Trích đoạn tuyển tập 90 đề thi thử đại học kèm lời giải chi tiết và bình luận môn toán tập 1

17 768 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Ngày đăng: 04/10/2015, 05:22

Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo TUYỂN TẬP 90 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN tập I Kèm lời giải chi tiết và bình luận Ngày 28/07, nhà sách LOVEBOOK sẽ chính thức phát hành cuốn sách đầu tiên trong năm học mới 2014 – 2015. Không chỉ trau chuốt từng nội dung nhỏ một, cuốn sách còn được biên soạn đề theo cấu trúc ra đề mới nhất của Bộ Giáo Dục. Đây là cuốn sách luyện đề đi tiên phong trong việc áp dụng hình thức đề mới của Bộ vào trong sách. Hãy nghe thầy cô và các em nói gì về cuốn sách này: Theo thầy Nguyễn Minh Tuấn - GV chuyên Hóa - THPT Hùng Vương - Phú Thọ [tác giả của hơn 20 đầu sách ôn thi đại học nổi tiếng và nhiều tài liệu chỉa sẻ trên mạng): “Đây thực sự là một cuốn sách ôn thi đại học chất nhất, công phu và tâm huyết nhất mà thầy từng biết tới. Một học sinh ôn thi đại học mà không sở hữu cuốn này thì sẽ thiệt thòi rất nhiều so với các bạn”. Theo em Lê Nhất Duy [THPT TP Cao Lãnh – Đồng Tháp]: “Đây là lần đầu tiên em được đọc một cuốn sách tâm huyết như thế này. Từng lời bình của anh chị GSTT GROUP rất chất và gần gũi nữa. Kể từ khi cầm trên tay cuốn sách này, em đã cảm thấy tự tin và yêu môn toán hơn nhiều”. Theo cô Lê Thị Bình [Thạc sĩ Toán - Hóa] - giảng viên khoa Toán Tin ứng dụng- ĐH Kiến Trúc Hà Nội: "Một cuốn sách đẳng cấp và thiết thực nhất tôi từng biết. Không chỉ dừng lại ở những lời giải kho khan mà cuốn sách còn cho ta những lối tư duy, những kinh nghiệm sương máu mà họ trải qua". Theo Nguyễn Văn Tiến [cựu học sinh Lý Thái Tổ - Bắc Ninh, tân sinh viên Y Hà Nội 29/30]: Lovebook luôn biết cách tạo ra những ấn phẩm thật hữu ích cho các em học sinh, đặc biệt cuốn Toán. Năm vừa rồi mình chỉ tiếc là chưa có cuốn Toán, nếu có thì chắc kết quả của mình sẽ trọn vẹn hơn. Tuy nhiên với 2 cuốn Hóa năm ngoái cũng đủ khiến mình đạt được ước mơ vào đại học Y Hà Nội". Theo em Nguyễn Văn Trường [cựu học sinh Diễn Châu 4, Nghệ An - Tân sinh viên Đại Học Bách Khoa HN]: Cuốn sách 90 đề Toán giúp em rất nhiều trong việc tự học ở nhà. Ở quê nghèo như em, việc đi học thêm hoặc học online quả là một vấn đề rất nan giải. Nếu không có những cuốn sách có hướng dẫn tư duy như của GSTT GROUP thì thật khó khăn. Đọc sách anh chị viết mà có cảm giác như đang được người thầy trực tiếp giảng dạy cho”. Tiếp theo, mời quý độc giả thưởng thức một trích đoạn nhỏ trong cuốn sách: 1| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo CÁCH SỬ DỤNG SÁCH HIỆU QUẢ Có một cuốn sách hay là một chuyện nhưng sử dụng sao cho hiệu quả lại là một câu chuyện khác? Thứ nhất, các bạn chia làm 2 giai đoạn: Giai đoạn 1, các bạn chia bài tập trong sách thành chuyên đề. Ví dụ trong 5 ngày đầu chỉ chuyên luyện 25 bài hệ phương trình trong sách chẳng hạn. Cứ như vậy, 10 chuyên đề bạn sẽ mất 1 tháng để phủ hết các bài tập trong sách. Trong quá trình luyện theo chuyên đề các bạn tập trong sách bạn có thể kết hợp xem qua kiến thức ở một số sách chuyên đề để củng cố thêm. Dù có làm được hay không, các bạn đều nên xem lại lời giải, phân tích, định hướng mà tác giả cung cấp trong sách. Đôi khi, có những bài toán, các bạn chỉ dừng lại ở mức độ tìm ra được lời giải, còn chưa biết khai thác mở rộng tư duy để giải bài đó hoạc có những cách giải khác, độc đáo hơn. Sau khi luyện bài tập theo chuyên đề xong, các bạn bắt tay vào giai đoạn 2: luyện đề tổng hợp. Giai đoạn 2 giúp vừa giúp các bạn tập tành dần kỹ năng xử lý 1 đề thi hoàn chỉnh vừa giúp các bạn ôn lại các bài tập, tư duy đã tiếp cận ban đầu. Mỗi ngày có thể luyện từ 1 -2 đề. Để rèn luyện thêm kỹ năng trình bày, cứ 2-3 đề, các bạn nên tự giác trình bày một cách nghiêm túc như thi thật bài làm ra giấy rồi nhờ thầy cô giáo góp ý về cách trình bày. Hoặc bạn có thể tự đối chiếu với cách trình bày lời giải trong sách. Đối với các tập tiếp theo của bộ sách TUYỂN TẬP 90 ĐỀ THI THỬ thì các bạn có thể giảm bớt số lần trình bày chi tiết. Ví dụ tập 2 chỉ từ 4-5 đề một lần, tập 3 xuống còn 7 -8 đề, tập 4, xuống còn 9 – 10 đề một lần chẳng hạn Lưu ý, trong quá trình sử dụng sách, các bạn đừng quên trang bị cho mình cuốn sổ nho nhỏ để tổng hợp lại những gì mình chắt chiu được trong quá trình sử dụng sách. Ngoài ra bạn cũng có thể sử dụng bút “highlight” để đánh dấu những vấn đề quan trọng trong sách. Công việc cuối không thể thiếu là lên kế hoạch ôn tập lại cuốn sách. Rất nhiều bạn mải mê tìm thật nhiều đề, luyện thật nhiều, nhưng không có kế hoạch coi lại những gì đã học nên dẫn tới việc vào phòng thi cứ mơ mơ hồ hồ. Đọc cái gì cũng biết nhưng không nắm chắc được gì cả. Chính vì vậy, đối với mỗi cuốn TUYỂN TẬP 90 ĐỀ, hàng tháng các bạn nên có kế hoạch coi lại. Cứ đều đặn như vậy, các bạn sẽ thấy mình tiến bộ rõ rệt từng ngày một. 2| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo ĐỀ SỐ 10 2x  1 (1) có đồ thị (C). x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). b) Một hình chữ nhật MNPQ có cạnh PQ nằm trên đường thẳng : 3x – y – 11 = 0, hai Câu 1 (2,0 điểm). Cho hàm số y  điểm M, N thuộc (C) và độ dài đường chéo của hình chữ nhật bằng 5 2 . Lập phương trình đường thẳng MN. 2sin x sin2x  11cos x  cot x  2 (x ∈ ℝ). Câu 2 (1,0 điểm). Giải phương trình: cot x  3sin2x 5 Câu 3 (1,0 điểm). Tính tích phân: I = ex 3x  2  x  1  ex 2  x  1  x 1 dx . Câu 4 (1,0 điểm). a) Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2  1  3i  z  2  2i  0 và   thỏa mãn z1  z2 . Tìm giá trị của biểu thức A  z1 b) Cho n là số nguyên dương thỏa mãn:  khai triển nhị thức Niu-tơn 1  3x  2n 2 C2n  14 3C3n  1 2   1  z2  1 2 . 1 . Tìm hệ số của x9 trong n . Câu 5 (1,0 điểm). Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có C(3; 2; 3), đường cao qua A và đường phân giác trong góc B của tam giác ABC x 2 y 3 z 3 x 1 y  4 z 3     lần lượt có phương trình là d1 : và d2 : . 1 1 2 1 2 1 Lập phương trình đường thẳng BC và tính diện tích của tam giác ABC. Câu 6 (1,0 điểm). Cho khối tứ diện ABCD có AC = AD = 3 2 , BC = BD = 3, khoảng cách từ đỉnh B đến mặt phẳng (ACD) bằng 3 , thể tích của khối tứ diện ABCD là 15 . Tính góc giữa hai mặt phẳng (ACD) và (BCD). Câu 7 (1,0 điểm). Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình thang OABC (OA // BC) có diện tích bằng 6, đỉnh A(–1; 2), đỉnh B thuộc đường thẳng d1: x + y + 1 = 0 và đỉnh C thuộc đường thẳng d2: 3x + y + 2 = 0. Tìm tọa độ các đỉnh B, C. Câu 8 (1,0 điểm). Giải phương trình:  1 1   x  x ln  x    1 (x ∈ ℝ). 4x 4x   Câu 9 (1,0 điểm). Tìm m để phương trình sau có 3 nghiệm thực phân biệt: 3| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK 3  x  1  Vươn tới sự hoàn hảo  1  x  3  x  1  x  3  m    3 x 1 . LỜI GIẢI CHI TIẾT VÀ BÌNH LUẬN Câu 1. a) • Tập xác định: 𝔻 = ℝ \ {1}. • Sự biến thiên: 3 – Sự biến thiên: y’   0 với mọi x ∈ 𝔻. 2  x  1 Hàm số nghịch biến trên các khoảng (–; 1) và (1; +). – Giới hạn, tiệm cận: lim y  lim y  2 ; lim y   ; lim y   . x  x  x1 x1 Đồ thị hàm số nhận đường thẳng x = 1 làm tiệm cận đứng và nhận đường thẳng y = 2 làm tiệm cận ngang. – Bảng biến thiên: x 1 y' y − − 2 2 • Đồ thị: Đồ thị (C) của hàm số cắt trục tung tại điểm (0; –1), cắt trục hoành tại điểm  1   ;0  . Đồng thời (C) nhận giao điểm  2  của hai đường tiệm cận là I(1; 2) là trục đối xứng. b) Định hướng: Đầu tiên với dữ kiện MNPQ là hình chữ nhật thì ta khai thác ngay được tính chất song song, đó là MN // PQ. Lúc này ta sẽ có ngay dạng của phương trình đường thẳng MN là: 3x – y + m = 0, với m  –11 4| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 y 2 I O 1 x Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo tương đương với MN: y = 3x + m. Như vậy hoành độ M và N chính là nghiệm của phương trình giao điểm của đường thẳng đó với đồ thị (C)  Dùng được phương trình hoành độ và dùng định lí Viét để biểu diễn được tổng và tích xM + xN; xMxN theo biến m Q  P K 5 M N Tiếp theo, với hai đường thẳng song song thì ta luôn xác định được khoảng cách giữa hai đường thẳng đó, bởi khoảng cách giữa hai đường thẳng song song chính bằng khoảng cách của một điểm bất kì trên đường thẳng này đến đường thẳng kia. Trên  thì ta luôn lấy được một điểm K có tọa độ xác định  dùng khoảng cách sẽ tính được khoảng cách từ K đến MN  độ dài cạnh PN = d(K, MN) (theo một ẩn m). Vậy dữ kiện cuối cùng là dữ kiện đường chéo. Vì ta có tổng và tích xM + xN, xMxN theo biến m nên việc tính độ dài MN theo m là điều dễ dàng. Ngoài ra, dùng định lí Py–ta–go ta sẽ có ngay: MN2 + NP2 = PM2 = (5 2 )2  từ đây giải phương trình ẩn m duy nhất  tìm m  MN. Theo định hướng khá rõ ràng trên ta có lời giải: Bài giải: Do MNPQ là hình chữ nhật nên MN // PQ  đường thẳng MN có dạng 3x – y + m = 0  y = 3x + m. Phương trình hoành độ giao điểm của đường thẳng MN và (C) là: 2x  1  3x  m  2x  1   x  1 3x  m  (dễ thấy x = 1 không thỏa mãn) x 1  3x2   m  5 x  m  1  0 (*).   2   (*) có biệt thức  = m  5  4.3  m  1  m2  2m  37  0 với mọi x ∈ ℝ  (*) luôn có hai nghiệm phân biệt x1, x2. Theo định lí Viét: 5m  x  x2    1 3   x x  m  1 1 2  3  Không mất tính tổng quát, giả sử M(x1; 3x1 + m) và N(x2; 3x2 + m) thì  5  m 2 2 m  1  MN2 = 10(x1 – x2)2 = 10  x1  x2   4x1 x2  = 10   4.   3  3      5| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK =  Vươn tới sự hoàn hảo  10 2 m  2m  37 . 9 K(0; –11) ∈   d(K, MN) = 3.0   11   m 32   1 2 = m  11 10  m  11 = d (K, MN) = 2  NP 2 2 . 10 Áp dụng định lí Py–ta–go, ta được:  m  11 10 2 MN + NP = PM  m  2m  37   5 2 9 10 2 2 2   2   2 m  1  m  289  109 Đối chiếu điều kiện m  –11, ta được hai giá trị cần tìm của m là m = –1 và 289 m= . 109 Câu 2. Định hướng: Khi đánh giá qua phương trình này thì ta thấy rằng nó cũng không phức tạp quá, chỉ chứa hàm sin, cos và cot ở dạng “thuần” (đơn giản). “Nhẩm” cos x ; sin2x = 2sinxcosx thì thấy ngay cả tử sin x và mẫu đều xuất hiện nhân tử là cosx. Tiếp tục “nháp” thêm tí sau khi rút gọn cosx ở tử và mẫu thì được: 1 2sin x.2sin x  11  sin x  2. Và đến đây thì phương trình cũng đã lộ bản chất 1  3.2sinx sin x của nó: đây thực chất là phương trình một ẩn t = sinx. Bài giải: sin x  0 sin x  0  sin x  0 1   Điều kiện:  (*).   sin x   1  cos x  6 sin x  0 cot x  3 sin 2 x  0 6   sin x        cos x  0 trong đầu nhân tử thì thấy cotx = Phương trình đã cho tương đương với: 2sin x.2sin x cos x  11cos x  cos x  3.2sinx cos x sin x cos x sin x  2 6| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK  Vươn tới sự hoàn hảo 2sin x.2sin x  11  1  3.2sinx sin x  4sin2 x  11  1 sin x  2 (do cosx  0).  1  1  2  6sin x   4sin3 x  12sin2 x  11sin x  3  0 sin x  sin x  π   x  2  k2π 1   sin x  π    2sin x  1 2sin x  3 sin x  1  0  2   x   k2π (k ∈ ℤ).  6  sin x  1  x  5π  k2π  6     Thử lại (*), ta có phương trình có hai họ nghiệm là x = π 5π + k2π và x = + k2π 6 6 (k ∈ ℤ). Câu 3. Định hướng: Nhận thấy tích phân có chứa cả hàm vô tỉ, hữu tỉ và cả hàm mũ (các hàm khác tính chất) nên ta nghĩ đến phương pháp tích phân từng phần, hoặc tác b b g’(x) để làm dễ dàng hơn. Nhưng với bài toán thì cách dùng g(x) a dạng I =  f(x)   a tích phân từng phần gần như… vô hiệu. Vậy nên ta suy nghĩ đến hướng thứ hai là tách I thành dạng như trên. Một điều gợi ý cho chúng ta thực hiện theo phương án thứ hai nữa đó là tử số có phần giống với mẫu số (phải nói là rất giống), nên việc rút gọn bớt đi là điều đương nhiên: ex 3x  2  x  1 ex  x  1   x  1 1 ex 2x  1 ex  x  1   x  1 Như vậy số 1 tách ra thì dễ dàng lấy nguyên hàm, còn lượng thì vẫn chưa có dạng . ex 2x  1 ex  x  1   x  1 g’(x) . Vậy phải làm sao? Không lẽ lại bỏ cuộc giữa chừng? g(x) Đừng lo, khi chưa gặp dạng này thì muốn xuất hiện dạng g’(x) thì nhiều lúc ta g(x) nhân phải cùng chia cả tử cả mẫu cho một lượng nào đó (và thường thì lượng này là lượng tương đồng, hoặc là nhân tử ở mẫu số hoặc tử số), hoặc có lúc là cả tử và mẫu với một lượng nào đó để xuất hiện được dạng đó. Thử xem nhé! Với “cục diện” như thế này thì ta sẽ có hai hướng: 7| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo + Hướng 1: Chia hai vế cho ex ta được:  Cũng chưa thấy xuất hiện dạng 2x  1 x 1  x  1  ex g’(x) . g(x) ex  2x  1 x  1 ta được: + Hướng 2: Chia hai vế cho e e  2x  1 x   x 1 . x 1  x 1 x Thử lấy đạo hàm mẫu ex x  1 ’  x 1 , thành công! Bài giải: ex 2x  1 5 5 2 2e Ta có: I   dx   5 x  x  1  x 1 dx . 5 I1   dx  x  5  2  3 . 2 2 ex  2x  1   x 5 e x 1 1 ' 2 x  1 I2  2 dx  2 dx  2ln e x x  1  1 x x x 1 1 x 1 1 2e 2 e 5 Vậy I  I1  I2  3  ln 2e5  1 e2  1   5  2ln 2e5  1 2 e2  1 . Câu 4. a) Đây là một bài toán hoàn toàn cơ bản, chỉ yêu cầu bạn nắm được cách giải phương trình bậc 2 trong tập số phức là được. Nhưng lời khuyên cho các bạn là khi tìm được nghiệm của phương trình rồi thì chẳng dại gì lại trình bày theo các bước giải phương trình mình đã làm trong nháp vào giấy thi cả! Hãy dùng cách phân tích nhân tử để trong bài làm, ta chỉ cần dùng các dấu tương đương chứ không cần viết câu chữ gì nhiều nhé! Bài giải: Phương trình đã cho tương đương với: z  2i z2  2i  1  i   z  2i. 1  i    0   z  2i  z  i  1   0   z  i  1 Do z1  z2 nên ta có z1 = 2i và z2 = i + 1.   Ta có: A  2i 1 2  1   i  1  1 2 2 2 2 2 1 1 1 i 3     i   1  . 2i i 2 2 2 8| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo b) Định hướng, chú ý: Để làm được bài toán ta cần phải xác định n, dữ kiện duy 2 14 1 nhất 2  3  bài cho sẽ giúp ta tìm ra điều này. Chú ý trong quá trình làm Cn 3Cn n ta cần xác xét điều kiện để trách hợp khi giải ra nghiệm có thể nó không thỏa mãn các điều kiện của công thức tổ hợp. Sau đó thay vào và bắt đầu xét theo đúng yêu cầu bài. Bài giải: +) Điều kiện: n  3 và n ∈ ℕ. Ta có: 2 14 1 2(2!)(n  2)! 14(3!)(n  3)! 1  3     2 n! n!(3) n Cn 3Cn n  n9 (loại n = –2).  n2  7n  18  0   n  2 +) Theo khai triển nhị thức Niu-tơn:  1  3x   2n  1  3x  18 18  k   C18 x 3 k 0 9  18 k k 0   9 Vậy hệ số của x trong khai triển là: a9  C18  3   k   C18  3 9 k xk .  3938220 3 . Câu 5. Ta xử lí bài toán này giống như xử lí một bài toán hình học phẳng, về phương pháp thì không có gì mới khi gặp đường cao (tận dụng yếu tố vuông góc) và đường phân giác (tận dụng phương pháp lấy đối xứng). Bài giải: +) d1, d2 có véctơ chỉ phương lần lượt là u1 = (1; 1; –2) và u2 = (1; –2; 1). x  1  t  +) B ∈ d2:  y  4  2t  B(1 + t; 4 – 2t; 3 + t)  CB = (t – 2; 2 – 2t; t). z  3  t  d 1 là đường cao kẻ từ A nên u1 .CB  0  (t – 2) + (2 – 2t) + (–2).t = 0  t = 0  B(1; 4; 3). 1 BC đi qua C và nhận véctơ u3  BC = (1; –1; 0) làm véctơ chỉ phương 2 x  3  t   phương trình đường thẳng BC là y  2  t (t ∈ ℝ). z  3  +) Gọi H(a; b; c) thì trung điểm của CH thuộc d2, đồng thời CH  u2 nên tọa độ H là nghiệm của hệ: 9| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo b2 c 3 a 3 a  1 4 3  2  1 2 2     b  2  H(1; 2; 5).  1 2 1  c  5  1.  a  3  2.  b  2  1.  c  3  0 +) Thấy rằng H ∈ d2  A ≡ H  A(1; 2; 5) và ABC vuông tại A. 1 1 AB.AC = .2 2.2 2 = 4 (đvdt). 2 2 Nhận xét: Bài toán này sẽ là “vượt tầm” thi đại học nếu điểm H tìm được không thuộc đường thẳng d2. Bởi nếu vậy thì sau khi tìm được điểm H, ta sẽ phải đi viết Diện tích tam giác ABC là: S = phương trình AB, rồi tìm tọa độ A  dùng công thức diện tích để tính diện tích tam giác thì bài làm trở nên quá dài, không phù hợp với một bài thi đại học (nhất là ở câu ăn điểm như tọa độ không gian). Vậy nên trong quá trình làm bài, các bạn hãy chú ý đến sự đặc biệt của đề bài, chứ đừng dại gì mà cứ đi theo lối mòn phương pháp mà ta đã sử dụng lâu nay trong khi giải toán. Nếu gặp một bài tương tự thế này thì khi tìm được tọa độ H, nếu thấy H ∉ d2 thì khi dùng công thức tính diện tích, ta dùng S = 1 AB.CH nhé! Đừng nên dùng 2 1 BC.d(A, BC) trong trường hợp này vì làm như vậy sẽ phức tạp 2 tính toán hơn ở chỗ dùng công thức tính khoảng cách từ một điểm đến một đường thẳng cho trước! Câu 6. Định hướng: Tứ diện ABCD ta đã biết được độ dài 4 cạnh, và lại có điều đặc biệt là A và B đều cách đều hai điểm C, D (AC = AD, BC = BD)  A, B nằm trên mặt phẳng trung trực của cạnh CD. Và mặt phẳng trung trực này chính là mặt phẳng đi qua A, B và trung điểm M của CD  góc giữa hai mặt phẳng (ACD) và (BCD) ̂ hoặc bằng (1800 – AMB ̂ ) (tùy vào độ lớn góc AMB ̂ là nhỏ hơn chính bằng AMB công thức S = 900 hay lớn hơn 900). Đồng thời bài ra còn cho thêm khoảng cách giữa một đỉnh đến mặt phẳng đối diện và cho thêm cả thể tích khối tứ diện  dễ dàng tính được diện tích mặt đáy là ACD  tính được độ dài CD (do ACD đã biết độ dài 2 cạnh)  BCD hoàn toàn xác định các thông số về 3 cạnh  tính được BM (là đường cao BCD). Ngoài ra nhận thấy có khoảng cách từ B đến (ACD) nên sin (ACD), (BCD) = d  B, (ACD)  BM  từ đó xác định được góc giữa hai mặt phẳng (ACD), (BCD) . 10| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo B Bài giải: Theo bài ra: d(B, (ACD)) = 3 ; VABCD = 15 (đvtt). Ta có: SACD A 3VABCD 3 15 = = d  B, (ACD) 3 C = 3 5 (đvdt). Mặt khác: SACD = sin CAD = H M 1 ̂ AC.AD.sinCAD 2 2SACD AC.AD 2.3 5 = = 3 2.3 2 D 5 3 B 2 . 3 Gọi M là trung điểm của CD thì do ACD cân tại A và cân tại B nên BM  CD và AM  CD  (ABM)  (ACD). Gọi H là hình chiếu của B lên (ACD) thì ta có H thuộc đường thẳng AM, đồng thời  cos CAD = ± 1  sin2 CAD = ± A C M độ dài BH = d(B, (ACD)) = 3 . Ta có góc giữa mặt phẳng (BCD) và (ACD) ̂ < 900. chính bằng BMH D H +) Trường hợp 1: cos CAD = 2  CD = 3 AC2  AD2  2AC.ADcosCAD = 2 3 2  BM = 2 2 3   CD  2 BC     6.   3    2  2    2 ̂ =  cos BMH BH = BM 3 6  BMH = 450. +) Trường hợp 2: 2 . Tương tự ta tính được CD = 2 15 > BC + BD, không thỏa mãn 3 bất đẳng thức tam giác  loại. ̂= cos CAD Vậy góc giữa hai mặt phẳng (BCD) và (ACD) là 450. Lưu ý: Có thể xảy ra hai trường hợp về vị trí điểm H như 2 hình vẽ trên, nhưng dù thế nào đi nữa thì góc giữa hai mặt phẳng (BCD) và (ACD) vẫn bằng 450. 11| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Câu 7. Định hướng: Do tọa độ của A và O đã biết nên phương trình đường thẳng OA là hoàn toàn xác định  dạng của phương trình đường thẳng BC (chỉ chứa một ẩn cần tìm là m). Vậy hoàn toàn có thể xác định được tọa độ điểm B và C theo một ẩn m, dựa vào hệ phương trình giao điểm của đường thẳng BC với đường thẳng d1 (tìm được B); hệ phương trình giao điểm của đường thẳng BC với đường thẳng d2 (xác định được C). 1 OA  BC  .d O, BC  → Đây sẽ là 2 phương trình có một ẩn duy nhất là m  tìm m  tọa độ B, C. Bài giải: Cuối cùng ta khai thác dữ kiện diện tích: S = x 0 y 0   2x  y  0. 1  0 2  0 OA // BC  phương trình đường thẳng BC có dạng: 2x + y + m = 0 (với m  0). +) Phương trình OA: x  y  1  0 x  1  m  +) Tọa độ B là nghiệm của hệ:   B(1 – m; m – 2). 2x  y  m  0 y  m  2 3x  y  2  0 x  m  2  +) Tọa độ C là nghiệm của hệ:   C(m – 2; 4 – 3m). 2x  y  m  0 y  4  3m +) Diện tích hình thang OABC là: S =  1 (OA + BC).d(O, BC) 2 m 1 ( 1)2  22  (2m  3)2  (4m  6)2  . 6  2  22  12    2m  3  1 m  12 (*). Phương án tối ưu nhất để giải phương trình này sẽ là phá dấu giá trị tuyệt đối! – Nếu m < 0 thì (*) thành: (3 – 2m + 1).(–m) = 12  m2 – 2m – 6 = 0  m = 1 ± 7 Kiểm tra điều kiện ta chỉ lấy nghiệm m = 1 –  7  B  7;  1  7  và  C 1  7 ; 1  3 7 . – Nếu 0 < m < 3 thì (*) thành: (3 – 2m + 1).m = 12  m2 – 2m + 6 = 0, vô nghiệm. 2 3 thì (*) thành: (2m – 3 + 1).m = 12  m2 – m – 6 = 0  m = 3 2 hoặc m = –2. Kiểm tra điều kiện ta chỉ lấy nghiệm m = 3  B(–2; 1) và C(1; –5). Vậy có hai cặp điểm B, C thỏa mãn đề bài như trên. Câu 8. – Nếu m  12| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Định hướng: Đầu tiên, điều kiện x > 0 là không thể thiếu. Nhận thấy phương trình có chứa hàm hữu tỉ và cả hàm logarit (hai hàm khác tính chất) nên ta nghĩ ngay đến phương pháp hàm số ở trong đầu. Định hướng đầu tiên giúp ta phát triển hướng giải cho bài toán: Chúng ta nên dùng hàm số theo kiểu tính đơn điệu hay là nên dùng hàm số theo kiểu hàm g(f(x)) = g(h(x)), với g là hàm đơn điệu? – Nếu triển khai theo hướng thứ nhất: để việc đạo hàm tránh phức tạp, chúng ta   1  sẽ nên chia hai vế cho x. Bởi vì ta lấy đạo hàm của  x.ln  x    thì sẽ phức 4x      1  tạp hơn so với việc lấy đạo hàm của ln  x   . 4x   Như vậy chia hai vế cho x ta được:   1  1 1 1 1   1  ln  x     2   1  ln  x    0 (*). 4x  x x 4x  4x 4x   Thử lấy đạo hàm của vế trái ta được: 1  1  2x  1  4x3  6x2  1 1 1 4x2 .    2x3 x2 x  1 2x3 1  4x2 4x Vậy việc dùng hàm đơn điệu của chúng ta đã “tiêu tan” thi mà đạo hàm không dương hoặc không âm với x > 0. Nhưng như thế cũng đừng vội nản nhé, khi đạo hàm có nghiệm (và chỉ có một nghiệm “đẹp”) thì ta có thể vẽ được bảng biến thiên của hàm số, và biết đâu nó sẽ có nghiệm đẹp cho chúng ta nhận xét! Thật vậy, thử lập bảng biến thiên thì thấy ngay VT(*)  0. Dấu đẳng thức xảy ra 1 2     1 (chính là nghiệm của đạo hàm luôn!). 2 – Nếu triển khai theo hướng dùng hàm số. Cách này sẽ thường được các bạn “ngại” (nói đúng hơn là “lười”) đạo hàm dùng! khi x = Khi đã gặp phương trình dạng: A  x   ln A x Bx  B  x  (với A, B dương) thì ta     biến đổi một chút phương trình sẽ thành: A x  ln  A x   B x  ln B x  , phương trình này có dạng hàm đồng biến là f(t) = t + lnt, là hàm đồng biến trên (0; +). Vậy khi gặp phương trình này thì ta thấy trong logarit có thể phân tích được thành nhân tử, đồng thời muốn đưa phương trình về được dạng trên thì đầu tiên mình phải chia hai vế cho x đã. Sau đó ta thu được phương trình: 13| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo  1   2  1   1  1 1 1  4x 1   1  ln  x  0   1   ln   2 2 1 x 4x x 4x    4x  x  1   1  1 1   1   ln   1    ln   2 2  4x   4x  x x Đến đây thì dạng hàm đã xuất hiện và việc còn lại của chúng ta cũng không quá khó nữa! Bài giải: Cách 1. Điều kiện x > 0. Phương trình đã cho tương đương với:     1  1  1 1  1  1  ln  x       1   ln  x  1   2  4x  x  4x2 4x2     4x   x 1  1   1    1  1 1 1  1   1   ln   1   ln x     1   ln   1    ln   (*). 2 2 2 2 x  4x   4x   4x   4x  x x 1 Xét hàm số f(t) = t + lnt trên (0; +∞). Ta có: f ’(t)  1   0 với mọi t > 0 t  f(t) đồng biến trên (0; +∞). 1 1  1  1  1  0 và  0 ) Mặt khác (*) có dạng f   1   f   (với 2 2 x 4x  4x  x 2  1  1 1  1     1  0  x  .  2 x  2x  2 4x 1 Vậy nghiệm của phương trình là x = 1 . 2 Cách 2. Điều kiện x > 0. Chia hai vế của phương trình cho x ta được:   1  1 1 1 1   1  ln  x     2   1  ln  x  0. 4x  x x 4x  4x 4x   1 2 Xét hàm số f(x) = 1 4x 2   1 1   1  ln  x   trên (0; +). x 4x   1    1  2x  1  4x3  6x2  1 2 4x Ta có: f ’(x)  ;    2x3 x2 x  1 2x3 1  4x2 4x 1 f’(x)  0  x  1  1 (do x > 0). 2 14| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1  Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Lập bảng biến thiên cho ta f(x)  0 với mọi x > 0. Ta có f(x) = 0  x = Vậy nghiệm của phương trình là x = 1 . 2 1 . 2 Bài tập củng cố: Giải phương trình: 2014x  x ln 1969  1969x (Đáp số: x = 0). 2014 Câu 9: Định hướng: Ý tưởng về những bài tìm m để phương trình có nghiệm là không xa lạ gì nữa. Ý tưởng của chúng ta là cô lập m để thu được dạng m = f(x), sau đó khảo sát f(x) để kết luận các giá trị của m thỏa mãn điều kiện đề bài. Với bài này, muốn cô lập m một cách nhanh chóng thì ta chia hai vế cho   3  x  1 . Thế nhưng trước khi chia thì ta phải xét trường hợp x = 2 (để đảm bảo   3  x  1  0). Khi ta thử x = 2 vào vế trái thì thấy rằng vế trái cũng bằng 0  chắc chắn vế trái có thể phân tích được nhân tử (x – 2)  nhân tử (x – 2) có thể chia được cho   3  x  1 (vì cả hai đều có nghiệm bằng x = 2). Thật vậy:   x – 2 = –  3  x  1    3  x  1 3  x  1 . Vậy nên ta chọn cách thuận lợi hơn cho lời giải đó là phân tích vế trái chứa nhân tử  3 x VT =   3  x  1 để bài giải được ngắn gọn hơn!    3  x  1  1  x  x  2  3  x     3  x  1  3 x 1  3 x  1 x 1 3 x  .   Như vậy chuyển vế ta sẽ thu được hai nhân tử là  3 x  1 x  1  x 3  x   m  3 .  1  x 1  3  x   3  x  1 và: Cái khó còn lại là đi xử lí nhân tử thứ hai: 3 x  1 x  1  x 3  x   m  3  0  m  1 x  3 x  1  x 3  x   3 (1). Xử lí phương trình này cũng không hề khó, thường thì ta sẽ đặt: 15| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo 1  x 3  x  t  1  x  3  x  t2  4  2  (1) gần như đã được xử lí. Thế nhưng với các bạn đã thuần thục việc giải phương trình rồi thì sẽ chọn cách khảo sát vế phải của (1) luôn để không mất thời gian biện luận theo ẩn t nữa. Bài giải: Điều kiện 1  x  3 . Phương trình đã cho tương đương với: 3 x    3  x  1  1  x 1  3  x   3  m  3  x  1   3  x  1  3  x  1  x 1  3  x   3  m   3  x  1   3  x  1  3  x  1  x  1  x 3  x   m  3  0    x  2  m  1  x  3  x  1  x 3  x   3 (*) Phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi (*) có hai nghiệm phân biệt khác 2.   Xét hàm số f x  1  x  3  x     Với mọi x  1;3 : f’ x  1 2 1x  1  x 3  x   3 trên 1;3 . 1 2 3x  2x  2 2 1  x 3  x  f ’  x   0  1  x  3  x  2x  2  1 x  3 x   1 x   1 x  3 x 1  x  3 x  1  x  2 7 . 2 Bảng biến thiên: 16| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 3 x  0 . Nhà sách giáo dục LOVEBOOK x Vươn tới sự hoàn hảo –1 3 f ’(x) + 0 − f(x) 5 1 Dựa vào bảng biến thiên, kết hợp với điều kiện x  2 (và f  2  2  2 3 ) ta có  11  thể kết luận được các giá trị của m cần tìm là m  5;   2 2  2 3 . Để có thể sở hữu ấn phẩm này, các bạn có thể đặt hàng trên website: LOVEBOOK.VN: http://goo.gl/9XOXBc Hoặc ở form đăng ký sau: http://goo.gl/xKV0rO NHÀ SÁCH GIÁO DỤC VIỆT NAM LOVEBOOK.VN Địa chỉ: 101 Nguyễn Ngọc Nại, Thanh Xuân, Hà Nội SĐT: (04) 6686 0849 Email: lovebook.vn@gmail.com Website: http://lovebook.vn Facebook: http://www.facebook.com/lovebook.vn 17| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 [...]... tiên mình phải chia hai vế cho x đã Sau đó ta thu được phương trình: 13 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo  1   2  1   1  1 1 1  4x  1   1  ln  x  0   1   ln   2 2 1 x 4x x 4x    4x  x  1   1  1 1   1   ln   1    ln   2 2  4x   4x  x x Đến đây thì dạng hàm đã xuất hiện và việc còn... 1; 3 : f’ x  1 2 1 x  1  x 3  x   3 trên  1; 3 1 2 3x  2x  2 2 1  x 3  x  f ’  x   0  1  x  3  x  2x  2  1 x  3 x   1 x   1 x  3 x 1  x  3 x  1  x  2 7 2 Bảng biến thi n: 16 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 3 x  0 Nhà sách giáo dục LOVEBOOK x Vươn tới sự hoàn hảo 1 3 f ’(x) + 0 − f(x) 5 1 Dựa vào bảng biến thi n, kết...  1    1  2x  1  4x3  6x2  1 2 4x Ta có: f ’(x)  ;    2x3 x2 x  1 2x3 1  4x2 4x 1 f’(x)  0  x  1  1 (do x > 0) 2 14 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1  Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Lập bảng biến thi n cho ta f(x)  0 với mọi x > 0 Ta có f(x) = 0  x = Vậy nghiệm của phương trình là x = 1 2 1 2 Bài tập củng cố: Giải phương trình: 2 014 x... (0; +∞) 1 1  1  1  1  0 và  0 ) Mặt khác (*) có dạng f   1   f   (với 2 2 x 4x  4x  x 2  1  1 1  1     1  0  x   2 x  2x  2 4x 1 Vậy nghiệm của phương trình là x = 1 2 Cách 2 Điều kiện x > 0 Chia hai vế của phương trình cho x ta được:   1  1 1 1 1   1  ln  x     2   1  ln  x  0 4x  x x 4x  4x 4x   1 2 Xét hàm số f(x) = 1 4x 2   1 1   1  ln... khó nữa! Bài giải: Cách 1 Điều kiện x > 0 Phương trình đã cho tương đương với:     1  1  1 1  1  1  ln  x       1   ln  x  1   2  4x  x  4x2 4x2     4x   x 1  1   1    1  1 1 1  1   1   ln   1   ln x     1   ln   1    ln   (*) 2 2 2 2 x  4x   4x   4x   4x  x x 1 Xét hàm số f(t) = t + lnt trên (0; +∞) Ta có: f ’(t)  1   0 với... thường thì ta sẽ đặt: 15 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo 1  x 3  x  t  1  x  3  x  t2  4  2  (1) gần như đã được xử lí Thế nhưng với các bạn đã thuần thục việc giải phương trình rồi thì sẽ chọn cách khảo sát vế phải của (1) luôn để không mất thời gian biện luận theo ẩn t nữa Bài giải: Điều kiện 1  x  3 Phương trình... ta   1  sẽ nên chia hai vế cho x Bởi vì ta lấy đạo hàm của  x.ln  x    thì sẽ phức 4x      1  tạp hơn so với việc lấy đạo hàm của ln  x   4x   Như vậy chia hai vế cho x ta được:   1  1 1 1 1   1  ln  x     2   1  ln  x    0 (*) 4x  x x 4x  4x 4x   Thử lấy đạo hàm của vế trái ta được: 1  1  2x  1  4x3  6x2  1 1 1 4x2    2x3 x2 x  1 2x3 1  4x2... trên Câu 8 – Nếu m  12 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Định hướng: Đầu tiên, điều kiện x > 0 là không thể thi u Nhận thấy phương trình có chứa hàm hữu tỉ và cả hàm logarit (hai hàm khác tính chất) nên ta nghĩ ngay đến phương pháp hàm số ở trong đầu Định hướng đầu tiên giúp ta phát triển hướng giải cho bài toán: Chúng ta nên dùng... ̂= cos CAD Vậy góc giữa hai mặt phẳng (BCD) và (ACD) là 450 Lưu ý: Có thể xảy ra hai trường hợp về vị trí điểm H như 2 hình vẽ trên, nhưng dù thế nào đi nữa thì góc giữa hai mặt phẳng (BCD) và (ACD) vẫn bằng 450 11 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 1 Nhà sách giáo dục LOVEBOOK Vươn tới sự hoàn hảo Câu 7 Định hướng: Do tọa độ của A và O đã biết nên phương trình đường thẳng OA... để bài giải được ngắn gọn hơn!    3  x  1  1  x  x  2  3  x     3  x  1  3 x 1  3 x  1 x 1 3 x    Như vậy chuyển vế ta sẽ thu được hai nhân tử là  3 x  1 x  1  x 3  x   m  3  1  x  1  3  x   3  x  1 và: Cái khó còn lại là đi xử lí nhân tử thứ hai: 3 x  1 x  1  x 3  x   m  3  0  m  1 x  3 x  1  x 3  x   3 (1) Xử lí ... 1   1   i  1  1 2 2 1 i     i    2i i 2 8| Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập Nhà sách giáo dục LOVEBOOK Vươn tới hoàn hảo b) Định hướng, ý: Để làm toán. .. dạng phải chia hai vế cho x Sau ta thu phương trình: 13 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập Nhà sách giáo dục LOVEBOOK Vươn tới hoàn hảo     1    1  4x  1    ln... thi n: 16 | Trích đoạn tuyển tập 90 đề thi thử đại học môn Toán tập 3 x  0 Nhà sách giáo dục LOVEBOOK x Vươn tới hoàn hảo 1 f ’(x) + − f(x) Dựa vào bảng biến thi n, kết hợp với điều kiện x  (và

Từ khóa liên quan

Tài liệu liên quan