1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo chuyển đổi file ảnh sang file văn bản

31 742 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 707,67 KB

Nội dung

Rút trích văn bản từ tập tin hình ảnh đang là một trong những bài toán quan trọng trong xử l‎ ý ảnh hiện nay. Trong bài báo này, chúng tôi bước đầu tìm hiểu các phương pháp trích lọc văn bản từ hình ảnh của một số công trình liên quan đồng thời cũng tìm hiểu, hiệu chỉnh công cụ mã nguồn mở Tesseract để thực hiện trích lọc văn bản tiếng Anh từ tập tin hình ảnh. Kết quả thử nghiệm bước đầu cho thấy công cụ này rút trích khá tốt các văn bản từ tập tin hình ảnh chứa văn bản được đánh máy.

LỜI CẢM ƠN Em xin chân thành cảm ơn các thầy, cô giáo trong Khoa Công nghệ thông tin, trường Đại học Điện Lực, đã tạo điều kiện cho em thực hiện đề tài này. Xin cảm ơn cô giáo Ts. Nguyễn Thị Thu Hà đã tận tình hướng dẫn, chỉ bảo nhóm em trong suốt thời gian thực hiện đề tài. Trong thời gian được làm việc với thầy, em không những học hỏi được nhiều kiến thức bổ ích mà còn học được tinh thần làm việc, thái độ nghiên cứu khoa học nghiêm túc của thầy. Xin gửi lời cảm ơn chân thành đến gia đình, và bè bạn vì đã luôn là nguồn động viên to lớn, giúp đỡ em vượt qua những khó khăn trong suốt quá trình học tập. Mặc dù đã cố gắng hoàn thiện đồ án với tất cả sự nỗ lực của bản thân, nhưng chắc chắn không thể tránh khỏi những thiếu sót. Kính mong quý Thầy Cô tận tình chỉ bảo. Một lần nữa, em xin chân thành cảm ơn và luôn mong nhận được sự đóng góp quý báu của tất cả mọi người Hà Nội, tháng 12 năm 2014 Sinh viên thực hiện NHẬN XÉT ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· ········································································································· MỤC LỤC DANH MỤC HÌNH DANH MỤC BẢNG CHƯƠNG 1: TỔNG QUAN VỀ HỌC MÁY 1.1. Giới Thiệu Về Học Máy Học máy, có tài liệu gọi là Máy học, (tiếng Anh: machine learning) là một lĩnh vực của trí tuệ nhân tạo liên quan đến việc phát triển các kĩ thuật cho phép các máy tính có thể "học". Cụ thể hơn, học máy là một phương pháp để tạo ra các chương trình máy tính bằng việc phân tích các tập dữ liệu. Học máy có liên quan lớn đến thống kê, vì cả hai lĩnh vực đều nghiên cứu việc phân tích dữ liệu, nhưng khác với thống kê, học máy tập trung vào sự phức tạp của các giải thuật trong việc thực thi tính toán. Nhiều bài toán suy luận được xếp vào loại bài toán NP-khó, vì thế một phần của học máy là nghiên cứu sự phát triển các giải thuật suy luận xấp xỉ mà có thể xử lí được. Học máy có tính ứng dụng rất cao bao gồm máy truy tìm dữ liệu, chẩn đoán y khoa, phát hiện thẻ tín dụng giả, phân tích thị trường chứng khoán, phân loại các chuỗi DNA, nhận dạng tiếng nói và chữ viết, dịch tự động, chơi trò chơi và cử động rô-bốt (robot locomotion). Học máy có liên quan lớn đến thống kê, vì cả hai lĩnh vực đều nghiên cứu việc phân tích dữ liệu, nhưng khác với thống kê, học máy tập trung vào sự phức tạp của các giải thuật trong việc thực thi tính toán Tương tác với con người Một số hệ thống học máy nỗ lực loại bỏ nhu cầu trực giác của con người trong việc phân tích dữ liệu, trong khi các hệ thống khác hướng đến việc tăng sự cộng tác giữa người và máy. Không thể loại bỏ hoàn toàn tác động của con người vì các nhà thiết kế hệ thống phải chỉ định cách biểu diễn của dữ liệu và những cơ chế nào sẽ được dùng để tìm kiếm các đặc tính của dữ liệu. Học máy có thể được xem là một nỗ lực để tự động hóa một số phần của phương pháp khoa học. Một số nhà nghiên cứu học máy tạo ra các phương pháp bên trong các khuôn khổ của thống kê Bayes. 1.2 Các Loại Giải Thuật Các thuật toán học máy được phân loại theo kết quả mong muốn của thuật toán. Các loại thuật toán thường dùng bao gồm: 4 Học có giám sát -- trong đó, thuật toán tạo ra một hàm ánh xạ dữ liệu vào tới kết quả mong muốn. Một phát biểu chuẩn về một việc học có giám sát là bàitoán phân loại: chương trình cần học (cách xấp xỉ biểu hiện của) một hàm ánh xạ một vector [X1, X2, ..., Xn] tới một vài lớp bằng cách xem xét một số mẫu dữ liệu kết quả của hàm đó. • Học không giám sát -- mô hình hóa một tập dữ liệu, không có sẵn các ví dụ đã được gắn nhãn. • Học nửa giám sát -- kết hợp các ví dụ có gắn nhãn và không gắn nhãn để sinh một hàm hoặc một bộ phân loại thích hợp. • Học tăng cường -- trong đó, thuật toán học một chính sách hành động tùy theo các quan sát về thế giới. Mỗi hành động đều có tác động tới môi trường, và môi trường cung cấp thông tin phản hồi để hướng dẫn cho thuật toán của quá trình học. • Chuyển đổi -- tương tự học có giám sát nhưng không xây dựng hàm một cách rõ ràng. Thay vì thế, cố gắng đoán kết quả mới dựa vào các dữ liệu huấn luyện, kết quả huấn luyện, và dữ liệu thử nghiệm có sẵn trong quá trình huấn luyện. • Học cách học -- trong đó thuật toán học thiên kiến quy nạp của chính mình, dựa theo các kinh nghiệm đã gặp. Phân tích hiệu quả các thuật toán học máy là một nhánh của ngành thống kê, được biết với tên lý thuyết học điện toán. Các chủ đề về học máy Mô hình hóa các hàm mật độ xác suất điều kiện: hồi quy và phân loại o Mạng nơ-ron o Cây quyết định o Lập trình biểu thức gen o Lập trình di truyền o Hồi quy quá trình Gauss o Phân tích biệt thức tuyến tính o k láng giềng gần nhất o Độ dài thông điệp tối thiểu o Cảm tri nguyên o Hàm cơ sở xuyên tâm o Máy hỗ trợ vector • Mô hình hóa các hàm mật độ xác suất qua các mô hình phát sinh: • 5 Thuật toán cực đại kì vọng Các mô hình đồ họa gồm mạng Bayes và mạng Markov Ánh xạ topo phát sinh • Các kỹ thuật suy luận xấp xỉ đúng: o Chuỗi Markov phương pháp Monte Carlo o Phương pháp biến thiên • Tối ưu hóa: hầu hết các phương pháp trên đều sử dụng tối ưu hóa hoặc là các thể hiện của các thuật toán tối ưu hóa. o o o 1.3. Ứng Dụng Học Máy Các ứng dụng Học máy bao gồm: • • • • • Máy truy tìm dữ liệu. Chẩn đoán y khoa. Phát hiện thẻ tín dụng giả. Phân tích thị trường chứng khoán. Phân loại các chuỗi DNA, nhận dạng tiếng nói và chữ viết, dịch tự động, chơi trò chơi và cử động rô-bốt (robot locomotion). 1.4. Các Ví Dụ Học Máy  Bài toán lọc các trang web theo sở thích của một người dung. T: Dự án (để lọc) xem những trang web nào mà một người dùng cụ thể thích đọc. P: Tỷ lệ (%) các trang web được dự đoán đúng. E: Một tập các trang web mà người dùng đã chỉ định là thích đọc và một tập các trang web mà anh ta chỉ định là không thích đọc. 6 Hình 1.1: Lọc các trang web theo sở thích  Bài toán phân loại các trang web theo các chủ đề. T: Phân loại các trang web theo các chủ đề đã định trước. P: Tỷ lệ (%) các trang web được phân loại chính xác. E: Một tập các trang web, trong đó mỗi trang web gắn với một chủ đề. Hình 1.2: Phân loại các trang web theo chủ đề  Bài toán nhận dạng chữ viết tay. T: Nhận dạng và phân loại các từ trong các ảnh chữ viết tay. P: Tỷ lệ (%) các từ được nhận dạng và phân loại đúng. E: Một tập các ảnh chữ viết tay, trong đó mỗi ảnh được gắn với một định danh của một từ. 7 Hình 1.3: Nhận dạng chữ viết tay  Bài toán robot lái xe tự động. T: Robot (được trang bị các camera quan sát) lái xe tự động trên đường cao tốc. P: Khoảng cách trung bình mà robot có thể lái xe tự động trước khi xảy ra lỗi. E: Một tập các ví dụ được ghi lại khi quan sát một người lái xe trên đường cao ốc, trong đó mỗi ví dụ gồm một chuỗi các ảnh và các lệnh điều khiển. Hình 1.4: Robot lái xe tự động 1.5. Học Giám Sát Học có giám sát là một kĩ thuật của ngành học máy để xây dựng một hàm (function) từ dữ liệu huấn luyện. Dữ liệu huấn luyện bao gồm các cặp gồm đối tượng đầu vào (thường dạng vec-tơ), và đầu ra mong muốn. Đầu ra của một hàm có thể là một giá trị liên tục (gọi là hồi qui), hay có thể là dự đoán một nhãn phân loại cho một đối tượng đầu vào (gọi là phân loại). Nhiệm vụ của chương trình học có 8 giám sát là dự đoán giá trị của hàm cho một đối tượng bất kì là đầu vào hợp lệ, sau khi đã xem xét một số ví dụ huấn luyện (nghĩa là, các cặp đầu vào và đầu ra tương ứng). Để đạt được điều này, chương trình học phải tổng quát hóa từ các dữ liệu sẵn có để dự đoán được những tình huống chưa gặp phải theo một cách "hợp lí" (xem thiên kiến qui nạp - inductive bias). So sánh với học không có giám sát Học có giám sát có thể tạo ra 2 loại mô hình. Phổ biến nhất, học có giám sát tạo ra một mô hình toàn cục (global model) để ánh xạ đối tượng đầu vào đến đầu ra mong muốn. Tuy nhiên, trong một số trường hợp, việc ánh xạ được thực hiện dưới dạng một tập các mô hình cục bộ (như trong phương pháp lập luận theo tình huống (case-based reasoning) hay giải thuật láng giềng gần nhất). Để có thể giải quyết một bài toán nào đó của học có giám sát (ví dụ: học để nhận dạng chữ viết tay) người ta phải xem xét nhiều bước khác nhau: Xác định loại của các ví dụ huấn luyện. Trước khi làm bất cứ điều gì, người kĩ sư nên quyết định loại dữ liệu nào sẽ được sử dụng làm ví dụ. Chẳng hạn, đó có thể là một kí tự viết tay đơn lẻ, toàn bộ một từ viết tay, hay toàn bộ một dòng chữ viết tay. Thu thập tập huấn luyện. Tập huấn luyện cần đặc trưng cho thực tế sử dụng của hàm chức năng. Vì thế, một tập các đối tượng đầu vào được thu thập và đầu ra tương ứng được thu thập, hoặc từ các chuyên gia hoặc từ việc đo đạc tính toán. Xác định việc biểu diễn các đặc trưng đầu vào cho hàm chức năng cần tìm. Sự chính xác của hàm chức năng phụ thuộc lớn vào cách các đối tượng đầu vào được biểu diễn. Thông thường, đối tượng đầu vào được chuyển đổi thành một vectơ đặc trưng, chứa một số các đặc trưng nhằm mô tả cho đối tượng đó. Số lượng các đặc trưng không nên quá lớn, do sự bùng nổ tổ hợp (curse of dimensionality); nhưng phải đủ lớn để dự đoán chính xác đầu ra. Xác định cấu trúc của hàm chức năng cần tìm và giải thuật học tương ứng. Ví dụ, người kĩ sư có thể lựa chọn việc sử dụng mạng nơ-ron nhân tạo hay cây quyết định. 9 Hoàn thiện thiết kế. Người kĩ sư sẽ chạy giải thuật học từ tập huấn luyện thu thập được. Các tham số của giải thuật học có thể được điều chỉnh bằng cách tối ưu hóa hiệu năng trên một tập con (gọi là tập kiểm chứng -validation set) của tập huấn luyện, hay thông qua kiểm chứng chéo (cross-validation). Sau khi học và điều chỉnh tham số, hiệu năng của giải thuật có thể được đo đạc trên một tập kiểm tra độc lập với tập huấn luyện. 1.6. Học Không Giám Sát Học không có giám sát (tiếng Anh là unsupervised learning) là một phương pháp của ngành học máy nhằm tìm ra một mô hình mà phù hợp với các quan sát. Nó khác biệt với học có giám sát ở chỗ là đầu ra đúng tương ứng cho mỗi đầu vào là không biết trước. Trong học không có giám sát, một tập dữ liệu đầu vào được thu thập. Học không có giám sát thường đối xử với các đối tượng đầu vào như là một tập các biến ngẫu nhiên. Sau đó, một mô hình mật độ kết hợp sẽ được xây dựng cho tập dữ liệu đó. Học không có giám sát có thể được dùng kết hợp với suy diễn Bayes (Bayesian inference) để cho ra xác suất có điều kiện (nghĩa là học có giám sát) cho bất kì biến ngẫu nhiên nào khi biết trước các biến khác. Học không có giám sát cũng hữu ích cho việc nén dữ liệu: về cơ bản, mọi giải thuật nén dữ liệu hoặc là dựa vào một phân bố xác suất trên một tập đầu vào một cách tường minh hay không tường minh. Một dạng khác của học không có giám sát là phân mảnh (data clustering), nó đôi khi không mang tính xác suất. Xem thêm phân tích khái niệm hình thức (formal concept analysis). 10 CHƯƠNG 2: BỘ NHẬN DẠNG KÝ TỰ QUANG HỌC TESSERACT 2.1. Giới Thiệu Về Bộ Nhận Dạng Ký Tự Quang Học Tesseract 2.1.1. Lịch sư Tesseract là một phần mềm mã nguồn mở và ban đầu nó được nghiên cứu và phát triển tại hãng Hewlett Packet (HP) trong khoảng từ năm 1984 đến 1994. Vào năm 1995, Tesseract nằm trong nhóm ba bộ nhận dạng OCR đứng đầu về độ chính xác khi tham gia trong hội nghị thường niên của tổ chức UNLV. Lúc mới khởi động thì Tesseract là một dự án nghiên cứu tiến sĩ tại phòng thí nghiệm HP ở Bristol và đã được tích hợp vào trong các dòng máy quét dạng phẳng của hãng dưới dạng các add-on phần cứng hoặc phần mềm. Nhưng thực tế dự án này đã thất bại ngay từ trong trứng nước vì nó chỉ làm việc hiệu quả trên các tài liệu in có chất lượng tốt. Sau đó, dự án này cùng với sự cộng tác của bộ phận máy quét HP ở bang Colorado đã đạt được một bước tiến quan trọng về độ chuẩn xác khi nhận dạng và vượt lên nhiều bộ nhận dạng OCR thời đó nhưng dự án đã không thể trở thành sản phẩm hoàn chỉnh vì độ cồng kềnh và phức tạp. Sau đó, dự án được đưa về phòng thí nghiệm của HP để nghiên cứu về cách thức nén và tối ưu mã nguồn. Dự án tập trung cải thiện hiệu năng làm việc của Tesseract dựa trên độ chính xác đã có. Dự án này được hoàn tất vào cuối năm 1994 và sau đó vào năm 1995 bộ Tesseract được gửi đi tham dự hội nghị UNLV thường niên về độ chính xác của OCR, vượt trội hơn hẳn so với các phần mềm OCR lúc bấy giờ. Tuy nhiên, Tesseract đã không thể trở thành một sản phẩm thương mại hoàn chỉnh được và vào năm 2005, HP đã chuyển Tesseract sang mã nguồn mở và được hãng Google tài trợ. Tesseract cho đến nay vẫn được nhiều nhà phát triển cộng tác và tiếp tục hoàn thiện. Phiên bản mới nhất của bộ nhận dạng Tesseract là phiên bản 3.0.1. Phần mềm thương mại Bộ nhận dạng Tesseract Hỗ trợ hơn 100 ngôn ngữ Hỗ trợ trên 40 ngôn ngữ và đang tăng dần Có giao diện đồ họa Không hỗ trợ giao diện đồ họa (dùng 11 Command Line để gõ lệnh) Hầu hết chỉ hỗ trợ trên nền tảng Hỗ trợ trên Windows, Linux, Mac OS Windows Độ chính xác cao mới đây Độ chính xác cao từ năm 1995 Chi phí khá cao 130$ - 500 $ Hoàn toàn miễn phí (mã nguồn mở) Bảng 2.1: So sánh phần mềm thương mại và Tesseract Vì Tesseract hiện nay là bộ thư viện mã nguồn mở hoàn toàn miễn phí nên trên thế giới đã có nhiều phần mềm nhận dạng ký tự quang học ra đời dựa trên bộ Tesseract với giao diện và các tính năng dễ sử dụng hơn so với giao diện đơn giản của Tesseract ban đầu như: VietOCR cho nhận dạng tiếng Việt, Tessenet2 bộ nhận diện Tesseract trên nền .Net của Microsoft, giao diện Java (Java GUI frontend) cho Tesseract… Ngôn ngữ Tổng số ký tự Tổng số từ Lỗi ký tự (triệu) (triệu) (%) Lỗi từ (%) Tiếng Anh 39 4 0.5 3.72 Tiếng Nga 213 26 0.75 5.78 Tiếng Hoa giản 0.25 không xác 3.77 không xác thể định Tiếng Hindi 1.4 0.33 định 15.41 69.44 Bảng 2.2: Độ chính xác của Tesseract trên một số ngôn ngữ 2.1.2. Kiến trúc hoạt động Đầu tiên, bộ nhận diện Tesseract sẽ nhận đầu vào là ảnh màu hoặc ảnh mức xám. Ảnh này sẽ được chuyển đến bộ phận phân tích ngưỡng thích ứng (adaptive thresholding) để cho ra ảnh nhị phân. Vì trước kia HP cũng đã phát triển bộ phận phân tích bố cục trang nên Tesseract không cần phải có thành phần đó và được thừa 12 hưởng từ HP. Vì thế mà Tesseract nhận đầu vào là một ảnh nhị phân với các vùng đa giác tùy chọn đã được xác định. Ban đầu, Tesseract được thiết kế làm việc trên ảnh nhị phân sau đó chương trình được cải tiến để có thể nhận dạng cả ảnh màu và ảnh mức xám. Chính vì thế mà cần bộ phận phân tích ngưỡng thích ứng để chuyển đổi ảnh màu / ảnh mức xám sang ảnh nhị phân. Sau đó quá trình nhận dạng sẽ được thực hiện tuần tự theo từng bước. • Bước đầu tiên là phân tích các thành phần liên thông. Kết quả của bước này sẽ là tạo ra các đường bao quanh các ký tự. • Bước thứ hai là tìm hàng và tìm từ, kết quả của bước này cũng giống như bước trên sẽ tạo ra các vùng bao quanh các hàng chữ và ký tự chứa trong vùng văn bản. • Bước tiếp theo sẽ là nhận dạng từ. Công đoạn nhận dạng từ sẽ được xử lý qua 2 giai đoạn. Giai đoạn đầu sẽ là nhận dạng các từ theo lượt. Các từ thỏa yêu cầu trong giai đoạn này sẽ được chuyển sang bộ phân loại thích ứng (adaptive classifier) để làm dữ liệu huấn luyện. Chính nhờ đó mà bộ phân loại thích ứng sẽ có khả năng nhận diện được chính xác hơn ở phần sau của trang. Sau khi bộ phân loại thích ứng đã học được các thông tin có ích từ giai đoạn đầu khi nhận dạng phần trên của trang thì giai đoạn thứ 2 của việc nhận dạng sẽ được thực hiện. Giai đoạn này sẽ quét hết toàn bộ trang, các từ không được nhận diện chính xác ở giai đoạn đầu sẽ được nhận diện lại lần nữa. Cuối cùng bộ nhận diện sẽ tổng hợp lại các thông tin ở trên và cho ra kết quả nhận diện hoàn chỉnh. 2.1.3. Xác định dòng và từ Xác định dòng : mục đích của bước này là nhận dạng các dòng của các hình ảnh bị nghiêng, giúp giảm sự mất thông tin khi nhận dạng ảnh nghiêng. Các bộ phận quan trọng của quá trình này là lọc dãy màu (còn được gọi là blobs) và xây dựng dòng. Bước này cũng giúp loại bỏ các văn bản có drop-cap. Thiết lập dòng cơ sở: khi dòng văn bản được tìm thấy, các dòng cơ sở được thiết lập chính xác hơn bằng cách sử dụng một đường có tên là spline toàn phương 13 (là dòng mà được kết hợp từ nhiều đoạn). Nó giúp Tesseract xử lý các trang có đường cơ sở là đường cong. Các dòng cơ sở được thiết lập bằng cách phân vùng các blobs thành các nhóm có thể thay thế thích hợp liên tục trong đường cơ sở thẳng ban đầu. Một spline toàn phương được thiết lập cho phân vùng dày đặc nhất, (giả định là đường cơ sở) của một hình có phương ít nhất. Spline có lợi thế là tính toán ổn định, nhược điểm là sự gián đoạn có thể xảy ra khi nhiều phân đoạn spline được yêu cầu. Cắt nhỏ từ : Tesseract sẽ xác định xem có các ký tự dính với nhau trong một từ hay không. Nếu có nó sẽ cắt nhỏ các ký tự ra thành các ký tự riêng lẻ. Nhận dạng khoảng cách giữa chữ hoặc số: xác định khoảng cách giữa các số hoặc giữa các chữ là một vấn đề khá phức tạp. Tesseract giải quyết những vấn đề này bằng cách đo khoảng cách trong một phạm vi hạn chế theo chiều dọc giữa dòng cơ sở và dòng trung bình. Nhận dạng từ : quá trình nhận dạng một từ là quá trình phân tích một từ được chia ra thành các ký tự như thế nào. Khi kết quả xuất ra một từ mà nó không thỏa mãn nhu cầu thì Teseract cố gắng cải thiện kết quả này bằng cách cắt nhỏ các từ có nghĩa không tốt nhất. Nếu việc cắt nhỏ không làm tăng chất lượng từ thì nó sẽ phục hồi lại từ trước đó. 2.1.4. Huấn luyện dữ liệu trên tesseract Tesseract ban đầu được thiết kế để nhận dạng các từ tiếng Anh trên ngôn ngữ hệ Latinh. Sau này, nhờ sự cố gắng của nhiều nhà phát triển mà các phiên bản của Tesseract đã có thể nhận diện các ngôn ngữ khác ngoài hệ Latinh như tiếng Trung, tiếng Nhật và tương thích với các ký tự trong bảng mã UTF-8. Việc nhận dạng các ngôn ngữ mới trên Tesseract có thể thực hiện được nhờ vào việc huấn luyện dữ liệu. Từ phiên bản 3.0 trở đi, Tesseract đã có thể hỗ trợ thêm nhiều dạng ngôn ngữ mới và mở rộng thêm việc huấn luyện theo font chữ. Bởi vì ban đầu, bộ Tesseract được huấn luyện để nhận diện từ chính xác nhất trên một số loại font mặc định, nếu sử dụng các font chữ khác để nhận diện thì có thể kết quả sẽ không có độ chính xác cao khi làm việc với các loại font được cài đặt sẵn trong dữ liệu huấn luyện. Để thực hiện quá trình huấn luyện thì ta phải sử dụng công cụ có sẵn của Tesseract. 14 Mặc định trong luận văn này, sử dụng công cụ Tesseract 3.01 cho việc thực hiện huấn luyện ngôn ngữ và font mới. Để huấn luyện dữ liệu trên Tesseract (hoặc ngôn ngữ mới) thì ta cần một tập các tập tin dữ liệu chứa trong thư mục tessdata, sau đó kết hợp các tập tin này thành tập tin duy nhất. Các tập tin có trong thư mục tessdata có quy tắc đặt tên theo dạng: tên_ngôn_ngữ.tên_tập tin. Ví dụ các tập tin cần thiết khi thực hiện việc huấn luyện tiếng Anh: • • • • • tessdata/eng.config. tessdata/eng.unicharset: Tập ký tự của ngôn ngữ huấn luyện. tessdata/eng.unicharambigs. tessdata/eng.inttemp: Danh mục cho tập hợp các ký tự. tessdata/eng.pffmtable: Tập tin dạng hộp – sử dụng để xác định ký tự có • • • • • • trong tập tin huấn luyện. tessdata/eng.normproto: Như tập tin pffmtable. tessdata/eng.punc-dawg. tessdata/eng.number-dawg. tessdata/eng.freq-dawg: Danh sách các từ tổng quát. tessdata/eng.word-dawg: Danh sách các từ thông thường. tessdata/eng.user-word: Danh sách từ của người dùng (tùy chọn có thể có hoặc không). Bước cuối cùng sẽ tổng hợp dữ liệu từ bước trên và phát sinh ra tập tin dữ liệu duy nhất có dạng: • tessdata/eng.traineddata. Các tập tin cần thiết cho việc huấn luyện dữ liệu sẽ được phát sinh khi ta sử dụng công cụ có sẵn để qua quá trình huấn luyện. 2.1.5. Quá trình huấn luyện ngôn ngữ và font mới Để trải qua quá trình huấn luyện ngôn ngữ hoặc loại font mới trên Tesseract ta cần thực hiện thông qua các giai đoạn sau:  Phát sinh các tập tin hình ảnh cho việc huấn luyện: Đây là bước đầu tiên nhầm xác định tập ký tự sẽ được sử dụng trong việc huấn luyện. Trước hết ta cần chuẩn bị sẵn một tập tin văn bản chứa các dữ liệu huấn 15 luyện (trường hợp cụ thể là một đoạn văn bản). Việc tạo ra tập tin huấn luyện cần theo các quy tắc sau: • Bảo đảm số lần xuất hiện ít nhất của các ký tự trong mẫu từ khoảng 5 đến 10 lần cho một ký tự. • Nên có nhiều mẫu cho các từ xuất hiện thường xuyên, ít nhất là 20 lần. • Các dữ liệu huấn luyện nên được chia theo kiểu font, mỗi tập tin huấn luyện chỉ nên chứa 1 loại font nhưng có thế huấn luyện nhiều loại font cho nhiều tập tin. Không nên kết hợp nhiều loại font trong riêng một tập tin huấn luyện. • Sau khi đã chuẩn bị mẫu văn bản dùng cho việc huấn luyện thì ta cần phát sinh ra ảnh từ tập tin đó. Dùng các phần mềm để chuyển tập tin mẫu văn bản sang dạng tập tin ảnh hoặc in mẫu văn bản sau đó quét thành tập tin hình ảnh dạng .tif với độ phân giải là 300dpi. Tập tin cuối cùng trước khi thực hiện việc huấn luyện là tập tin ảnh dạng .tif.  Tạo các tập tin dạng hộp .box: Một dạng tập tin để Tesseract có thể huấn luyện dựa trên các dữ liệu hình ảnh đã có bước đầu là tập tin dạng hộp – box. Tập tin dạng hộp là tập tin văn bản chứa 1 dãy các ký tự tuần tự từ đầu đến cuối trong tập tin hình ảnh, mỗi hàng chứa thông tin của 1 ký tự, tọa độ và đường bao quanh ký tự đó trong tập tin ảnh. Để tạo ra tập tin dạng hộp ta sẽ dùng cách gõ lệnh (trên Windows là CMD và Linux là Terminal) sau (yêu cầu người dùng phải cài đặt công cụ Tesseract để có thể chạy được các lệnh này): Sau khi thực hiện câu lệnh trên thì ta sẽ tạo ra được các tập tin dạng hộp .box. • Chạy công cụ Tesseract trên máy tính để thực hiện việc huấn luyện dữ liệu. Sau khi được tập tin .box thì chúng ta cần 1 trình chỉnh sửa tập tin dạng hộp để kiểm tra lại và chỉnh sửa lại các thông số của từng ký tự cho khớp với văn bản ban đầu trong tập tin ảnh huấn luyện. Ở đây nhóm em dùng phần mềm jTextBoxEditor để chỉnh sửa trực tiếp tập tin dạng hộp. • Sau khi kiểm tra và chỉnh sửa lại các ký tự cho chính xác trong tập tin dạng hộp thì thực hiện lệnh tiếp theo: 16 Nếu thành công thì tại giai đoạn này, Tesseract sẽ phát sinh ra tập tin .tr  Ước lượng tập ký tự của ngôn ngữ cần huấn luyện: Tesseract cần biết hết các tập ký tự có thể xuất hiện trong dữ liệu. Ta dùng lệnh sau: Sau khi thực hiện, tập tin unicharset sẽ được tạo ra.  Xác định kiểu font trong dữ liệu (từ phiên bản 3.0.1 trở đi): Đây là tính năng mới chỉ có từ phiên bản Tesseract 3.0.1 trở đi. Với tính năng này người dùng có thể huấn luyện dữ liệu với nhiều loại font khác nhau thay vì chỉ có thể dùng các font mặc định sẵn ở các phiên bản trước. Ta cần tạo tập tin font_properties để quy định thông số các kiểu font ta đã sử dụng trong các mẫu văn bản huấn luyện. Cấu trúc của tập tin font_properties là mỗi hàng chứa tên 1 loại font huấn luyện và các đặc tính của font đó: (đánh dấu có thuộc tính bằng bit 1 hoặc không có dùng bit 0). Ví dụ cấu trúc tập tin font_properties với dữ liệu huấn luyện là tiếng Anh:  Gom nhóm dữ liệu: Tại giai đoạn này thì các đường nét khung của ký tự đã được rút trích ra và chúng ta cần gom nhóm lại các dữ liệu ban đầu để tạo ra mẫu thử (prototype). Hình dạng, đường nét của các ký tự sẽ được gom nhóm lại nhờ vào chương trình mftraining và cntraining có sẵn trong công cụ Tesseract: Với lệnh mftraining sẽ tạo ra tập tin dữ liệu: inttemp (chứa hình dạng mẫu), pffmtable và Microfeat nhưng ít khi sử dụng). Cuối cùng dùng công cụ cntraining sẽ tạo ra tập tin dữ liệu normproto.  Tạo tập tin unicharambigs.  Kết hợp các tập tin lại tạo thành tập tin huấn luyện dữ liệu: Cuối cùng sau khi đã có đủ các tập tin huấn luyện cần thiết (inttemp, pffmtable, normproto, Microfeat) thì ta đổi tên các tập tin lại cho đúng dạng với tiền tố lang. trước tên tập tin với lang là 3 ký tự đại diện cho ngôn ngữ huấn luyện theo chuẩn ISO 639-2.Thực hiện lệnh sau: 17 Kết quả là tạo ra tập tin lang.trainedata. Bỏ tập tin này vào thưc mục tessdata của Tesseract thì Tesseract đã có thể nhận diện được ngôn ngữ hoặc font chữ mới (theo lý thuyết). 2.2. Thư Viện Opencv 2.2.1. Giới thiệu về thư viện opencv OpenCV (Open Source Computer Vision) là một thư viện mã nguồn mở về thị giác máy với hơn 500 hàm và hơn 2500 các thuật toán đã được tối ưu về xử lý ảnh, và các vấn đề liên quan tới thị giác máy. OpenCV được thiết kế một cách tối ưu, sử dụng tối đa sứcmạnh của các dòng chip đa l.i… để thực hiện các phép tính toán trong thời gian thực, nghĩa là tốc độ đáp ứng của nó có thể đủ nhanh cho các ứng dụng thông thường. OpenCV là thư viện được thiết kế để chạy trên nhiều nền tảng khác nhau (cross-patform), nghĩa là nó có thể chạy trên hệ điều hành Window, Linux, Mac, iOS … Việc sử dụng thư viện OpenCV tuân theo các quy định về sử dụng phần mềm m. nguồn mở BSD do đó bạn có thể sử dụng thư viện này một cách miễn phí cho cả mục đích phi thương mại lẫn thương mại. Dự án về OpenCV được khởi động từ những năm 1999, đến năm 2000 nó được giới thiệu trong một hội nghị của IEEE về các vấn đề trong thị giác máy và nhận dạng, tuy nhiên bản OpenCV 1.0 mãi tới tận năm 2006 mới chính thức được công bố và năm 2008 bản 1.1 (pre-release) mới được ra đời. Tháng 10 năm 2009, bản OpenCV thế hệ thứ hai ra đời (thường gọi là phiên bản 2.x), phiên bản này có giao diện của C++ (khác với phiên bản trước có giao diện của C) và có khá nhiều điểm khác biệt so với phiện bản thứ nhất. Thư viện OpenCV ban đầu được sự hỗ trợ từ Intel, sau đó được hỗ trợ bở Willow Garage, một phòng thí nghiệm chuyên nghiên cứu về công nghệ robot. Cho đến nay, OpenCV vẫn là thư viện mở, được phát triển bởi nguồn quỹ không lợi nhuận (none -profit foundation) và được sự hưởng ứng rất lớn của cộng đồng. 2.2.2. Phiên bản opencv 1 và opencv 2 Cho tới nay, trải qua hơn 6 năm từ lúc phiên bản OpenCV đầu tiên được công bố, đã có lần lượt nhiều phiên bản OpenCV ra đời, tuy nhiên có thể chia thư viện này thành hai bản chính dựa trên những đặc điểm khác biệt lớn nhất của chúng: 18 phiên bản OpenCV thế hệ thứ nhất (hay còn gọi là phiên bản OpenCV 1.x) và phiên bản OpenCV thứ hai (hay còn gọi là phiên bản OpenCV 2.x). Sau đây ta sẽ chỉ ra một số điểm khác biệt cơ bản giữa hai phiên bản này. • OpenCV 1.x (bao gồm bản 1.0 và bản pre-release 1.1) dựa trên giao diện C, cấu trúc của một ảnh số dựa trên cấu trúc của IplImage, trong khi thư OpenCV 2.x dựa trên giao diện C++, cấu trúc của ảnh số, ma trận dựa trên cấu trúc của cv::Mat. • Trong OpenCV 1.x, người sử dụng phải hoàn toàn quản lý bộ nhớ của các đối tượng, nghĩa là khi một đối tượng mới được tạo ra, ta phải luôn chú . để giải phóng nó khi không còn sử dụng nữa (trong nhiều trường hợp có thể sẽ bị tràn bộ nhớ nếu không chú . đều này), trong khi thư viện OpenCV 2.x việc quản lý bộ nhớ trở nên dễ dàng hơn nhờ các hàm hủy các các lớp đối tượng trong OpenCV 2.x đã thực hiện điều này khi một đối tượng không còn được • sử dụng nữa. Việc viết các dòng lệnh để thực hiện cùng một chức năng trong OpenCV 2.x là dễ dàng hơn nhiều so với OpenCV 1.x, một phần là là giao diện C++ có phần dễ hiểu hơn so với C, một phần là các hàm trong OpenCV 2.x đã được tối ưu hóa nhiều bước trung gian không cần thiết về mặt giao diện người sử • dụng. Thư viện OpenCV 1.x tuy chứa một lượng lớn hàm xử lý và thuật toán, tuy nhiên nó vẫn ở dạng sơ khai. Thư viện OpenCV 2.x đã được bổ xung khá nhiều hàm, thuật toán và được tối ưu khá nhiều đặc biệt trong các khía cạnh về phát hiện đối tượng (detection), nhận dạng đối tượng (partten regconition) và theo dỗi đối tượng (tracking). Hơn thế nữa, tuy có giao diện là C++ nhưng OpenCV 2.x vẫn dữ một phần giao diện C để tương thích với các phiên bản của OpenCV 1.x … Từ một số đặc điểm trên ta có thể thấy rằng thư viện OpenCV phiên bản 2.x là có nhiều điểm nổi trội hơn so với phiên bản 1.x, Tuy nhiên trong một số trường hợp như ở các hệ thống nhúng khi mà trình dịch chỉ đơn thuần chấp nhận ngôn ngữ C thì phiển bản 1.x vẫn còn giá trị. Trong cuốn sách này, các nội dung cài đặt, thuật toán, ứng dụng … chỉ dành cho OpenCV phiên bản 2.x trên nền tảng hệ điều hành 19 Window. OpenCV rất đa dạng, nó hỗ trợ rất nhiểu hệ điểu hành như: Window, Linux và MacOSX. 2.2.3. Những điểm đặc trưng OpenCV có rất nhiều chức năng. Bạn có thể bất ngờ khi lần đầu tiếp xúc với nó. Tuy nhiên, bạn sẽ chỉ cần một vài lần đầu để khởi động nó Sau đây là những tóm tắt cơ bản về hệ thống các về chức năng của các hàm trong OpenCV • Image and Video I/O Những giao diện này sẽ giúp bạn đọc được dự liệu ảnh từ file hoặc trực tiếp từ video. Bạn cũng có thể tạo các file ảnh và video với giao diện này • Thị giác máy và các thuật toán xử lý ảnh ( General computervision and image-processing algorithms(mid – and low level APIs)) Sử dụng những giao diện này, bạn có thể thực hành với rất nhiều chuẩn thị giác máy mà không cần phải có mã nguồn của chúng. • Modul thị giác máy ở cấp độ cao OpenCV gồm một vài tác dụng ở cấp độ cao. Thêm vào nhận dạng mặt, dò tìm, theo dõi. Nó bao gồm luồng thị giác ( sử dụng camera di động để xác định cấu trúc 3D), kích cỡ camera và âm thanh nổi. • AI and machine-learning Các ứng dụng của thị giác máy thường yêu cầu máy móc phải học ( machine learning) hoặc các hình thức trí tuệ nhân tạo khác. Một vài trong số chúng là có sẵn trong gói OpenCV • Lấy mẫu ảnh và phép biến đổi Nó thường rất tốt cho quá trình xử lý một nhóm phần tử ảnh như là một đơn vị. OpenCV bao gồm lấy tách ra, lấy mẫu ngẫu nhiên, phục chế, xoay ảnh, làm cong ảnh ( warping), thay đổi hiệu ứng của ảnh. • 20 Cách thức tạo và phân tích ảnh nhị phân Ảnh nhị phân thường xuyên được dùng trong các hệ thống kiểm tra có khuyết điểm hình dạng hoặc các bộ phận quan trọng. Sự biểu diễn ảnh cũng rất thuận tiện khi chúng ta biết rõ vật thể cần bắt. • Cách thức cho tính toán thông tin 3D ( methods for computing 3D information) Những hàm này rất có ích khi cần sắp xếp và xác định với một khối lập thể (with a stereo rig) hoặc với không gian nhìn phưc tạp ( multiple views) từ một camera riêng. • Các phép toán cho xử lý ảnh, thị giác máy và biểu diễn ảnh( image interpretation) OpenCV sử dụng các phép toán phổ biến như: đại số học, thống kê và tính toán hình học • Đồ họa Những giao diện này giúp bạn viết chữ và vẽ trên hình ảnh. Thêm vào đó những chức năng này được sử dụng nhiểu trong ghi nhãn và đánh dấu. Ví dụ nếu bạn viết một chương trình cần nhận dạng nhiểu đối tượng thì nó sẽ rất có ích cho tạo nhãn ảnh ( label image) với kích thước và vị trí. • Phương thức GUI OpenCV bao gồm cửa sổ giao diện của chính bản thân nó. Trong khi đó những giao diện này được so sánh giới hạn với khả năng có thể thực hiện trong mỗi môi trường. Chúng cung cấp những môi trường API đa phương tiện và đơn giản để hiện thị hình ảnh, cho phép người dùng nhập dữ liệu thông qua chuột , bàn phím và điều khiển quá trính. • Cấu trúc dữ liệu và giải thuật Với những giao diện này bạn có thể giữ lại, tìm kiếm, lưu và cách danh mục điều khiển, các tuyển tập(cũng như các tập hợp lệnh được gọi ), đồ họa và sơ đồ nhánh một cách hiệu quả. • 21 Khả năng tồn tại lâu dài của dữ liệu(Data persistence) Những phương pháp này cung cấp các giao diện một cách thuận lợi để lưu trữ các dạng khác nhau của dữ liệu vào đĩa để có thể khôi phục khi cần thiết. 2.2.4. Cách tổ chức opencv Cấu trúc OpenCV gồm nhiều module. CXCORE bao gồm các dạng dữ liệu cơ bản rõ rang. Ví dụ cấu trúc dự liệu về ảnh, điểm, hình chữ nhật được xác định trong file cxtypes.h. CXCORE chứa các phép toán đại số tuyến tính và thống kê, các hàm lưu trữ lâu dài ( persistence fun…) và các lỗi thao tác. Có điều lạ lung thay là các hàm đồ họa được cho việc vẽ ảnh cũng được lưu trữ tại đây. CV chứa đựng quá trình xử lý ảnh và các phương pháp đánh giá sơ bộ kích thước ảnh. Những hàm tính toán hình học cũng được lưu trữ tại đây. CVAUX được mô tả trong văn bản của OpenCV như là modul cũ và chỉ dùng để thí nghiệm. Tuy nhiên, giao diện đơn giản nhất cho nhận dạng mặt được nằm trong modul này. Những mã nguồn nằm trong module này rất phù hợp cho việc nhận dạng mặt và chúng được sử dụng rộng rãi cho mục đích này. ML chứa đựng giao diện machine- learning: Những hàm còn lại được nằm trong HighGUI và CVCAM. Cả hai đều nẳm ở thư mục có tên “otherlibs”, sử dụng chúng rất dễ gặp lỗi. Vì rằng HighGUI chứa các thư viện vào ra cơ bản , bạn sẽ muốn chắc chắn hơn, đừng bỏ sót nó.Nó cũng chứa đựng nhiều cửa sổ đa chức năng. CVCAM là thư viện chứa các hàm truy nhập video thông qua DirectX trên môi trường Window 32 bit. Tuy nhiên, HighGUI cũng có các giao diện video.Trong bài báo này, tôi chỉ xem xét HighGUI. Chúng đơn giản, làm việc trên nhiều môi trường. Nếu bạn sử dụng Window XP hoặc 2000, bạn có thể làm tăng hiểu quả của nó bằng cách chuyển qua giao diện CVCAM, nhưng học OpenCV sẽ đơn giản hơn khi dùng HighGUI. 22 CHƯƠNG 3: PROJECT CHUYỂN ĐỔI VĂN BẢN TỪ FILE ẢNH SANG FILE VĂN BẢN 3.1. Giới Thiệu Rút trích văn bản từ tập tin hình ảnh đang là một trong những bài toán quan trọng trong xử l ý ảnh hiện nay. Trong bài báo này, chúng tôi bước đầu tìm hiểu các phương pháp trích lọc văn bản từ hình ảnh của một số công trình liên quan đồng thời cũng tìm hiểu, hiệu chỉnh công cụ mã nguồn mở Tesseract để thực hiện trích lọc văn bản tiếng Anh từ tập tin hình ảnh. Kết quả thử nghiệm bước đầu cho thấy công cụ này rút trích khá tốt các văn bản từ tập tin hình ảnh chứa văn bản được đánh máy. 3.2. Demo Sản Phẩm Hình 4.1: Giao diện chương trình 3.3. Một Số Thử Nghiệm Chúng tôi tiến hành thử nghiệm trên ba loại hình ảnh: Hình chụp từ chữ viết tay (1), hình chụp từ chữ đánh máy (2) và hình từ tập tin pdf (3). 3.3.1. Hình chữ viết tay 23 Hình 4.2: Một ví dụ về hình chứa chữ viết tay - Kết quả: )[...]... quả của nó bằng cách chuyển qua giao diện CVCAM, nhưng học OpenCV sẽ đơn giản hơn khi dùng HighGUI 22 CHƯƠNG 3: PROJECT CHUYỂN ĐỔI VĂN BẢN TỪ FILE ẢNH SANG FILE VĂN BẢN 3.1 Giới Thiệu Rút trích văn bản từ tập tin hình ảnh đang là một trong những bài toán quan trọng trong xử l ý ảnh hiện nay Trong bài báo này, chúng tôi bước đầu tìm hiểu các phương pháp trích lọc văn bản từ hình ảnh của một số công trình... riêng một tập tin huấn luyện • Sau khi đã chuẩn bị mẫu văn bản dùng cho việc huấn luyện thì ta cần phát sinh ra ảnh từ tập tin đó Dùng các phần mềm để chuyển tập tin mẫu văn bản sang dạng tập tin ảnh hoặc in mẫu văn bản sau đó quét thành tập tin hình ảnh dạng tif với độ phân giải là 300dpi Tập tin cuối cùng trước khi thực hiện việc huấn luyện là tập tin ảnh dạng tif  Tạo các tập tin dạng hộp box: Một dạng... chính xác hơn Bước 5: Lưu lại đoán text vừa chuyển đổi 27 28 29 KẾT LUẬN Kết quả đạt được Sau một thời gian nghiên cứu và bắt tay vào thực hiện, với mong muốn xây dựng website hệ thống quản lý các khóa học ngắn hạn, được sự quan tâm và hướng dẫn tận tình của cô Nguyễn Thị Thu Hà, nhóm em đã có 1 sản phẩm demo: chuyển đổi văn bản từ file ảnh sang file văn bản Vì thời gian triển khai có hạn nên không... hưởng từ HP Vì thế mà Tesseract nhận đầu vào là một ảnh nhị phân với các vùng đa giác tùy chọn đã được xác định Ban đầu, Tesseract được thiết kế làm việc trên ảnh nhị phân sau đó chương trình được cải tiến để có thể nhận dạng cả ảnh màu và ảnh mức xám Chính vì thế mà cần bộ phận phân tích ngưỡng thích ứng để chuyển đổi ảnh màu / ảnh mức xám sang ảnh nhị phân Sau đó quá trình nhận dạng sẽ được thực... mẫu ảnh và phép biến đổi Nó thường rất tốt cho quá trình xử lý một nhóm phần tử ảnh như là một đơn vị OpenCV bao gồm lấy tách ra, lấy mẫu ngẫu nhiên, phục chế, xoay ảnh, làm cong ảnh ( warping), thay đổi hiệu ứng của ảnh • 20 Cách thức tạo và phân tích ảnh nhị phân Ảnh nhị phân thường xuyên được dùng trong các hệ thống kiểm tra có khuyết điểm hình dạng hoặc các bộ phận quan trọng Sự biểu diễn ảnh cũng... chỉnh công cụ mã nguồn mở Tesseract để thực hiện trích lọc văn bản tiếng Anh từ tập tin hình ảnh Kết quả thử nghiệm bước đầu cho thấy công cụ này rút trích khá tốt các văn bản từ tập tin hình ảnh chứa văn bản được đánh máy 3.2 Demo Sản Phẩm Hình 4.1: Giao diện chương trình 3.3 Một Số Thử Nghiệm Chúng tôi tiến hành thử nghiệm trên ba loại hình ảnh: Hình chụp từ chữ viết tay (1), hình chụp từ chữ đánh... Recognition) hay còn được gọi tắt là OCR Đây là một công nghệ giúp chuyển đổi hình ánh cúá chữ viết táỵ hoặc đánh máy thành các ký tự đã được mà hóa trong máy tính 25 - Tỉ lệ đúng trên 90% so với văn bản gốc 3.4 Cách Sử Dụng Chương Trình Bước 1: Chọn ngôn ngữ ORC nếu muốn chuyển ảnh có chữ tiếng việt hoặc tiếng anh Bước 2: Lấy hình ảnh bằng cách: chọn file Bước 3: Vào mục mệnh lệnh rồi chọn ORC 26 Bước 4: Chọn... 2.2.2 Phiên bản opencv 1 và opencv 2 Cho tới nay, trải qua hơn 6 năm từ lúc phiên bản OpenCV đầu tiên được công bố, đã có lần lượt nhiều phiên bản OpenCV ra đời, tuy nhiên có thể chia thư viện này thành hai bản chính dựa trên những đặc điểm khác biệt lớn nhất của chúng: 18 phiên bản OpenCV thế hệ thứ nhất (hay còn gọi là phiên bản OpenCV 1.x) và phiên bản OpenCV thứ hai (hay còn gọi là phiên bản OpenCV... trong thị giác máy và nhận dạng, tuy nhiên bản OpenCV 1.0 mãi tới tận năm 2006 mới chính thức được công bố và năm 2008 bản 1.1 (pre-release) mới được ra đời Tháng 10 năm 2009, bản OpenCV thế hệ thứ hai ra đời (thường gọi là phiên bản 2.x), phiên bản này có giao diện của C++ (khác với phiên bản trước có giao diện của C) và có khá nhiều điểm khác biệt so với phiện bản thứ nhất Thư viện OpenCV ban đầu được... dữ liệu cơ bản rõ rang Ví dụ cấu trúc dự liệu về ảnh, điểm, hình chữ nhật được xác định trong file cxtypes.h CXCORE chứa các phép toán đại số tuyến tính và thống kê, các hàm lưu trữ lâu dài ( persistence fun…) và các lỗi thao tác Có điều lạ lung thay là các hàm đồ họa được cho việc vẽ ảnh cũng được lưu trữ tại đây CV chứa đựng quá trình xử lý ảnh và các phương pháp đánh giá sơ bộ kích thước ảnh Những ... PROJECT CHUYỂN ĐỔI VĂN BẢN TỪ FILE ẢNH SANG FILE VĂN BẢN 3.1 Giới Thiệu Rút trích văn từ tập tin hình ảnh toán quan trọng xử l ý ảnh Trong báo này, bước đầu tìm hiểu phương pháp trích lọc văn từ... thiết kế làm việc ảnh nhị phân sau chương trình cải tiến để nhận dạng ảnh màu ảnh mức xám Chính mà cần phận phân tích ngưỡng thích ứng để chuyển đổi ảnh màu / ảnh mức xám sang ảnh nhị phân Sau... Sau chuẩn bị mẫu văn dùng cho việc huấn luyện ta cần phát sinh ảnh từ tập tin Dùng phần mềm để chuyển tập tin mẫu văn sang dạng tập tin ảnh in mẫu văn sau quét thành tập tin hình ảnh dạng tif với

Ngày đăng: 13/10/2015, 11:29

TỪ KHÓA LIÊN QUAN

w