn.Xác đònh tâm 4 Chứng tỏ MPQN nội tiếp.Tính diện tích của nó theo a 5 C/m MFIE nội tiếp A M D F E P I B N Q C Hình 22 1/C/m INCQ là hình vuông: MI//AP//BN(gt)⇒MI=AP=BN ⇒NC=IQ=PD ∆NIC vuông ở N có ICN=45o(Tính chất đường chéo hình vuông)⇒∆NIC vuông cân ở N ⇒INCQ là hình vuông 2/C/m:NQ//DB :... AM=MB có O là trung điểm AB ⇒OM⊥AB hay gócBOM=BKM=1v ⇒BOMK nội tiếp 2/C/m CHMK là hình vuông: Do ∆ vuông HCM có 1 góc bằng 45o nên ∆CHM vuông cân ở H ⇒HC=HM, tương tự CK=MK Do C=H=K=1v ⇒CHMK là hình chữ nhật có hai cạnh kề bằng nhau ⇒CHMK là hình vuông 3/C/m H,O,K thẳng hàng: Gọi I là giao điểm HK và MC;do MHCK là hình vuông⇒HK⊥MC tại trung điểm I của MC.Do I là trung điểm MC⇒OI⊥MC(đường kính đi qua... chất hình vuông) ⇒FEA=45o⇒∆FAE vuông cân ở A có FI=IE⇒AI⊥FE ⇒FAK=45o ⇒FKA=ACF=45o.Và KFA chung ⇒∆FKA∽∆FCA FA FK = ⇒ ⇒đpcm FC FA Hình 29 3/C/m: EGFK là hình thoi -Do AK là đường trung trực của FE⇒∆GFE cân ở G ⇒GFE=GEF.Mà GE//CF (cùng vuông góc với AD)⇒GEF=EFK(so le) ⇒GFI=IFK⇒FI là đường trung trực của GK⇒GI=IK,mà I F=IE⇒GFKE là hình thoi 4/C/m EK=BE+DK:∆ vuông ADF và ABE có AD=AB;AF=AE.(∆AE F vuông cân)⇒∆ADF=∆ABE... FD+DK=FK VÀ FK=KE(t/v hình thoi)⇒KE=BE+DK C/m chu vi tam giác CKE không đổi:Gọi chu vi là C= KC+EC+KE =KC+EC+BE +DK =(KC+DK)+(BE+EC)=2BC không đổi 5/C/m IJ⊥JK: Do JIK=JDK=1v⇒IJDK nội tiếp ⇒JIK=IDK(cùng chắn cung IK) IDK=45o(T/c hình vuông)⇒ JIK=45o⇒∆JIK vuông vân ở I⇒JI=IK,mà IK=GI 1 ⇒JI=IK=GI= GK⇒∆GJK vuông ở J hay GJ⊥JK 2 Bài 30: Cho ∆ABC.Gọi H là trực tâm của tam giác.Dựng hình bình hành BHCD Gọi... BFN vuông cân 2 C/m:MEBA nội tiếp 3 Gọi giao điểm của ME và NF là Q.MN cắt (O) ở P.C/m B;Q;P thẳng hàng 4 Chứng tỏ ME//PC và BP=BC 31 5 C/m ∆FPE là tam giác vuông 1/c/m:∆BFN vuông cân: ANB=FCB(cùng chắn cung FB).Mà FCB=45o (tính chất F hình vuông) M O ⇒ANB=45o Q Mà NFB=1v(góc nt chắn P E nửa đường tròn) D N C ⇒∆BFN vuông cân ở F Hình 32 2/C/m MEBA Nội tiếp: ⇒FME=45o và MAC=45o(tính chất hình vuông)⇒FME=MAC=45o... tích ∆AID theo R C M P A I J B 1/C/m:ACBD là hình vuông: Vì O là trung điểm của AB;CD nên ACBD là hình bình hành Mà AC=BD(đường kính) và AC⊥DB (gt) hình bình hành ACBD là hình vuông O 2/C/m: IB.IC=IA.IM Xét 2 ∆IAC và IBM có CIA=MIB(đ đ) IAC=IBM(cùng chắn cung CM) ⇒∆IAC∽∆IBM⇒đpcm 3/C/m IJ//PD Do ACBD là hình vuông⇒ CBO=45o Và cung AC=CB=BD=DA ⇒AMD=DMB=45o 34 D Hình 35 ⇒IMJ=IBJ=45o⇒M và B cùng làm với hai... cân ở N ⇒INCQ là hình vuông 2/C/m:NQ//DB: Do ABCD là hình vuông ⇒DB⊥AC Do IQCN là hình vuông ⇒NQ⊥IC Hay NQ⊥AC⇒NQ//DB 3/C/m MFIN nội tiếp: Do MP⊥AI(tính chất hình vuông)⇒MFI=1v;MIN=1v(gt) ⇒hai điểm F;I cùng làm với hai đầu đoạn MN…⇒MFIN nội tiếp Tâm của đường tròn này là giao điểm hai đường chéo hình chữ nhật MFIN 4/C/m MPQN nội tiếp: Do NQ//PM⇒MNQP là hình thang có PN=MQ⇒MNQP là thang cân.Dễ dàng C/m... ADC+ACD=1v⇒DAK+ADK=1v hay ∆AKD vuông ở K⇒AH⊥CD mà OI⊥CD⇒OI//AH vậy AHIO là hình bình hành 4/Quỹ tích điểm I: Do AOIH là hình bình hành ⇒IH=AO=R không đổi⇒CD quay xung quanh O thì I nằm trên đường thẳng // với xy và cách xy một khoảng bằng R Bài 15: 14 Cho tam giác ABC nội tiếp trong đường tròn tâm O.Gọi D là 1 điểm trên cung nhỏ BC.Kẻ DE;DF;DG lần lượt vuông góc với các cạnh AB;BC;AC.Gọi H là hình chiếu của... MDNE nội tiếp 2 Chứng tỏ ∆BEN vuông cân 22 3 C/m MF đi qua trực tâm H của ∆BMN 4 C/m BI=BC và ∆IE F vuông 5 C/m ∆FIE là tam giác vuông Q B A E M I H D N Hình 23 C 1/C/m MDNE nội tiếp Ta có NEB=1v(góc nt chắn nửa đường tròn) ⇒MEN=1v;MDN=1v(t/c hình vuông) ⇒MEN+MDN=2v⇒đpcm 2/C/m BEN vuông cân: NEB vuông(cmt) Do CBNE nội tiếp ⇒ENB=BCE(cùng chắn cung BE) mà BCE=45o(t/c hv)⇒ENB=45o⇒đpcm 3/C/m MF đi qua... thẳng một góc 2 c/m: BI.KC=HI.KB vuông 3 C/m:MN là đường kính của (O) 2/C/m: BI.KC=HI.KB 4 C/m ACBD là hình bình hành Xét hai tam giác vuông BIH và 5 C/m:OC//DH BKC có IBH=KBC(đ đ) ⇒đpcm 3/ C/m MN là đường kính của (O) Do cung AB=90o.⇒ACB=ANB=45o 30 ⇒∆KBC;∆AKN là những N D O A M K B I C J H Hình 31 Tam giác vuông cân⇒KBC=45o⇒IBH=KBC=45o⇒∆IBH cũng là tam giác vuông cân.Ta lại có: AMD=MAB+ABM(góc ngoài ... Q C Hình 22 1/C/m INCQ hình vuông: MI//AP//BN(gt)⇒MI=AP=BN ⇒NC=IQ=PD ∆NIC vuông N có ICN=45o(Tính chất đường chéo hình vuông)⇒∆NIC vuông cân N ⇒INCQ hình vuông 2/C/m:NQ//DB: Do ABCD hình vuông... ⇒BOMK nội tiếp 2/C/m CHMK hình vuông: Do ∆ vuông HCM có góc 45o nên ∆CHM vuông cân H ⇒HC=HM, tương tự CK=MK Do C=H=K=1v ⇒CHMK hình chữ nhật có hai cạnh kề ⇒CHMK hình vuông 3/C/m H,O,K thẳng hàng :... tứ giác FANE có góc vuông(Cmt)⇒FANE hình vuông⇒∆OEI vuông E EA⊥OI(Tính chất tiếp tuyến).p dụng hệ thức lượng tam giác vuông có: AH2=OA.AI(Bình phương đường cao tích hai hình chiếu) Mà AH= BC