tóm tắt phản ứng hóa hữu cơ part 1 hóa học hữu cơ là một ngành khoa học nghiên cứu về những cấu trúc, tính chất, thành phần, cách thức phản ứng, và cách tổng hợp của những hợp chất hữu cơ và vật liệu hữu cơ... cũng như nhiều vật chất khác nhau chứa nguyên tử carbon.12 Quá trình nghiên cứu cấu trúc hóa học của một hợp chất hữu cơ có thể ứng dụng nhiều thành tựu trong các lĩnh vực khác phải kể đến như phương pháp quang phổ, phương pháp vật lý và hóa học để định danh và xác định thành phần hóa học cũng như cấu tạo của hợp chất.3 Hóa hữu cơ nghiên cứu các đặc tính lý hóa của hợp chất, đánh giá mức độ phản ứng cũng như xác định tính chất của chúng ở trạng thái tinh khiết, trong dung dịch, hỗn hợp và các dạng khác. Các nghiên cứu về phản ứng hữu cơ có thể kể đến bao gồm việc chuẩn bị cho các phản ứng tổng hợp hữu cơ, nghiên cứu mức độ hoạt động của phản ứng, cũng như nghiên cứu các mô hình lý thuyết trên máy tính
Trang 1Symmetrical
ethers through
dehydration of 1o
alcohols
*cannot be unsymetrical (you will get mixtures!)
x 2
H2SO4
140oC
Cleavage of ethers
byvstrong acids
+ H 3 C Br
O
HBr
O H Br
*can also use HI, HCl, etc
* vinyl or aryl do not get cleaved (NO SN2 ON SP2)
Autoxidation
R
R
O2 (xs) slow
R
R
R R R
*basically forms peroxides which EXPLODE!
O
MCPBA *epoxide will form along
the more substituted alkene
Intramolecular
C
OH
Cl
3
*SN2 like
*forms O- that attacks halogenated C
H3O+
H2O
CH 3
D O
CH 3
D OH OH
CH 3
D O
1)-OH 2)H3O+
OH
OH D
CH 3
Opening of
Epoxides
*activate the O first
*weak Nu are good
*more substituted side
attacked
*SN2 like (least subs)
so strong Nu and base
*Grignard reagent and acetylide anion can work tooo
Trang 2Task Reaction Notes
Free Radical
Halogenation
Expanded
NBS
hv 0oC
*Low T: more stable TS
*High T: more stable
compound
Br
Br
CH3
CH3
CH3
CH3
transition state
NBS
60oC
Conjugated
Systems
C
HBr
*in this example we will examine the case of HBr
Br2
H3O+
HBr / 0oC HBr / 40oC
C
H
H
transition state
*Low T: more stable TS
*High T: more stable
compound
*NOTE: If more than one conjugated system possibly exists, examine the transition states of each one and do the reactions with the more stable transtion states!
Diels-Alder
Reaction
D = donating group W = withdraw group
D
+
W
heat D
W
D
W
D W
*1,2 or 1,4 adduct
*know endo rule
*Diene and Dienophile
*Know Stereochem
*PRACTICE THIS!!!
Trang 3Task Reaction Notes
Halogenation of
(I2 / CuCl2)
X *X = Cl or Br
HNO3
H2SO4 heat
Nitration of
Benzene
*H2SO4 acts as a catalyst
SO3 / H2SO4 heat
SO 3 H *REVERSIBLE DUE TO
ENTROPY
Sulfonation
(fuming sulfuric)
+ H 2 SO 4
Friedel-Crafts
Alkylation
RCl AlCl3
R
*watch rearrangement!
*no strong deactivators (no strong W grps)
*no amino groups
*watch for polyalkylation
Friedel-Crafts
Acetylation
AlCl3
R
O O
R Cl
*no strong deactivators (no strong W grps)
*no amino groups
CO / HCl AlCl3 / CuCl
H
O
Gatterman-Koch
Formation
(forming
benzaldehyde)
*no strong deactivators (no strong W grps)
*no amino groups
Clemmensen
Reduction
R
O
Zn(Hg)
*avoid using this reactant in the presence
of alkenes, alkynes, alcohols and amines
Trang 4Task Reaction Notes
Nucleophilic
Aromatic
Substitution of Aryl
Halides:
Addition /
Elimination
W W
W
X
Nu (2eq) heat, pressure W W
W
Nu
*need Strong W groups
ortho and/or para to
leaving group.
*Nu can be OH-, RO-,
NH3
*NOTE: If - OCH3 is the
Nu, only need 1 eq
W = withdraw group X = leaving grp (halide) Nu = nucleophile
Nucleophilic
Aromatic
Substitution of Aryl
Halides:
Elimination /
Addition
X
NaNH2 /
NH3 (l)
+
X
1) NaOH (2eq) / 340 o C / 2500 psi 2) H3O +
group is not O/P
*formation of benzyne
in mechanism
* Nu can be OH-, RO-,
-NH2.
*will get a mixture (like second example)
Chlorination of
Benzene
3 Cl2 / heat pressure
Cl Cl
Cl Cl Cl
Cl
*8 different stereochems actually occur
*this particular molecule
is the commercial
compound Rid
(lice killer)
Catalytic
Hydrogenation
3 H2 / 1000 psi / 100oC
Ru or Rh (Pt,Pd,Ni also)
0 or Li0
NH3(l) / ROH
W
D
*withdraw groups -> sp3
*donating groups -> sp2
Reduction of Nitro
group into Amino
Group
Zn, Sn, or Fe
*Do not confuse with Clemmenson Red
Trang 5Side Chain Rxn:
Oxidation
*Can use either reagent
*Does not work for bulky groups
(CH2)n
O
KMnO4/H2O
OH-/100oC
Na2Cr2O7 / H2SO4 heat
CO2H
CO2H
CO2H
HO2C
Halogenation of
Cl
Cl +
54% 44%
Br2 (or NBS) / light
Br
*If aromatic ring is activated, use NBS instead of Br2
*Pay attention to Temp (if it's low or high)
*WILL EXPLAIN THIS BETTER IN CLASS
Nucleophilic Subs
of Benzylic
Halides
CH2Br CH
3OH heat
+
+
major! *SN1 or SN2 or E2?
Depends on conditions!
*Resonance form that does not disrupt the aromaticity is more stable
CH2OCH3
*SN1
Br
CH3CH2O
Na+
NaI acetone
*SN2
*E2
I
Rxns of phenols
similar to alochols
OH
NaOH
RCO2H
or RCOCl
PBr3
O
O
(no rxn)
OH
(no rxn)
*2nd rxn is Fischer Estherification
*3rd rxn is only one that
is different!
Trang 6Task Reaction Notes
Oxidation of
Phenols to
Quinones
*This reaction forms a D-A dienophile!
O
H OH Na2Cr2O7
H2SO4
Formation of
2) CO2 3) H3O+
OH
OH O
*Phenoxide anion can react with the weak electrophile because it
is so strongly activated
REVIEW:
Oxidation of
alcohols
2o alcohols
OH
Na2CrO7
H2SO4 / H2O
CrO3 / H2SO4 / H2O acetone / 0oC (Jones reagent)
PCC
CH2Cl2
O
*any [ox] can be used
*KMnO 4 and NO 3 can
be used but they are harsh
1o alcohols
CH2Cl2
O
H
*Only use PCC because Jones reagent will yield carboxyllic acid
REVIEW:
Cleavage of
Alkenes by
Ozonolysis
C
1) O3 2) (CH3)2S
O
C
H
O
+
REVIEW:
Hydration of
Alkynes
H2O / H2SO4 HgSO4
1) Sia2BH 2) H2O2 / OH
either reagent
H
H R
O H
OH
H R
H
R O
O H
mixture of ketones
*Really know the mechanism now and how the enols tautomerize
Trang 7Dithiane Synthesis
of Aldehydes and
Ketones
*Dithiane will be given
*BuLi =
CH3(CH2)2CH2-Li
*Halide must be methyl
or 1o
S S
1) BuLi 2) R - X S S
1) BuLi 2) R1 - X
H3O+
O
S S
H3O+
O
Ketones from
Carboxylic Acids
O 1) R1 - Li (2eq)
2) H3O+
is used to make salt
Ketones from
Nitriles
R
1) R1-MgX 2) H3O+ R R 1
O
Aldehydes from
Acid Chlorides
O LiAlH(OtBu)3
*lithium aluminum tri(t-butoxy)hydride
O
H2 / Pd / BaSO4 / S
*Rosenmund Reduction
Ketones from
Acid Chlorides
O
(R1)2CuLi
O
*Make sure you know how to form Gilman Reagent (refer to House in previous rxn sheet)
Wittig Reaction:
Ald and Ketones
ONLY
H
H H
+
maj
*Know how to prep the phosphorous ylide!
*trans is more stable because you want bulky groups to be furthest away from each other
Trang 8Task Reaction Notes
Aldehydes and
Ketones:
Formation of
Cyanohydrins
*Aldehydes or unhindered ketones
*will use this as a reagent in the future
O
-CN HCN
C
OH
H
O
NaCN
H+
C
OH
H
Aldehydes and
Ketones: Addition
O RNH
2
H+
*non AQ favors reactant
*AQ favors product
Wolf-Kishner
Reaction
*avoid halogens and other good LGs
(Use Clemmensen instead)
O
NH2NH2 KOH/DMSO
Aldehydes and
Ketones: Addition
of 2o Amines
H3O+
Acetal Formations
"protected
carbonyls"
O
2(CH3CH2OH)
H+
EtO OEt
*easier to just use
OH OH
O
O H
1) /H+ 2) CH3MgBr 3) H3O+
OH OH
*aldehyde protected before ketone because
it is more reactive
O
H
O O
H
O O
O- CH3
H
CH3 O
H
O