1. Trang chủ
  2. » Giáo án - Bài giảng

tai lieu ôn thi vao lop 10(hot)

37 117 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 1,68 MB

Nội dung

Câu1 : Đề Cho biểu thức x3 x + x (1 x ) + x x : A= Với x ;1 x x + x2 a, Ruý gọn biểu thức A b , Tính giá trị biểu thức cho x= + 2 c Tìm giá trị x để A=3 Câu2.a, Giải hệ phơng trình: ( x y ) + 3( x y ) = x + y = 12 b Giải bất phơng trình: x x x 15 x= 17 Câu : a)Đặt x-y=a ta đợc pt: a2+3a=4 => a=-1;a=-4 ( x y ) + 3( x y ) = Từ ta có x + y = 12 x y = * (1) x + y = 12 x y = * (2) x + y = 12 Giải hệ (1) ta đợc x=3, y=2 Giải hệ (2) ta đợc x=0, y=4 Vậy hệ phơng trình có nghiệm x=3, y=2 x=0; y=4 b) Ta có x3-4x2-2x-15=(x-5)(x2+x+3) mà x2+x+3=(x+1/2)2+11/4>0 với x Vậy bất phơng trình tơng đơng với x-5>0 =>x>5 Câu 3: Phơng trình: ( 2m-1)x2-2mx+1=0 Xét 2m-1=0=> m=1/2 pt trở thành x+1=0=> x=1 Xét 2m-10=> m 1/2 ta có , = m2-2m+1= (m-1)20 m=> pt có nghiệm với m ta thấy nghiệm x=1 không thuộc (-1,0) m m +1 = 2m 2m 1 pt có nghiệm khoảng (-1,0)=> -1< >0 => 2m =>m E,F thuộc đờng tròn đờng kính BK hay điểm E,F,B,K thuộc đờng tròn đờng kính BK b BCF= BAF B Mà BAF= BAE=450=> BCF= 450 O Ta có BKF= BEF Mà BEF= BEA=450(EA đờng chéo hình vuông ABED)=> BKF=450 Vì BKC= BCK= 450=> tam giác BCK vuông cân B Đề x x x x + 2( x x + 1) : Bài 1: Cho biểu thức: P = x x x+ x x a,Rút gọn P b,Tìm x nguyên để P có giá trị nguyên Bài 2: Cho phơng trình: x2-( 2m + 1)x + m2 + m - 6= (*) a.Tìm m để phơng trình (*) có nghiệm âm b.Tìm m để phơng trình (*) có nghiệm x1; x2 thoả mãn 3 x1 x2 =50 Bài 3: Cho phơng trình: ax2 + bx + c = có hai nghiệm dơng phân biệt x1, x2Chứng minh: a,Phơng trình ct2 + bt + a =0 có hai nghiệm dơng phân biệt t1 t2 b,Chứng minh: x1 + x2 + t1 + t2 Bài 4: Cho tam giác có góc nhọn ABC nội tiếp đờng tròn tâm O H trực tâm tam giác D điểm cung BC không chứa điểm A a, Xác định vị trí điẻm D để tứ giác BHCD hình bình hành b, Gọi P Q lần lợt điểm đối xứng điểm D qua đờng thẳng AB AC Chứng minh điểm P; H; Q thẳng hàng c, Tìm vị trí điểm D để PQ có độ dài lớn Bài 5: Cho hai số dơng x; y thoả mãn: x + y A C Tìm giá trị nhỏ của: A = 501 + x +y xy Đáp án Bài 1: (2 điểm) ĐK: x 0; x a, Rút gọn: P = x( x 1) : 2( x x( x 1) b P = x +1 = 1+ x z ) x P= x ( x 1) = x +1 x x Để P nguyên x = x =2 x=4 x = x = x = x = x = x = x = x = 1( Loai ) Vậy với x= { 0;4;9} P có giá trị nguyên Bài 2: Để phơng trình có hai nghiệm âm thì: ( = 25 > (m 2)(m + 3) > m < m < ) = ( 2m + 1) m + m x1 x = m + m > x + x = 2m + < b Giải phơng trình: ( m 2) (m + 3) = 50 5(3m + 3m + 7) = 50 m + m = 1+ m1 = m = 2 Bài 3: a Vì x1 nghiệm phơng trình: ax2 + bx + c = nên ax12 + bx1 + c =0 Vì x1> => c 11 + b + a = x trình: ct2 + bt + a = 0; t1 = x1 Chứng tỏ x1 nghiệm dơng phơng Vì x2 nghiệm phơng trình: x1 ax2 + bx + c = => ax22 + bx2 + c =0 x2> nên c + b. + a = điều chứng tỏ nghiệm dơng x2 x2 x2 phơng trình ct2 + bt + a = ; t2 = x2 Vậy phơng trình: ax2 + bx + c =0 có hai nghiẹm dơng phân biệt x1; x2 phơng trình : ct2 + bt + a =0 có hai nghiệm dơng phân biệt t1 ; t2 t1 = 1 ; t2 = x1 x2 b Do x1; x1; t1; t2 nghiệm dơng nên t1+ x1 = + x1 x1 t2 + x = + x2 x2 Do x1 + x2 + t1 + t2 Bài a Giả sử tìm đợc điểm D cung BC cho tứ giác BHCD hình bình hành Khi đó: BD//HC; CD//HB H trực tâm tam giác ABC nên CH AB BH AC => BD AB CD AC A Do đó: ABD = 900 ACD = 900 Vậy AD đờng kính đờng tròn tâm O Ngợc lại D đầu đờng kính AD H O đờng tròn tâm O P tứ giác BHCD hình bình hành C B b) Vì P đối xứng với D qua AB nên APB = ADB nhng ADB = ACB nhng ADB = ACB D Do đó: APB = ACB Mặt khác: AHB + ACB = 1800 => APB + AHB = 1800 Tứ giác APBH nội tiếp đợc đờng tròn nên PAB = PHB Mà PAB = DAB đó: PHB = DAB Chứng minh tơng tự ta có: CHQ = DAC Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800 Ba điểm P; H; Q thẳng hàng c) Ta thấy APQ tam giác cân đỉnh A Có AP = AQ = AD PAQ = 2BAC không đổi nên cạnh đáy PQ đạt giá trị lớn AP AQ lớn hay AD lớn D đầu đờng kính kẻ từ A đờng tròn tâm O Q P= Bài 1: Cho biểu thức: x ( x + Đề y )(1 y ) y x + ( ) ( y) x +1 xy )( x + 1 y ) a) Tìm điều kiện x y để P xác định Rút gọn P b) Tìm x,y nguyên thỏa mãn phơng trình P = Bài 2: Cho parabol (P) : y = -x2 đờng thẳng (d) có hệ số góc m qua điểm M(-1 ; -2) a) Chứng minh với giá trị m (d) cắt (P) hai điểm A , B phân biệt b) Xác định m để A,B nằm hai phía trục tung Bài 3: Giải hệ phơng trình : x + y + z = 1 + + =1 x y z xy + yz + zx = 27 Bài 4: Cho đờng tròn (O) đờng kính AB = 2R C điểm thuộc đờng tròn (C A ; C B ) Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M điểm cung nhỏ AC Tia BC cắt Ax Q , tia AM cắt BC N a) Chứng minh tam giác BAN MCN cân b) Khi MB = MQ , tính BC theo R 1 1 + + = x y z x+ y+z Hãy tính giá trị biểu thức : M = + (x8 y8)(y9 + z9)(z10 x10) Bài 5: Cho x, y, z R thỏa mãn : Đáp án Bài 1: a) Điều kiện để P xác định :; x ; y ; y ; x + y x(1 + *) Rút gọn P: P = = = = = ( ( x ) y (1 x + ) ( x y ) + x x + y y xy ( ( x + x + y ( )( )( y 1+ x ( x + x y +x ) (1 + y ) y x + ) (1 y ) x ) xy + y xy ( y ) ) )( y) x ( x + 1) y ( x + 1) + y ( + x ) ( x ) (1 + x ) (1 y ) x (1 y ) (1 + y ) y (1 y ) x y + y y x = (1 y ) (1 y ) x + )( )( y y ) xy y 1+ x Vậy P = x + xy y = x + xy y b) P = x + ( xy ( x1+ )( y = ) ( y x 1 + ) ) y +1 =1 y =1 Ta có: + y x x x = 0; 1; 2; ; Thay vào ta cócác cặp giá trị (4; 0) (2 ; 2) thoả mãn Bài 2: a) Đờng thẳng (d) có hệ số góc m qua điểm M(-1 ; -2) Nên phơng trình đờng thẳng (d) : y = mx + m Hoành độ giao điểm (d) (P) nghiệm phơng trình: - x2 = mx + m x2 + mx + m = (*) Vì phơng trình (*) có = m 4m + = ( m 2) + > m nên phơng trình (*) có hai nghiệm phân biệt , (d) (P) cắt hai điểm phân biệt A B b) A B nằm hai phía trục tung phơng trình : x2 + mx + m = có hai nghiệm trái dấu m < m < x + y + z = (1) 1 Bài : + + = (2) x y z xy + yz + xz = 27 ( 3) ĐKXĐ : x , y , z ( x + y + z ) = 81 x + y + z + ( xy + yz + zx ) = 81 x + y + z = 81 ( xy + yz + zx ) x + y + z = 27 x + y + z = ( xy + yz + zx ) 2( x + y + z ) ( xy + yz + zx ) = ( x y ) + ( y z ) + ( z x) = ( x y ) = ( y z ) = ( z x ) = x = y y= z z = x x= y= z Thay vào (1) => x = y = z = Ta thấy x = y = z = thõa mãn hệ phơng trình Vậy hệ phơng trình có nghiệm x = y = z = Bài 4: Q a) Xét ABM NBM Ta có: AB đờng kính đờng tròn (O) nên :AMB = NMB = 90o N M điểm cung nhỏ AC nên ABM = MBN => BAM = BNM C => BAN cân đỉnh B M Tứ giác AMCB nội tiếp => BAM = MCN ( bù với góc MCB) => MCN = MNC ( góc BAM) => Tam giác MCN cân đỉnh M A b) Xét MCB MNQ có : O MC = MN (theo cm MNC cân ) ; MB = MQ ( theo gt) BMC = MNQ ( : MCB = MNC ; MBC = MQN ) B => MCB = MNQ (c g c) => BC = NQ Xét tam giác vuông ABQ có AC BQ AB2 = BC BQ = BC(BN + NQ) => AB2 = BC ( AB + BC) = BC( BC + 2R) => 4R2 = BC( BC + 2R) => BC = ( 1) R Bài 5: 1 1 1 1 + + = =0 => + + x y z x+ y+z x y z x+ y+z x+ y x+ y+zz + =0 => xy z( x + y + z ) Từ : = ( z + y ) + xy z ( x + y + z ) zx + zy + z + xy = ( x + y ) xyz ( x + y + z ) ( x + y )( y + z ) ( z + x ) = Ta có : x8 y8 = (x + y)(x-y)(x2+y2)(x4 + y4).= y9 + z9 = (y + z)(y8 y7z + y6z2 - + z8) z10- x10 = (z + x)(z4 z3x + z2x2 zx3 + x4)(z5 - x5) Vậy M = 3 + (x + y) (y + z) (z + x).A = 4 Đề Bài 1: 1) Cho đờng thẳng d xác định y = 2x + Đờng thẳng d/ đối xứng với đờng thẳng d qua đờng thẳng y = x là: A.y = x+2; B.y = x - ; C.y = Hãy chọn câu trả lời x-2; D.y = - 2x - 2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìm vào bình hình cầu lấy mực nớc bình lại bình Tỉ số bán kính hình trụ bán kính hình cầu A.2 ; B ; C 3 ; D kết khác Bìa2: 1) Giải phơng trình: 2x4 - 11 x3 + 19x2 - 11 x + = 2) Cho x + y = (x > 0; y > 0) Tìm giá trị lớn A = x + y Bài 3: 1) Tìm số nguyên a, b, c cho đa thức : (x + a)(x - 4) - Phân tích thành thừa số đợc : (x + b).(x + c) 2) Cho tam giác nhọn xây, B, C lần lợt điểm cố định tia Ax, Ay cho AB < AC, điểm M di động góc xAy cho MA = MB Xác định vị trí điểm M để MB + MC đạt giá trị nhỏ Bài 4: Cho đờng tròn tâm O đờng kính AB CD vuông góc với nhau, lấy điểm I đoan CD a) Tìm điểm M tia AD, điểm N tia AC cho I lag trung điểm MN b) Chứng minh tổng MA + NA không đổi c) Chứng minh đờng tròn ngoại tiếp tam giác AMN qua hai điểm cố định Hớng dẫn Bài 1: 1) Chọn C Trả lời 2) Chọn D Kết khác: Đáp số là: Bài : 1)A = (n + 1)4 + n4 + = (n2 + 2n + 1)2 - n2 + (n4 + n2 + 1) = (n2 + 3n + 1)(n2 + n + 1) + (n2 + n + 1)(n2 - n + 1) = (n2 + n + 1)(2n2 + 2n + 2) = 2(n2 + n + 1)2 Vậy A chia hết cho số phơng khác với số nguyên dơng n 2) Do A > nên A lớn A2 lớn Xét A2 = ( x + y )2 = x + y + xy = + xy (1) Ta có: x+ y xy (Bất đẳng thức Cô si) => > xy (2) Từ (1) (2) suy ra: A2 = + xy < + = Max A2 = x = y = , max A = 2 x = y = Bài3 Câu 1Với x ta có (x + a)(x - 4) - = (x + b)(x + c) Nên với x = - = (4 + b)(4 + c) Có trờng hợp: + b = 4+b=7 4+c=-7 4+c=-1 Trờng hợp thứ cho b = - 3, c = - 11, a = - 10 Ta có (x - 10)(x - 4) - = (x - 3)(x - 11) Trờng hợp thứ hai cho b = 3, c = - 5, a = Ta có (x + 2)(x - 4) - = (x + 3)(x - 5) Câu2 (1,5điểm) Gọi D điểm cạnh AB cho: x AB Ta có D điểm cố định MA AD Mà = (gt) = AB MA AD = B Xét tam giác AMB tam giác ADM có MâB (chung) MA AD = = AB MA D A MB MA Do AMB ~ ADM => = =2 MD AD => MD = 2MD (0,25 điểm) Xét ba điểm M, D, C : MD + MC > DC (không đổi) Do MB + 2MC = 2(MD + MC) > 2DC Dấu "=" xảy M thuộc đoạn thẳng DC Giá trị nhỏ MB + MC DC * Cách dựng điểm M AB - Dựng D tia Ax cho AD = AB - Dựng đờng tròn tâm A bán kính M C M giao điểm DC đờng tròn (A; AB) N Bài 4: a) Dựng (I, IA) cắt AD M cắt tia AC N Do MâN = 900 nên MN đờng kính Vậy I trung điểm MN b) Kẻ MK // AC ta có : INC = IMK (g.c.g) => CN = MK = MD (vì MKD vuông cân) Vậy AM+AN=AM+CN+CA=AM+MD+CA => AM = AN = AD + AC không đổi A c) Ta có IA = IB = IM = IN Vậy đờng tròn ngoại tiếp AMN qua hai điểm A, B cố định C I K O B M Đề Bài Cho ba số x, y, z thoã mãn đồng thời : D x2 + y + = y + z + = z + 2x + = Tính giá trị biểu thức : A = x 2007 + y 2007 + z 2007 Bài 2) Cho biểu thức : M = x x + y + xy y + 2014 Với giá trị x, y M đạt giá trị nhỏ ? Tìm giá trị nhỏ Bài Giải hệ phơng trình : x + y + x + y = 18 x ( x + 1) y ( y + 1) = 72 Bài Cho đờng tròn tâm O đờng kính AB bán kính R Tiếp tuyến điểm M bbất kỳ đờng tròn (O) cắt tiếp tuyến A B lần lợt C D a.Chứng minh : AC BD = R2 b.Tìm vị trí điểm M để chu vi tam giác COD nhỏ Bài 5.Cho a, b số thực dơng Chứng minh : ( a + b) + a+b 2a b + 2b a Bài 6).Cho tam giác ABC có phân giác AD Chứng minh : AD2 = AB AC - BD DC Bài Từ giả thiết ta có : Hớng dẫn giải x2 + y + = y + 2z +1 = z + 2x + = Cộng vế đẳng thức ta có : ( x + x + 1) + ( y + y + 1) + ( z + z + 1) = ( x + 1) + ( y + 1) + ( z + 1) = 2 A = x 2007 + y 2007 + z 2007 = ( 1) x +1 = y +1 = x = y = z = z +1 = 2007 + ( 1) 2007 + ( 1) 2007 = Vậy : A = -3 Bài 2.(1,5 điểm) Ta có : ( ) ( ) M = x + x + + y + y + + ( xy x y + ) + 2007 M = ( x ) + ( y 1) + ( x ) ( y 1) + 2007 2 2 M = ( x ) + ( y 1) + ( y 1) + 2007 Do ( y 1) ( x ) + ( y 1) x, y M 2007 M = 2007 x = 2; y = u = x ( x + 1) Bài Đặt : u + v = 18 u ; v nghiệm phơng uv = 72 Ta có : v = y ( y + 1) trình : X 18 X + 72 = X = 12; X = u=6 u = 12 ; v = v = 12 x ( x + 1) = 12 y ( y + 1) = x ( x + 1) = ; y ( y + 1) = 12 Giải hai hệ ta đợc : Nghiệm hệ : (3 ; 2) ; (-4 ; 2) ; (3 ; -3) ; (-4 ; -3) hoán vị Bài a.Ta có CA = CM; DB = DM Các tia OC OD phân giác hai góc AOM MOB nên OC OD Tam giác COD vuông đỉnh O, OM đờng cao thuộc cạnh huyền CD nên : MO2 = CM MD R2 = AC BD b.Các tứ giác ACMO ; BDMO nội tiếp m ã ã ã ã MCO = MAO ;MDO = MBO c VCOD : VAMB ( g g ) (0,25đ) Do : Chu.vi.VCOD OM = (MH1 AB) Chu.vi.VAMB MH1 Do MH1 OM nên d a h o OM MH1 Chu vi VCOD chu vi VAMB Dấu = xảy MH1 = OM M O M điểm cung ằAB Bài (1,5 điểm) Ta có : a ữ 0; b ữ 2 a,b>0 b bđt x( y x ) y( x y ) + + x (1 + xy ) + y (1 + xy ) ( x y ) ( xy 1) xy ( ) ( ) M Câu 4: a - Kẻ thêm đờng phụ - Chứng minh MD đờng kính (o) => b Gọi E', F' lần lợt hình chiếu D MA MB Đặt HE = H1 HF = H2 AH AD HE.h1 MA = BD BH HF h2 MB HEF DF ' E ' HF h2 = HE.h o E' F E F' D A (1) B H I Thay vào (1) ta có: MA = AH AD BD BH MB a+ b Câu 1: Cho biểu thức D = ab + Đề 12 a + b a + b + 2ab : 1+ ab + ab a) Tìm điều kiện xác định D rút gọn D b) Tính giá trị D với a = 2 c) Tìm giá trị lớn D Câu 2: Cho phơng trình 2 x2- mx + 2 m2 + 4m - = (1) a) Giải phơng trình (1) với m = -1 b) Tìm m để phơng trình (1) có nghiệm thoã mãn 1 + = x1 + x x1 x Câu 3: Cho tam giác ABC đờng phân giác AI, biết AB = c, AC = b, A = ( = 90 ) Chứng minh AI = 2bc.Cos (Cho Sin2 = 2SinCos ) b+c Câu 4: Cho đờng tròn (O) đờng kính AB điểm N di động nửa đờng tròn cho NA NB Vễ vào đờng tròn hình vuông ANMP a) Chứng minh đờng thẳng NP qua điểm cố định Q b) Gọi I tâm đờng tròn nội tiếp tam giác NAB Chứng minh tứ giác ABMI nội tiếp c) Chứng minh đờng thẳng MP qua điểm cố định Câu 5: Cho x,y,z; xy + yz + zx = x + y + z = -1 Hãy tính giá trị của: B= xy zx xyz + + z y x Đáp án Câu 1: a) - Điều kiện xác định D - Rút gọn D a b ab a + 2b a a + b + ab : ab ab D= D= a a +1 b) a = 2+ Vậy D = = 2(2 + = ( + 1) a = + 1 2+2 32 = +1 3 c) áp dụng bất đẳng thức cauchy ta có a a +1 D Vậy giá trị D 1 Câu 2: a) m = -1 phơng trình (1) x + x = x + x = x = 10 x = + 10 b) Để phơng trình có nghiệm 8m + m m + 4m ( ) + Để phơng trình có nghiệm khác m1 * m2 + x + x = 1 + + = x1 + x2 ( x1 + x )( x1 x 1) = x1 x x1 x = ( ) * m = m = m = 19 m + 8m = m = + 19 Kết hợp với điều kiện (*)và (**) ta đợc m = m = 19 Câu 3: + S ABI = AI cSin ; A + S AIC = AI bSin ; 2 + S ABC = bcSin ; S ABC = S ABI + S AIC bcSin = AISin a (b + c ) 2bcCos B 2 I b C c bcSin = b+c Sin (b + c) Câu 4: a) N = N Gọi Q = NP (O) ) ) Suy Q cố định QA = QB b) A1 = M (= A ) Tứ giác ABMI nội tiếp AI = c) Trên tia đối QB lấy điểm F cho QF = QB, F cố định Tam giác ABF có: AQ = QB = QF ABF vuông A B = 45 AFB = 45 Lại có P1 = 45 AFB = P1 Tứ giác APQF nội tiếp AP F = AQ F = 90 Ta có: AP F + AP M = 90 + 90 = 180 M1,P,F Thẳng hàng 1 =2 Câu 5: Biến đổi B = xyz + + = = xyz xyz y z x N 2 A M I 1 P Q F Đề 13 Bài 1: Cho biểu thức A = x 4( x 1) + x + 4( x 1) x 1ữ x 4( x 1) a) Tìm điều kiện x để A xác định B b) Rút gọn A Bài : Trên mặt phẳng tọa độ cho hai điểm A(5; 2) B(3; -4) a) Viết phơng tình đờng thẳng AB b) Xác định điểm M trục hoành để tam giác MAB cân M Bài : Tìm tất số tự nhiên m để phơng trình ẩn x sau: x - m2 x + m + = có nghiệm nguyên Bài : Cho tam giác ABC Phân giác AD (D BC) vẽ đờng tròn tâm O qua A D đồng thời tiếp xúc với BC D Đờng tròn cắt AB AC lần lợt E F Chứng minh a) EF // BC b) Các tam giác AED ADC; àD ABD tam giác đồng dạng c) AE.AC = à.AB = AC2 Bài : Cho số dơng x, y thỏa mãn điều kiện x2 + y2 x3 + y4 Chứng minh: x + y3 x + y2 x + y Đáp án Bài 1: a) Điều kiện x thỏa mãn x x 4( x 1) x + 4( x 1) x 4( x 1) > x x x x x > x KL: A xác định < x < x > b) Rút gọn A A= ( x 1)2 + ( x + 1)2 x x ( x 2) x 1 + x +1 x x x Với < x < A= x A= Với x > A= Kết luận x Với < x < A = Với x > A = x x Bài 2: a) A B có hoành độ tung độ khác nên phơng trình đờng thẳng AB có dạng y = ax + b A(5; 2) AB 5a + b = B(3; -4) AB 3a + b = -4 Giải hệ ta có a = 3; b = -13 Vậy phơng trình đờng thẳng AB y = 3x - 13 b) Giả sử M (x, 0) xx ta có MA = ( x 5)2 + (0 2)2 MB = ( x 3)2 + (0 + 4)2 Bài 3: MAB cân MA = MB ( x 5)2 + = ( x 3)2 + 16 (x - 5)2 + = (x - 3)2 + 16 x=1 Kết luận: Điểm cần tìm: M(1; 0) Phơng trình có nghiệm nguyên = m4 - 4m - số phơng Ta lại có: m = 0; < loại m = = = 22 nhận m 2m(m - 2) > 2m2 - 4m - > - (2m2 - 2m - 5) < < + 4m + Bài 4: A m4 - 2m + < < m4 (m2 - 1)2 < < (m2)2 không phơng Vậy m = giá trị cần tìm F E ằ ã ã a) EAD = EFD (= sd ED ) (0,25) ã ã ằ ) (0,25) FAD = FDC (= sd FD ã ã ã ã mà EDA (0,25) = FAD EFD = FDC B D EF // BC (2 góc so le nhau) ằ = DF ằ b) AD phân giác góc BAC nên DE 1 ã ẳ DF ằ ) = sđ AE ằ = sđ ADE ã sđ ACD = sđ( AED 2 ã ã ã ã ACD EAD = ADE = DAC D ADC (g.g) ằ ã ẳ DF ằ ) = (sd AFD ẳ DE ằ ) = sd ABD ã ã ã Tơng tự: sđ ADF ADF = sd AF = sd ( AFD = ABD 2 AFD ~ (g.g c) Theo trên: + AED ~ DB AE AD = hay AD2 = AE.AC (1) AD AC AD AF = + ADF ~ ABD AB AD AD2 = AB.AF (2) Từ (1) (2) ta có AD2 = AE.AC = AB.AF Bài (1đ): Ta có (y2 - y) + 2y3 y4 + y2 (x3 + y2) + (x2 + y3) (x2 + y2) + (y4 + x3) mà x3 + y4 x2 + y3 x3 + y3 x2 + y2 (1) + Ta có: x(x - 1)2 0: y(y + 1)(y - 1)2 x(x - 1)2 + y(y + 1)(y - 1)2 x3 - 2x2 + x + y4 - y3 - y2 + y (x2 + y2) + (x2 + y3) (x + y) + (x3 + y4) mà x2 + y3 x3 + y4 x2 + y2 x + y (2) (x + 1)(x - 1) (y - 1)(y3 -1) x - x - x + + y - y - y3 + (x + y) + (x2 + y3) + (x3 + y4) mà x2 + y3 x3 + y4 x+y2 C Từ (1) (2) (3) ta có: x + y3 x + y2 x + y Đề 14 Câu 1: x- cho A= 4(x-1) + x+ 4(x-1) (1- x2- 4(x-1) x-1 ) a/ rút gọn biểu thức A b/ Tìm giá trị nguyên x để A có giá trị nguyên Câu 2: Xác định giá trị tham số m để phơng trình x2-(m+5)x-m+6 =0 Có nghiệm x1 x2 thoã mãn điều kiện sau: a/ Nghiệm lớn nghiệm đơn vị b/ 2x1+3x2=13 Câu 3Tìm giá trị m để hệ phơng trình mx-y=1 m3x+(m2-1)y =2 vô nghiệm, vô số nghiệm Câu 4: tìm max biểu thức: x2+3x+1 x2+1 Câu 5: Từ đỉnh A hình vuông ABCD kẻ hai tia tạo với góc 45 Một tia cắt cạnh BC E cắt đờng chéo BD P Tia cắt cạnh CD F cắt đờng chéo BD Q a/ Chứng minh điểm E, P, Q, F C nằm đờng tròn b/ Chứng minh rằng: SAEF=2SAQP c/ Kẻ trung trực cạnh CD cắt AE M tính số đo góc MAB biết CPD=CM hớng dẫn Câu 1: a/ Biểu thức A xác định x2 x>1 A= = x- -1 + x-2 ( x-1 -1)2+ ( x-1 (x-2)2 x-1 + x- 2 x- = x-1 x-1 +1)2 = ( x-2 x-1 ) x-1 b/ Để A nguyên x- ớc dơng * x- =1 x=0 loại * x- =2 x=5 với x = A nhận giá trị nguyên Câu 2: Ta có x = (m+5)2-4(-m+6) = m2+14m+10 để phơng trìnhcó hai nghiệmphân biệt vàchỉ m-7-4 m-7+4 (*) a/ Giả sử x2>x1 ta có hệ x2-x1=1 (1) x1+x2=m+5 (2) x1x2 =-m+6 (3) Giải hệ tađợc m=0 m=-14 thoã mãn (*) b/ Theo giả thiết ta có: 2x1+3x2 =13(1) x1+x2 = m+5(2) x1x2 =-m+6 (3) giải hệ ta đợc m=0 m= Thoả mãn (*) Câu 3: *Để hệ vô nghiệm m/m3=-1/(m2-1) 1/2 3m3-m=-m3 3m2-1-2 m2(4m2- 1)=0 3m2-1 m=0 m=1/2 m m=0 m=1/2 *Hệvô số nghiệm thì: m/m3=-1/(m2-1) =1/2 3m3-m=-m3 m=0 3m -1= -2 m=1/2 Vô nghiệm Không có giá trị m để hệ vô số nghiệm Câu 4: Hàm số xác định với x(vì x2+10) x2+3x+1 gọi y0 giá trịcủa hàmphơng trình: y0= x2+1 (y0-1)x2-6x+y0-1 =0 có nghiệm *y0=1 suy x = y 1; =9-(y0-1)20 -2 y0 Vậy: ymin=-2 y max=4 Câu 5: ( Học sinh tự vẽ hình) A Giải a/ A1 B1 nhìn đoạn QE dới góc 45 tứ giác ABEQ nội tiếp đợc FQE = ABE =1v chứng minh tơng tự ta có FBE = 1v Q, P, C nằm đờng tròn đờng kinh EF b/ Từ câu a suy AQE vuông cân AE AQ = 2 B M P E Q vuông cân D F (2) từ (1) (2) AQP ~ AEF (c.g.c) S AEF = ( )2 hay SAEF = 2SAQP S AQP c/ Để thấy CPMD nội tiếp, MC=MD APD= CPD MCD= MPD= APD= CPD= CMD MD=CD MCD MPD=600 mà MPD góc ABM ta có APB=450 MAB=600-450=150 Đề 15 Bài 1: (1) tơng tự APF AF = AB (y0-1)2 suy Cho biểu thức M = x x5 x +6 + x +1 x + a Tìm điều kiện x để M có nghĩa rút gọn M b Tìm x để M = x+3 x C c Tìm x Z để M Z 2: a) Tìm x, y nguyên dơng thoã mãn phơng trình 3x2 +10 xy + 8y2 =96 b)tìm x, y biết / x - 2005/ + /x - 2006/ +/y - 2007/+/x- 2008/ = 1 + + =4 y x z 1 Chứng ming rằng: + + 2x + y + z x + 2y + z x + y + 2z Bài 3: a Cho số x, y, z dơng thoã mãn b Tìm giá trị nhỏ biểu thức: B = x x 2+ 2006 (với x ) x Bài 4: Cho hình vuông ABCD Kẻ tia Ax, Ay cho xA y = 45 Tia Ax cắt CB BD lần lợt E P, tia Ay cắt CD BD lần lợt F Q Chứng minh điểm E; P; Q; F; C nằm đờng tròn a APQ b S AEF = S Kẻ đờng trung trực CD cắt AE M Tính số đo góc MAB biết CP D = CM D Bài 5: (1đ) 1 + + =0 a b c Cho ba số a, b , c khác thoã mãn: ; Hãy tính P = ac bc ac + + c2 a2 b2 đáp án Bài 1:M = x x5 x +6 + x +1 x a.ĐK x 0; x 4; x Rút gọn M = + x +3 x 0,5đ x Biến đổi ta có kết quả: M = ( x )( ) ( )( x + x + x +1 x x ( )( x x ( x b M = ( x )( x ) ) M= ( ( x )( x 3)( x +1 ) )M = x 2) x x +1 x =5 x +1= x ) x + = x 15 16 = x 16 x= = x = 16 c M = x +1 x = x 3+ x = 1+ x Do M z nên x ớc x nhận giá trị: -4; -2; -1; 1; 2; x {1;4;16;25;49} x x {1;16;25;49} Bài a 3x2 + 10xy + 8y2 = 96 < > 3x2 + 4xy + 6xy + 8y2 = 96 < > (3x2 + 6xy) + (4xy + 8y2) = 96 < > 3x(x + 2y) + 4y(x +2y) = 96 < > (x + 2y)(3x + 4y) = 96 Do x, y nguyên dơng nên x + 2y; 3x + 4y nguyen dơng 3x + 4y > x + 2y mà 96 = 25 có ớc là: 1; 2; 3; 4; 6; 8; 12; 24; 32; 48; 96 đợc biểu diễn thành tích thừa số không nhỏ là: 96 = 3.32 = 4.24 = 16 = 12 Lại có x + 2y 3x + 4y có tích 96 (Là số chẵn) có tổng 4x + 6y số chẳn x + y = Hệ PT vô nghiệm x + y = 24 x + y = x = x + y = 16 y = Hoặc x + y = Hệ PT vô nghiệm 3x + y = 12 Hoặc Vậy cấp số x, y nguyên dơng cần tìm (x, y) = (4, 1) b ta có /A/ = /-A/ AA Nên /x - 2005/ + / x - 2006/ = / x - 2005/ + / 2008 - x/ / x 2005 + 2008 x / / / = (1) mà /x - 2005/ + / x - 2006/ + / y - 2007/ + / x - 2008/ = Kết hợp (1 (2) ta có / x - 2006/ + / y - 2007/ / x 2006 / = x = 2006 / y 2007 / = y = 2007 (3) sảy Bài a Trớc hết ta chứng minh bất đẳng thức phụ b Với a, b thuộc R: x, y > ta có a b ( a + b) + (*) x y x+ y < >(a2y + b2x)(x + y) ( a + b ) xy a2y2 + a2xy + b2 x2 + b2xy a2xy + 2abxy + b2xy a2y2 + b2x2 2abxy a2y2 2abxy + b2x2 (ay - bx)2 (**) bất đẳng thức (**) với a, b, x,y > Dấu (=) xảy ay = bx hay a b = x y (2) (3) áp dung bất đẳng thức (*) hai lần ta có 2 2 1 1 1 1 + ữ + ữ + ữ ữ ữ 2 2 4 4 = + = + 2x + y + z 2x + y + z x + y x + z x+ y x+z 2 2 1 1 ữ ữ ữ ữ 1 4 4 + + + = + + ữ x y x z 16 x y z Tơng tự 1 + + ữ x + y + z 16 x y z 1 1 + + ữ x + y + z 16 x y z Cộng vế bất đẳng thức ta có: 1 1 1 1 1 1 + + + + ữ+ + + ữ+ + + ữ x + y + z x + y + z x + y + z 16 x y z 16 x y z 16 x y z 4 4 1 1 + + ữ + + ữ = 16 x y z 16 x y z Vì 1 + + =4 x y z x x + 2006 B= ( x 0) x2 Ta có: B = x x + 2006 2006 x 2.2006 x + 2006 B= 2006 x x2 B= ( x 2006) + 2005 x x2 ( x 2006) + 2005 + 2005 2006 x 2006 Vì (x - 2006)2 với x x2 > với x khác ( x 2006 ) 2005 2005 B= khix = 2006 2006 x 2006 2006 ) ) ) Bài 4a EBQ = EAQ = 450 Y EBAQ nội tiếp; B = 900 góc AQE = 900 gócEQF B = 900 Tơng tự góc FDP = góc FAP = 450 Tứ giác FDAP nội tiếp góc D = 900 góc APF = 900 góc EPF = 900 0,25đ Các điểm Q, P,C nhìn dới 1góc900 nên điểm E, P, Q, F, C nằm đờng tròn đờng kính EF 0,25đ góc APQ = góc AFE b Ta có góc APQ + góc QPE = 1800 (2 góc kề bù) Góc AFE + góc EPQ = 1800 Tam giác APQ đồng dạng với tam giác AEF (g.g) S APQ S AEF =k = ữ = SAPQ = S AEE 2 c góc CPD = góc CMD tứ giác MPCD nội tiếp góc MCD = góc CPD (cùng chắn cung MD) Lại có góc MPD = góc CPD (do BD trung trực AC) góc MCD = góc MDC (do M thuộc trung trực DC) góc CPD = gócMDC = góc CMD = gócMCD tam giác MDC góc CMD = 600 tam giác DMA cân D (vì AD = DC = DM) Và góc ADM =gócADC gócMDC = 900 600 = 300 góc MAD = góc AMD (1800 - 300) : = 750 gócMAB = 900 750 = 150 Bài 5Đặt x = 1/a; y =1/b; z = 1/c x + y + z = (vì 1/a = 1/b + 1/c = 0) x = -(y + z) x3 + y3 + z3 xyz = -(y + z)3 + y3 3xyz -( y3 + 3y2 z +3 y2z2 + z3) + y3 + z3 3xyz = - 3yz(y + z + x) = - 3yz = Từ x3 + y3 + z3 3xyz = x3 + y3 + z3 = 3xyz 1/ a3 + 1/ b3 + 1/ c3 1/ a3 1/ b3 1/ c3 = 3/abc Do P = ab/c2 + bc/a2 + ac/b2 = abc (1/a3 + 1/b3+ 1/c3) = abc.3/abc = 1/a + 1/b + 1/c =o P = ab/c2 + bc/a2 + ac/b2 = Đề 16 Bài 1Cho biểu thức A = ( x 3) + 12 x + x2 ( x + 2) x a Rút gọn biểu thức A b Tìm giá trị nguyên x cho biểu thức A có giá trị nguyên Bài 2: (2 điểm) Cho đờng thẳng: y = x-2 (d1) y = 2x (d2) y = mx + (m+2) (d3) a Tìm điểm cố định mà đờng thẳng (d3 ) qua với giá trị m b Tìm m để ba đờng thẳng (d1); (d2); (d3) đồng quy Bài 3: Cho phơng trình x2 - 2(m-1)x + m - = (1) a Chứng minh phơng trình có nghiệm phân biệt b Tìm hệ thức liên hệ hai nghiệm phơng trình (1) mà không phụ thuộc vào m c Tìm giá trị nhỏ P = x21 + x22 (với x1, x2 nghiệm phơng trình (1)) Bài 4: Cho đờng tròn (o) với dây BC cố định điểm A thay đổi vị trí cung lớn BC cho AC>AB AC > BC Gọi D điểm cung nhỏ BC Các tiếp tuyến (O) D C cắt E Gọi P, Q lần lợt giao điểm cặp đờng thẳng AB với CD; AD CE a Chứng minh DE// BC b Chứng minh tứ giác PACQ nội tiếp c Gọi giao điểm dây AD BC F Chứng minh hệ thức: Bài 5: 1 = + CQ CE CE Cho số dơng a, b, c Chứng minh rằng: < a b c + + y = y = Vậy N(-1; 2) điểm cố định mà (d3) qua b Gọi M giao điểm (d1) (d2) Tọa độ M nghiệm hệ y = x x = => y = 2x y = Vậy M (2; 0) Nếu (d3) qua M(2,0) M(2,0) nghiệm (d3) Ta có : = 2m + (m+2) => m= - (d1); (d2); (d3) đồng quy 3 Bài 3: a ' = m2 3m + = (m - )2 + >0 m Vậy m = - Vậy phơng trình có nghiệm phân biệt x1 + x2 = 2(m 1) x + x = 2m => x1 x2 = m x1 x2 = 2m b Theo Viét: x1+ x2 2x1x2 = không phụ thuộc vào m a P = x12 + x12 = (x1 + x2)2 - 2x1x2 = 4(m - 1)2 (m-3) = (2m VậyPmin = 15 15 ) + m 4 15 với m = 4 Bài 4: Vẽ hình viết giả thiết kết luận 1 a Sđ CDE = Sđ DC = Sđ BD = BCD 2 => DE// BC (2 góc vị trí so le) sđ (AC - DC) = AQC APQC nội tiếp (vì APC = AQC b APC = => nhìn đoan AC) c.Tứ giác APQC nội tiếp CPQ = CAQ (cùng chắn cung CQ) CAQ = CDE (cùng chắn cung DC) Suy CPQ = CDE => DE// PQ DE CE = (vì DE//PQ) (1) PQ CQ QE DE = (vì DE// BC) (2) QC FC DE DE CE + QE CQ + = = =1 Cộng (1) (2) : PQ FC CQ CQ Ta có: => 1 + = PQ FC DE (3) ED = EC (t/c tiếp tuyến) từ (1) suy PQ = CQ 1 + = CQ CF CE a a Bài 5:Ta có: < a+b+c b+a Thay vào (3) : < a+c a+b+c (1) b b b+a < < a+b+c b+c a+b+c c c c+b < < a+b+c c+a a+b+c Cộng vế (1),(2),(3) : 1< a b c + + [...]... Vậy đờng thẳng AB là y = 2x + 4 Điểm C(1;1) có toạ độ không thoả mãn y = 2x + 4 nên C không thuộc đờng thẳng AB A, B, C không thẳng hàng Điểm D(-3;2) có toạ độ thoả mãn y = 2x + 4 nên điểm D thuộc đờng thẳng AB A,B,D thẳng hàn b.Ta có : AB2 = (-2 0)2 + (0 4)2 =20 AC2 = (-2 1)2 + (0 1)2 =10 BC2 = (0 1)2 + (4 1)2 = 10 AB2 = AC2 + BC2 ABC vuông tại C 1 10 10 = 5 ( đơn vị diện tích ) 2 Câu 3: Đkxđ... minh rằng pt luôn luôn có nghiệm với m b Gọi x1 , x 2 là hai nghiệm của pt Tìm GTLN, GTNN của bt P= 2 x1 x 2 + 3 x1 + x 2 + 2( x1 x 2 + 1) 2 2 Câu 3 : Cho x 1, y 1 Chứng minh 1 1 2 + 2 2 1 + xy 1+ x 1+ y Câu 4 Cho đờng tròn tâm o và dây AB M là điểm chuyển động trên đờng tròn, từM kẻ MH AB (H AB) Gọi E và F lần lợt là hình chiếu vuông góc của H trên MA và MB Qua M kẻ đờng thẳng vuông góc với è... => x = 2/3 P A E B O H C a) Do HA // PB (Cùng vuông góc với BC) b) nên theo định lý Ta let áp dụng cho tam giác CPB ta có EH CH ; = PB CB (1) Mặt khác, do PO // AC (cùng vuông góc với AB) => POB = ACB (hai góc đồng vị) AHC POB => Do đó: AH CH = PB OB (2) Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trug điểm của AH b) Xét tam giác vuông BAC, đờng cao AH ta có AH2 = BH.CH = (2R - CH).CH... + x - 2 = 0 Câu 4 Do HA // PB (Cùng vuông góc với BC) a) nên theo định lý Ta let áp dụng cho CPB ta có EH CH ; = PB CB : => x = 2/3 P A E (1) B O H C Mặt khác, do PO // AC (cùng vuông góc với AB) => POB = ACB (hai góc đồng vị) => AHC POB Do đó: AH CH = PB OB (2) Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của AH b) Xét tam giác vuông BAC, đờng cao AH ta có AH2 = BH.CH... tròn (O) đờng kính AB và một điểm N di động trên một nửa đờng tròn sao cho NA NB Vễ vào trong đờng tròn hình vuông ANMP a) Chứng minh rằng đờng thẳng NP luôn đi qua điểm cố định Q b) Gọi I là tâm đờng tròn nội tiếp tam giác NAB Chứng minh tứ giác ABMI nội tiếp c) Chứng minh đờng thẳng MP luôn đi qua một điểm cố định Câu 5: Cho x,y,z; xy + yz + zx = 0 và x + y + z = -1 Hãy tính giá trị của: B= xy zx... = 2x 4 (d2) y = mx + (m+2) (d3) a Tìm điểm cố định mà đờng thẳng (d3 ) luôn đi qua với mọi giá trị của m b Tìm m để ba đờng thẳng (d1); (d2); (d3) đồng quy Bài 3: Cho phơng trình x2 - 2(m-1)x + m - 3 = 0 (1) a Chứng minh phơng trình luôn có 2 nghiệm phân biệt b Tìm một hệ thức liên hệ giữa hai nghiệm của phơng trình (1) mà không phụ thuộc vào m c Tìm giá trị nhỏ nhất của P = x21 + x22 (với x1, x2... x để A = 3 Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC a) Chứng minh rằng PC cắt AH tại trung điểm E của AH b) Giả sử PO = d Tính AH theo R và d Câu 5: Cho phơng trình 2x2 + (2m - 1)x + m - 1 = 0 Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x 1; x2 thỏa mãn: 3x1 - 4x2 = 11 đáp án Câu 1a)... x để A = 3 Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC a) Chứng minh rằng PC cắt AH tại trung điểm E của AH b) Giả sử PO = d Tính AH theo R và d Câu 5: Cho phơng trình 2x2 + (2m - 1)x + m - 1 = 0 Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x 1; x2 thỏa mãn: 3x1 - 4x2 = 11 đáp án Câu 1... (3) Giải hệ tađợc m=0 và m=-14 thoã mãn (*) b/ Theo giả thi t ta có: 2x1+3x2 =13(1) x1+x2 = m+5(2) x1x2 =-m+6 (3) giải hệ ta đợc m=0 và m= 1 Thoả mãn (*) Câu 3: *Để hệ vô nghiệm thì m/m3=-1/(m2-1) 1/2 3m3-m=-m3 3m2-1-2 m2(4m2- 1)=0 3m2-1 m=0 m=1/2 m m=0 m=1/2 *Hệvô số nghiệm thì: m/m3=-1/(m2-1) =1/2 3m3-m=-m3 m=0 2 3m -1= -2 m=1/2 Vô nghiệm Không có giá trị nào của m để hệ vô số nghiệm Câu 4: Hàm số... cùng nhìn đoạn QE dới một góc 45 tứ giác ABEQ nội tiếp đợc FQE = ABE =1v chứng minh tơng tự ta có FBE = 1v Q, P, C cùng nằm trên đờng tròn đờng kinh EF b/ Từ câu a suy ra AQE vuông cân AE AQ = 2 2 B M 1 P E Q cũng vuông cân D F (2) từ (1) và (2) AQP ~ AEF (c.g.c) S AEF = ( 2 )2 hay SAEF = 2SAQP S AQP c/ Để thấy CPMD nội tiếp, MC=MD và APD= CPD MCD= MPD= APD= CPD= CMD MD=CD MCD đều MPD=600 ... b = 4; a = Vậy đờng thẳng AB y = 2x + Điểm C(1;1) có toạ độ không thoả mãn y = 2x + nên C không thuộc đờng thẳng AB A, B, C không thẳng hàng Điểm D(-3;2) có toạ độ thoả mãn y = 2x + nên điểm... đờng tròn tâm O đờng kính AB CD vuông góc với nhau, lấy điểm I đoan CD a) Tìm điểm M tia AD, điểm N tia AC cho I lag trung điểm MN b) Chứng minh tổng MA + NA không đổi c) Chứng minh đờng tròn ngoại... b) Kẻ MK // AC ta có : INC = IMK (g.c.g) => CN = MK = MD (vì MKD vuông cân) Vậy AM+AN=AM+CN+CA=AM+MD+CA => AM = AN = AD + AC không đổi A c) Ta có IA = IB = IM = IN Vậy đờng tròn ngoại tiếp AMN

Ngày đăng: 08/11/2015, 04:03

TỪ KHÓA LIÊN QUAN

w