Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ. Bài 2. Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ. Hướng dẫn giải: Giả sử đa diện (H) có các đỉnh là , gọi lần lượt là số các mặt của (H) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh có cạnh đi qua. Do mỗi cạnh của (H) là cạnh chung của đúng hai mặt nên tổng số các cạnh của H bằng Vì c là số nguyên, là những số lẻ nên d phải là số chẵn. Ví dụ: Số đỉnh của hình chóp ngũ giác bằng sáu. >>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học.
Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ. Bài 2. Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. Cho ví dụ. Hướng dẫn giải: Giả sử đa diện (H) có các đỉnh là là đỉnh chung. Như vậy mỗi đỉnh có , gọi lần lượt là số các mặt của (H) nhận chúng cạnh đi qua. Do mỗi cạnh của (H) là cạnh chung của đúng hai mặt nên tổng số các cạnh của H bằng Vì c là số nguyên, giác bằng sáu. là những số lẻ nên d phải là số chẵn. Ví dụ: Số đỉnh của hình chóp ngũ >>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học.