1. Trang chủ
  2. » Khoa Học Tự Nhiên

38516885 organic i reactions COMPLETE pdf

10 650 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 67,48 KB

Nội dung

tóm tắt phản ứng hóa hữu cơ part 1 hóa học hữu cơ là một ngành khoa học nghiên cứu về những cấu trúc, tính chất, thành phần, cách thức phản ứng, và cách tổng hợp của những hợp chất hữu cơ và vật liệu hữu cơ... cũng như nhiều vật chất khác nhau chứa nguyên tử carbon.12 Quá trình nghiên cứu cấu trúc hóa học của một hợp chất hữu cơ có thể ứng dụng nhiều thành tựu trong các lĩnh vực khác phải kể đến như phương pháp quang phổ, phương pháp vật lý và hóa học để định danh và xác định thành phần hóa học cũng như cấu tạo của hợp chất.3 Hóa hữu cơ nghiên cứu các đặc tính lý hóa của hợp chất, đánh giá mức độ phản ứng cũng như xác định tính chất của chúng ở trạng thái tinh khiết, trong dung dịch, hỗn hợp và các dạng khác. Các nghiên cứu về phản ứng hữu cơ có thể kể đến bao gồm việc chuẩn bị cho các phản ứng tổng hợp hữu cơ, nghiên cứu mức độ hoạt động của phản ứng, cũng như nghiên cứu các mô hình lý thuyết trên máy tính

Trang 1

H H

HBr

H

CH3

Br H

H H

Addition of HX

(Mark)

*Adds a halide

to more substituted carbon

HBr ROOR

H

CH3

H Br

H H

Addition of HX

(Anti-Mark)

*Adds a halide

to least substituted carbon

Br2

CH2Cl2 (or CCl4)

Add two Br's anti

to alkene

*Anti and co planar

CH 3

D

CH 3

Br

Br D

Adding a Br and

OH (Mark w/ Br as H

and anti-planar)

CH 3

D

CH 3

Br

OH D

Br2

H2O

Forming alkene

from vicinal dihalide

*Anti and co planar

Br

C

H3

H H

NaI or KI acetone

H

CH3

H

C

H3

*Wedges with wedges and dashes with dashes

*E2 Like!

Dehydration to

*E1 like and it cannot give terminal alkene

H2SO4 heat

OH

POCl3 heat

*SPECIAL REACTION: dehydrates to form terminal alkene

Addition of OH

CH3

CH3

CH3

OH

*CANNOT CONTROL STEREOCHEM!

*Low yield!

*C+ formation!

H3O+

Trang 2

demercuration

(Add OH from alkene

mark and antiplanar)

*Complex mechanism

*Mark and antiplanar

CH 3

D

CH 3

H

OH D

1) Hg(OAc)2/ H2O 2) NaBH4

Hydroboration

(Add Oh anti-mark and

syn planar)

*Anti-mark

*Notice Peroxide

CH3

D

CH3

D OH

H

1) BH3 / THF 2) H2O2 / -OH

SPECIAL: Adds alcohol

instead to form ethers!

CH 3

D

CH 3

H

O D

CH 3

1) Hg(OAc)2/ CH3OH 2) NaBH4

*Complex mechanism

*Mark and antiplanar

*WILL BE SEEING THIS MORE IN ORGO II

CH3 C

H3

D

CH3

CH3 C

H3

D C

H3 H H

H2

Pt, Pd, or Ni

Catalytic Hydrogenation

(Alkenes -> Alkane, Syn

Addition of H)

*Steric factors must be payed attention to

*Can use D2 instead

Formation of

Vicinal Diols

(Syn)

CH 3

D

CH 3

D

OH OH

CH 3

D

OH OH

CH 3

D

OsO4

H2O2

KMnO4 cold, basic

*expensive

*toxic

*great yield

*cheaper

*safer

*poor yield

Trang 3

(double bond cleavage)

*Can use Zn/acetic acid instead of (CH3)2S

*Can isolate the formaldehyde

1) O3 / CH2Cl2 2) (CH3)2S

R

R

O

R R O

R

1) O3 / CH2Cl2 2) (CH3)2S

H

R

O

H R O

R

1) O3 / CH2Cl2 2) (CH3)2S

H

R

O

H H O

R

warm

R

R

O

R R O

R

H

R

O

OH R

O

R

H

R

O

R

KMnO4 warm

KMnO4 warm

CO2 + H2O

*further oxidizes to form carboxylic acids

*cannot isolate the formaldehyde

Carbene / Carbenoid

addition (formation of

cyclopropane)

CH 3

D

CH2N2 heat

CH 3

D

D

C

H3

CH2I2

C

H3

*syn

*stereochem is preserved

*Second reaction uses the Simmons-Smith reagent

Formation of epoxides

from alkenes

*useful for synthesis (ESPECIALLY IN ORGO II)

CH 3

D

CH 3

D O

MCPBA

Trang 4

Opening of Epoxides

NOTE: Can use RO

-to form ethers You

will see this in Orgo II

*acidic conditions opens from more substituted side

*Basic are like SN2 (least substituted side)

*Please look up mechanism

H3O+

H2O

CH 3

D O

CH 3

D OH OH

CH 3

D O

1)-OH 2)H3O+

OH

OH D

CH 3

Formation of

Dibromocarbenes and

Dichlorocarbenes

CH 3

D

D

C

H3

CHCl3 KOH

CH 3

D

Br Br

CHBr3 KOH

D

3

C

H3

Cl Cl

Formation of the

-*forms the nucleophile that is handy when connecting carbons!

Uses of the acetylide

anion

with methyl or 1 o halides

C

*SN2 because of the exception we learned from before!!!!

with 2 o or 3 o halides

C

test!!!

C

with carbonyl groups (ketones, aldehydes, and formaldehydes)

C

H3 C CH3

O

C

-1) 2) then H3O+

C

H3 C C

C

O H

*acetylide anion attacks partially positive carbon

*DO NOT FORGET then H3O+

*please look up the mechanism so you can see how the carbene

is formed

Trang 5

Synthesis of Alkynes *Need either geminal or

vicinal dihalides

*Look up mechanism

*NaNH2 gives terminal

*KOH gives internal

1) NaNH2 / 100oC 2) H3O+

C

H3 CHCH CH3

Br Br

CH2CHCH2CH3

Br Br

C

H3 C CH2CH3 Br

Br

C

H CH2CH2 Br

Br

C

Halogenation of alkynes Br2 and alkyne

C

(1 eq)

Br

C

Br

Br

C

H3

+

*Stereochem cannot

be controlled

HBr and alkyne

C

HBr (1 eq)

HBr (2 eq)

H

C

H3

Br Br

*Mark

*syn addition

HBr and alkyne

C

HBr ROOR

H

C

H3

*Anti mark

*syn addition

Catalytic reduction with

reactive catalyst

C

Pt, Pd, or Ni

*Takes it all the way back

to alkane

*generally bad yield

Trang 6

Alkyne to Alkene:

TRIPLE to DOUBLE

*isolates an alkene with

a SYN addition of H

H2 / Pd(BaSO4) quinoline

C

CH3

C

H3

Lindlar's catalyst

Dissolving metal

C

H

C

H3

*isolates an alkene with

an ANTI addition of H

Addition of H-OH to

alkynes

Mercuric Ion

C

H3

HgSO4 / H2O

H2SO4

HgSO4 / H2O

H2SO4

C O

CH3

CH2 C

H3

C

H3

C O

CH2

CH2 C

C O

CH3

CH2

CH2 C

H3

+

*Mark addition

*If not terminal, you will get a mixture

*Formation of ketone

Hydroboration

C

H3

1) Sia2BH 2) H2O2 / -OH

C O

H

CH2

CH2 C

H3

*Antimark addition

*will get a mixture if not terminal

*Formation of aldehyde

Oxidation of alkynes

KMnO4 / H2O neutral / cold

O

O

C

KMnO4 / H2O neutral / cold

O

OH O

*Forms vicinal carbonyls

*further oxidizes terminal alkynes to form

carboxylic acid

Trang 7

Cleavage of Alkynes: *Forms H2O and CO2

if terminal

C

Oxidation of alkyne (strong)

1) KMnO4 / H2O 2) -OH / heat

O

OH C

H3

C

2) -OH / heat

O

OH

O

CDH2

+

O

O

Ozonolysis

1) O3 2) H2O

C

O

OH C

H3

+ O

O

C

OH

O

1) O3 2) H2O

*Same products as previous

The Grignard Reagent

C

H3

Br

H Mg

H

MgBr

*Forms from 1o, 2o, 3o, allyl, vinyl, and aryl carbons

The Organolithium

Li

*This reagent acts like grignard but is stronger

Formation of alcohols

from Grignard

1 o alcohols (Grignard and formaldehyde)

MgBr

O H H

1)

*Know this mechanism!

*Carbon attachment

2 o alcohols (Grignard and aldehyde)

MgBr

O H

1)

*Know this mechanism!

*Carbon attachment

3 o alcohols (Grignard and ketone)

MgBr

O

OH

*Know this mechanism!

*Carbon attachment 1)

2) H3O+

Trang 8

Grignard and esters

or acid halides

*Reaction goes until completion

*Know this mechanism!

MgBr

O

OCH3 1)

2) H3O+

OH

Grignard and Epoxides

2) H3O+

OH

MgBr

*SN2 like (attacks least substituted side)

*Know this mechanism!

Attaching Deuterium to

*This is just good to know

Corey-House Reaction

+

Br

*not well understood (do not need to know mechanism)

*another way to attach carbons

Hydride reduction of

carbonyls

mild conditions (NaBH4 as reagent)

EtOH

OH

O

Cl

NaBH4 EtOH

no reaction

*reduces only

aldehydes and ketones.

*use alcohols as a solvent

strong conditions (LiAlH4 as reagent)

O

OH

1) LiAlH4 / ether

O

O

1) LiAlH4 / ether

+ OH

*reduces aldehydes, ketones, esters, acid halides, carboxyllic acids.

*Use ethers solvents

*Two step process

Trang 9

Raney Nickel *Reduces both carbonyl

and alkene

H2 Ra-Ni

Oxidation of alcohols 2 o alcohols

OH

Na2CrO7

H2SO4 / H2O

CrO3 / H2SO4 / H2O acetone / 0 o C (Jones reagent)

PCC

CH2Cl2

O

*any [ox] can be used

*KMnO 4 and NO 3 can

be used but they are harsh

1 o alcohols

OH

Na2CrO7

H2SO4 / H2O

CrO3 / H2SO4 / H2O acetone / 0 o C (Jones reagent)

PCC

CH2Cl2

O OH

O H

*PCC is the only one that can isolate the formaldehyde

Formation of the

Tosylate Ester

*RETENTION from

where alcohol was

originally (SN2 purposes)

Formation of alkyl halide

from 3o alcohols

Trang 10

Formation of 1o/2o

alkyl halides from 1o/2o

alcohols

*Basically an SN2 reaction (Inversion from original alcohol)

*Can also use SOCl2 for Cl, but it undergoes

a special mechanism!

PBr3

CH2Cl2

C

Br CH3

Cl CH3

I CH3

PCl3

CH2Cl2

P / I2

CH2Cl2

Unique cleavage with

HIO4

OH

CH3 OH H

HIO4

O

CH3 H

O

*Vicinal diols must

be syn

Williamson ether

O

-O

*Basically that SN2 exception we learned

in test 2

Pinacol - Pinacolone

Rearrangement

OH OH

H2SO4

*Know mechanism (methyl shift!)

+

C O

O

H+

C O

CH2 C

H3

*CAN USE ACID HALIDE instead of

carboxyllic acid!!!

Formation of Alkoxide

1 o or 2 o alcohols

2 o or 3 o alcohols

OH

O

-O

-Nao

Ko

Ethers from intermolecular

dehydration

2x CH3CH2-OH H2SO4 CH3CH2-O-CH2CH3

140oC

*Must be identical alcohols or else you

will get a mixture!!!

Ngày đăng: 16/11/2015, 10:03

TỪ KHÓA LIÊN QUAN

w