1. Trang chủ
  2. » Khoa Học Tự Nhiên

38516885 organic i reactions COMPLETE pdf

10 650 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 67,48 KB

Nội dung

tóm tắt phản ứng hóa hữu cơ part 1 hóa học hữu cơ là một ngành khoa học nghiên cứu về những cấu trúc, tính chất, thành phần, cách thức phản ứng, và cách tổng hợp của những hợp chất hữu cơ và vật liệu hữu cơ... cũng như nhiều vật chất khác nhau chứa nguyên tử carbon.12 Quá trình nghiên cứu cấu trúc hóa học của một hợp chất hữu cơ có thể ứng dụng nhiều thành tựu trong các lĩnh vực khác phải kể đến như phương pháp quang phổ, phương pháp vật lý và hóa học để định danh và xác định thành phần hóa học cũng như cấu tạo của hợp chất.3 Hóa hữu cơ nghiên cứu các đặc tính lý hóa của hợp chất, đánh giá mức độ phản ứng cũng như xác định tính chất của chúng ở trạng thái tinh khiết, trong dung dịch, hỗn hợp và các dạng khác. Các nghiên cứu về phản ứng hữu cơ có thể kể đến bao gồm việc chuẩn bị cho các phản ứng tổng hợp hữu cơ, nghiên cứu mức độ hoạt động của phản ứng, cũng như nghiên cứu các mô hình lý thuyết trên máy tính

Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Notes *Adds a halide Addition of HX (Mark) H H H HBr Br CH3 H Addition of HX H CH3 H H Add two Br's anti CH3 to alkene ROOR H CH3 CH3 Br2 CH3 CH3 OH (Mark w/ Br as H Br2 Forming alkene H2O from vicinal dihalide H3C *Wedges with wedges Br H Br *Anti and co planar OH D Br and anti-planar) D *Anti and co planar Br D Br (or CCl4) Adding a Br and to least substituted carbon H H CH2Cl2 D *Adds a halide Br H HBr CH3 carbon H H (Anti-Mark) H to more substituted H NaI or KI CH3 acetone H H H3C CH3 and dashes with dashes *E2 Like! *E1 like and it cannot Dehydration to H2SO4 alkene OH give terminal alkene heat *SPECIAL REACTION: OH Addition of OH (direct and mark) POCl3 dehydrates to form heat terminal alkene *CANNOT CONTROL CH3 CH3 CH3 H3O+ CH3 STEREOCHEM! *Low yield! OH *C+ formation! Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Oxymercuration/ CH3 demercuration Notes CH3 OH 1) Hg(OAc)2/ H2O (Add OH from alkene 2) NaBH4 mark and antiplanar) CH3 O CH3 CH3 SPECIAL: Adds alcohol 1) Hg(OAc)2/ CH3OH instead to form ethers! 2) NaBH4 D D *Mark and antiplanar H D D *Complex mechanism H *Complex mechanism *Mark and antiplanar *WILL BE SEEING THIS MORE IN ORGO II *Anti-mark Hydroboration D D (Add Oh anti-mark and CH3 syn planar) CH3 1) BH3 / THF H 2) H2O2 / -OH Catalytic Hydrogenation H 3C CH3 H3 C (Alkenes -> Alkane, Syn D Pt, Pd, or Ni CH3 CH3 *Steric factors must be payed attention to D H2 Addition of H) *Notice Peroxide OH *Can use D2 instead H3 C H H *expensive Formation of CH3 Vicinal Diols OsO4 (Syn) H2O2 D CH3 KMnO4 D cold, basic OH CH3 *toxic *great yield D OH OH CH3 D OH *cheaper *safer *poor yield Facilitator: Chris Lovero Organic Chemistry Reactions Task Ozonolysis Reaction R R Notes O 1) O3 / CH2Cl2 (double bond cleavage) + R R R R R R R 1) O3 / CH2Cl2 O O Warm KMnO4 H R H R H R R 2) (CH3)2S R 1) O3 / CH2Cl2 O 2) (CH3)2S + *Can isolate the formaldehyde R H + R *Can use Zn/acetic acid instead of (CH3)2S R 2) (CH3)2S R R O O H R H O O *further oxidizes to form KMnO4 cleavage R warm R + R R R R carboxylic acids *cannot isolate the formaldehyde R R R H R H R KMnO4 O R warm warm addition (formation of cyclopropane) R OH O + CO2 + R H2O R Carbene / Carbenoid CH3 O R KMnO4 H + CH3 CH2N2 the Simmons-Smith D H3C *stereochem is preserved *Second reaction uses heat H *syn D CH3 CH2I2 Zn(Cu) D H reagent CH3 D H3C *useful for synthesis Formation of epoxides from alkenes CH3 CH3 MCPBA ORGO II) O D (ESPECIALLY IN D Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Notes O to form ethers You H2O OH CH3 OH O 2)H3O+ Formation of H3C CHCl3 *please look up the Cl Cl CH3 mechanism so you can H CH3 KOH D D H 3C CH3 see how the carbene is formed CH3 Br CHBr3 KOH D Br D *forms the nucleophile Formation of the acetylide anion mechanism D OH D H *Please look up CH3 1) OH Dichlorocarbenes *Basic are like SN2 (least substituted side) - Dibromocarbenes and side D D will see this in Orgo II from more substituted OH H3O+ NOTE: Can use RO- *acidic conditions opens CH3 CH3 Opening of Epoxides H 3C C NaNH2 C H H3C C C - that is handy when connecting carbons! Uses of the acetylide anion *SN2 because of the with methyl or 1o halides H 3C C C - CH3Br C CH3 exception we learned from before!!!! with 2o or 3o halides H 3C C H3C C C Br - *E2 remember from last H3C CH CH3 CH2 H3C CH with carbonyl groups (ketones, aldehydes, and formaldehydes) *acetylide anion attacks HO O H3C C CH3 1) H3C C 2) then H3O+ - C test!!! H3C partially positive carbon C CH3 *DO NOT FORGET C then H3O+ C H3C Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Notes *Need either geminal or Synthesis of Alkynes Br Br 1) NaNH2 / 100oC H3C CHCH CH3 2) H3O+ vicinal dihalides C CH2 CH3 HC *Look up mechanism *NaNH2 gives terminal Br Br *KOH gives internal CH2CHCH2CH3 Br H3C C CH2 CH3 Br Br KOH HC CH2 CH2CH3 200oC Br Halogenation of alkynes Br2 and alkyne H 3C C C H 3C CH3 H *Stereochem cannot be controlled H 3C C C H Br Br2 (1 eq) Br + Br H H 3C HBr and alkyne Br Br HBr H *syn addition (1 eq) H 3C C C H 3C H *Mark H Br HBr (2 eq) Br *Anti mark HBr and alkyne HBr H 3C C C H ROOR H H 3C Br *syn addition H *Takes it all the way back Catalytic reduction with reactive catalyst H 3C C C CH3 H2 to alkane *generally bad yield Pt, Pd, or Ni Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Alkyne to Alkene: Lindlar's catalyst TRIPLE to DOUBLE H 3C C Notes *isolates an alkene with C H2 / Pd(BaSO4) CH3 quinoline H H a SYN addition of H H 3C CH3 H CH3 *isolates an alkene with Dissolving metal H 3C C C NaNH3 CH3 H 3C Addition of H-OH to alkynes H Mercuric Ion HgSO4 / H2O H3C CH2 C C H H2SO4 an ANTI addition of H O *Mark addition C *If not terminal, you will CH3 H3C CH2 get a mixture *Formation of ketone H3C CH2 C C CH3 HgSO4 / H2O O H2SO4 C CH2 CH3 H3C CH2 + O C CH3 H3C CH2 CH2 Hydroboration *Antimark addition O 1) Sia2BH H3C CH2 C C H 2) H2O2 / -OH *will get a mixture if not C H3C CH2 CH2 H terminal *Formation of aldehyde Oxidation of alkynes (mild conditions) H 3C C C CH3 *Forms vicinal O KMnO4 / H2O carbonyls neutral / cold *further oxidizes terminal O alkynes to form carboxylic acid H 3C C C H O KMnO4 / H2O neutral / cold OH O Facilitator: Chris Lovero Organic Chemistry Reactions Task Cleavage of Alkynes: Reaction Notes Oxidation of alkyne (strong) H 3C C *Forms H2O and CO2 O C CDH2 1) KMnO4 / H2O if terminal H 3C 2) -OH / heat OH + O CDH2 HO H 3C C C H 1) KMnO4 / H2O O - 2) OH / heat H 3C C CDH2 C C C H 1) O3 H H3C CH from Grignard *Same products as previous CDH2 + H 2O + CO2 OH *Forms from 1o, 2o, 3o, H H3C CH C allyl, vinyl, and aryl MgBr The Organolithium Formation of alcohols + O ether Br CO2 O Mg C + OH HO 2) H2O H3C 2) H2O The Grignard Reagent Reagent O 1) O3 H 2O OH Ozonolysis H 3C + *This reagent acts like Li H3C CH2 Br pentane or hexane H3C CH2 Li 1o alcohols (Grignard and formaldehyde) 1) H *Carbon attachment H 2) H3O+ OH 2o alcohols (Grignard and aldehyde) *Know this mechanism! O MgBr 1) *Carbon attachment H 2) H3O+ OH 3o alcohols (Grignard and ketone) *Know this mechanism! O MgBr grignard but is stronger *Know this mechanism! O MgBr carbons *Carbon attachment 1) 2) H3O+ OH Facilitator: Chris Lovero Organic Chemistry Reactions Task Reaction Notes *Reaction goes until Grignard and esters O OH MgBr completion or acid halides OCH3 1) *Know this mechanism! 2) H3O + Grignard and Epoxides (opening of epoxides) *SN2 like (attacks least O MgBr 1) OH 2) H3O+ *Know this mechanism! *This is just good to Attaching Deuterium to carbons substituted side) D2O MgBr H 3C Corey-House Reaction Li CH3Br H 3C CuI CH3Li D know *not well understood (CH3)2CuLi (do not need to know mechanism) + Br *another way to attach carbons Hydride reduction of *reduces only mild conditions (NaBH4 as reagent) carbonyls O aldehydes and OH NaBH4 ketones EtOH *use alcohols as a O NaBH4 solvent no reaction EtOH Cl *reduces aldehydes, strong conditions (LiAlH4 as reagent) ketones, esters, acid O OH 1) LiAlH4 / ether halides, carboxyllic 2) H3O+ acids OH *Use ethers solvents O O + 1) LiAlH4 / ether 2) H3O+ OH OH *Two step process Facilitator: Chris Lovero Organic Chemistry Reactions Task Raney Nickel Reaction Notes *Reduces both carbonyl O H2 OH and alkene Ra-Ni Oxidation of alcohols *any [ox] can be used 2o alcohols Na2CrO7 *KMnO4 and NO3 can H2SO4 / H2O OH be used but they are harsh CrO3 / H2SO4 / H2O O acetone / 0oC (Jones reagent) PCC CH2Cl2 1o alcohols *PCC is the only one Na2CrO7 H2SO4 / H2O that can isolate OH the formaldehyde O CrO3 / H2SO4 / H2O OH acetone / 0oC (Jones reagent) H PCC O CH2Cl2 Formation of the *RETENTION from Tosylate Ester OH TSCl OTos where alcohol was originally (SN2 purposes) Formation of alkyl halide from 3o alcohols OH HCl / ether 0oC Cl Facilitator: Chris Lovero Organic Chemistry Reactions 10 Task Reaction Notes *Basically an SN2 Formation of 1o/2o PBr3 alkyl halides from 1o/2o Br CH3 reaction (Inversion CH2Cl2 from original alcohol) alcohols *Can also use SOCl2 PCl3 H3C OH CH2Cl2 Cl CH3 for Cl, but it undergoes a special mechanism! P / I2 I CH3 CH2Cl2 Unique cleavage with O OH CH3 HIO4 HIO4 *Vicinal diols must CH3 be syn OH H H O Formation of Alkoxide 1o or o alcohols Nao OH Anion O Ko 2o or 3o alcohols O OH O Williamson ether synthesis - - *Basically that SN2 Br H 3C - exception we learned O in test *Must be identical Ethers from intermolecular dehydration 2x CH3CH2-OH H2SO4 CH3CH2-O-CH2CH3 140oC Pinacol - Pinacolone O OH OH Rearrangement alcohols or else you will get a mixture!!! *Need vicinal diols *Know mechanism H2SO4 (methyl shift!) Fischer Estherification H 3C CH2 OH C O *CAN USE ACID + H3C CH2 O + HO H CH3 C O CH3 HALIDE instead of carboxyllic acid!!!

Ngày đăng: 16/11/2015, 10:03

TỪ KHÓA LIÊN QUAN

w