Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 157 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
157
Dung lượng
2,69 MB
Nội dung
ROLE OF CALPAIN AND COFILIN IN APOPTOSIS REGULATION CHUA BOON TIN NATIONAL UNIVERSITY OF SINAGPORE 2004 ROLE OF CALPAIN AND COFILIN IN APOPTOSIS REGULATION CHUA BOON TIN B.Sc (Hons), IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE A THESIS SUBMITTED FOR THE DEGREE OF DOCTORAL OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINAGPORE 2004 Acknowledgements I would like to express my deepest gratitude to A/P Li Peng, my supervisor. Thank you for your guidance, patients and encouragement, throughout my candidature. My heartfelt thanks also go to Prof Porter A, A/P Yang XH and Prof Pallen C, for the time and critical discussion and most importantly encouragement during my yearly committee meeting. Many thanks to the fellow colleagues in AGP’s group and VY’s group for sharing reagents, information and providing technical support. Special thanks go to Dr Tan KO and A/P Yu V for the excellent collaboration. I would like to express my thanks to IMCB for giving me the opportunity to my PhD and providing the necessary resources to make my work possible. To the past and present colleagues in LP’s group, thank you for your support and company. Working with you all in the laboratory is an enjoyment. Special thank to Dr Volbracht for the patience and time to go through the writing of both the paper and the thesis. Thank you for your collaboration, sharing your technical experiences and interesting discussion. And most importantly, thanks for the trust in my ability. Also to ZhiHong and Darren, thank you for the encouragement and support these years. i To my special friend, Joy Tan. Thank you for being there for me these years, especially the last lag. My gratitude goes to my family and personal friends for the supports and understanding throughout these years. Most importantly, to Calvin, my husband and the pillar for my PhD journey, thank you for truly believing in my capability. Your love and encouragement have moved me in both the candidature and my life. ii Table of Contents Acknowledgements i Table of Contents iii Summary viii Abbreviations xii List of Figures xvi List of Schematic Diagrams and Tables xix List of Publications xx Chapter 1: Introduction I 1.1 Apoptosis – history 1.2 C.elegans, conservation of pathway 1.3 Extrinsic and Intrinsic apoptotic pathway 1.3.1. Role of caspases in apoptosis 1.3.2. Role of mitochondria in apoptosis 10 1.3.3. Role of Bcl-2 family proteins in apoptosis 14 1.3.4. Role of the death receptors in apoptosis 16 1.4 Apoptosis regulation 1.4.1. Regulation I: Caspase cascade 1.4.1.1 Activation of caspases 18 18 18 1.4.1.2 Interaction with inhibitors and non-functional caspase analog 1.4.1.3 Phosphorylation of caspases 19 20 1.4.1.4 Interaction with another proteolytic system – calcium activated cysteine proteases, calpains 21 1.4.2. Regulation II: Mitochondria regulation 22 1.4.2.1 Bcl-2 family member 23 iii 1.4.2.1.1. Anti-apoptotic Bcl-2 members 23 1.4.2.1.2. Pro-apoptotic Bcl-2 members 24 1.4.2.2. Mitochondrial translocation as initiation of apoptosis 26 1.4.2.2.1. Bcl-2 proteins 26 1.4.2.2.2. Non-Bcl-2 family proteins 27 1.4.2.2.3. Mitochondrial translocation of cofilin 29 Chapter 2: Introduction II 30 2.1 Cytoskeleton 30 2.1.1. Actin regulation by cofilin 30 2.1.1.1. Cofilin regulation 31 2.2 Cytoskeletal proteins and cell death 33 2.3 Cofilin and stress 35 Rational and Objectives 37 Chapter 3: Materials and Methods 38 3.1 Antibody list 38 3.2 Primer list 39 3.3 DNA methodology 40 3.3.1. Polymerase chain reaction (PCR) 40 3.3.2. Site-directed mutagensis (SDM) 41 3.3.3. Klneow/Kinase reaction 43 3.3.4. Agarose gel electrophoresis 43 3.3.5. Elution of DNA from agarose gel 44 3.3.6. Restriction enzymes (RE) digestion of plasmid DNA 44 3.3.7. Dephosphorylation of plasmid DNA 45 3.3.8. Ligation 45 3.3.9. Transformation by KCM method 45 3.3.10. Transformation by electroporation method 46 3.3.11. Mini-preparation of plasmid DNA 46 iv 3.3.12. Maxi-preparation of plasmid DNA 47 3.3.13. Preparation of KCM competent DH5α cells 48 3.3.14. Preparation of electroporation competent BL21(DE3) cells 48 3.3.15. Plasmid DNA sequencing 48 3.3.16. Ethanol precipitation of DNA 49 3.4 Mammalian cell culture, treatment and sub-cellular fractionation 50 3.4.1. Cell culture 50 3.4.2. Apoptotic stimulation 50 3.4.3. Apoptosis assay 50 3.4.4. Whole cell lysate preparation 51 3.4.5. Mitochondria and S100 preparation 51 3.4.6. Trypan blue exclusion assay 52 3.5 Protein methodology 52 3.5.1. Protein concentration determination by Bradford assay (Bio-Rad) 52 3.5.2. Modified Bradford assay for urea lysis sample 52 3.5.3. Western blot analysis 53 3.5.4. Two-dimensional gel electrophoresis (2-D) and mass spectrometry 53 3.5.5. Production and purification of 6-Histidine-tagged recombinant proteins 55 3.5.6. In vitro transcription and translation of protein 55 3.5.7. Caspase cleavage assay 56 3.5.8. Proteinase K digestion 57 3.5.9. Alkaline phosphatase assay 57 3.5.10. Indirect Immunofluorescent labeling 57 3.5.11. Transient transfection 58 3.5.12. siRNA transfection 58 3.5.13. Silver staining 59 3.5.14. Viability assay 59 3.5.15. Clonogenicity assay 60 3.5.16. Isolation of mitochondria and the in vitro assay of cytochrome c release 60 v Chapter 4: Result I: Direct caspase regulation by calcium/calpain 62 4.1. Cleavage of caspase-7 by MCF-7 cytosolic factors in the presence of calcium 63 4.2. Cleavage of caspase-7 by rat recombinant calpain II 65 4.3. Cleavage of caspase-8 and –9 by calpain II 65 4.4. Calpain proteolysis renders caspase-9 inactive 69 4.5. Truncated caspase-9 inhibits dATP/cyt c induced caspase-9 and –3 activation 71 4.6. Activated calpain cleaves endogenous caspases 71 4.7. Pulsing of SH-SY5Y cells with calcium protects cells from H7-induced apoptosis 73 Discussion I 75 Conclusions and future perspective 82 Chapter 5: Result II: Mitochondrial translocation of cofilin induces apoptosis via the intrinsic pathway 83 5.1. Cofilin translocation into mitochondria in early stage of apoptosis 83 5.2. Silencing of cofilin by siRNA prevents cytochrome c release and apoptosis 90 5.3. Dephosphorylated cofilin localise on mitochondria of apoptotic cells 94 5.4. Expression of cofilin S3D mutant reduces endogenous cofilin translocation and inhibits STS-induced apoptosis 97 5.5. Identification of mitochondrial-targeting domains on cofilin 100 5.6. Mitochondrial-targeting of cofilin induces apoptosis 101 5.7. A functional actin-binding domain is required for cofilin-induced apoptosis but not mitochondrial localisation 106 vi Discussion II 109 Conclusions and future perspective 120 References 122 vii Summary Apoptosis, a form of programmed cell death, plays an important role in the development of multicellular organism and the maintenance of homeostasis in adults. Understanding and exploring the process of apoptosis will allow us to gain insights into the fundamentals of cell death and also provide an alternative therapeutic approach to pathological conditions such as cancer treatment and neurodegenerative disorders. Three decades of research have revealed the mechanism by which the death signal is transduced in the doom cell. Apoptosis can be activated generally via either the extrinsic or the intrinsic pathway. In the former, death signal is transduced from the ligation of death ligands onto the death receptors, which in turn recruit others cytoplasmic proteins to form the large death complex at the peripheral membrane. The intrinsic pathway is activated when the pro-apoptotic proteins, in response to intracellular stress, translocate to the mitochondria outer membrane. Both pathways result in the activation of caspases. Activation of caspases, the cysteine proteases, resulted in the distinctive morphological changes associated with apoptosis. The enzyme cascade forms the main disintegration force that halts the cellular repair system, the transcription and translation system, cell division and dismantles the cellular remains into apoptotic bodies. Therefore, regulation of the caspases’ activity became one of the foci in apoptosis regulation. viii Conclusions and future perspective In the process of screening for proteins translocating in and out of mitochondria, we identified cofilin, an actin binding and depolymerising factor. Cofilin is inactivated by the upstream Rho GTPases via phosphorylation by LIM kinase as well as via the binding of PIP2. Cofilin dephosphorylation or activation is observed in the event that requires actin reorganisation such as chemotaxis. Our studies identified a novel role of dephosphorylated cofilin. At the early stage of death signal transduction, the protein undergoes dephosphorylation which may result in its disengagement with 14-3-3ζ proteins and exposure of the mitochondrial localisation signal at 15-30 aa. This change may result in translocation of the protein to the mitochondrial outer membrane where it exerts its potent death effect. How cofilin translocates to the mitochondria as we proposed, would require further structural studies. Mitochondrial translocation of the cofilin is independent of its actin-binding domain, however, cofilin can only induce cytochrome c release from the mitochondria in the presence of functional actin-binding domain. Detailed mechanisms of how the cytoskeletal protein-induced cell death awaits further analysis. Based on the data, we speculate that cofilin either acts in a cytoskeletal independent manner, interacting with anti-apoptotic proteins and thus inducing mitochondrial release of cytochrome c, or it exerts its actin-depolymerising function reorganising the actin cytoskeleal network around the organelle causing dysfunction, subsequently resulting in the release of cytochrome c. Since cytochrome c and p53 adopt dual roles in the complex mammalian system are known, it would not be surprising when cofilin upon translocation to the 120 mitochondria induces cytochrome c release and apoptosis by gaining a novel function regardless of its actin depolyermising ability. How the actin depolymerising factor induces apoptosis when it localised on the mitochondria would definitely provide new insights into the interaction between cytoskeleton structure, mitochondria, and apoptosis. 121 References: Ali, S. M., Wong, V. Y., Kikly, K., Fredrickson, T. A., Keller, P. M., DeWolf, W. E., Jr., Lee, D., and Brooks, D. P. (2000). Apoptosis in polycystic kidney disease: involvement of caspases. Am J Physiol Regul Integr Comp Physiol 278, R763-769. Allan, L. A., Morrice, N., Brady, S., Magee, G., Pathak, S., and Clarke, P. R. (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5, 647-654. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171. Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., and Samstag, Y. (2000). The serine phosphatases PP1 and PP2A associate with and activate the actinbinding protein cofilin in human T lymphocytes. Eur J Immunol 30, 3422-3431. Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O., and Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM- kinase. Nature 393, 805-809. Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308. Bamburg, J. R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15, 185-230. Barnhart, B. C., Alappat, E. C., and Peter, M. E. (2003). The CD95 type I/type II model. Semin Immunol 15, 185-193. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21. Bishop, A. L., and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem J 348 Pt 2, 241-255. Bizat, N., Hermel, J. M., Humbert, S., Jacquard, C., Creminon, C., Escartin, C., Saudou, F., Krajewski, S., Hantraye, P., and Brouillet, E. (2003). In vivo calpain/caspase crosstalk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpainmediated cleavage of active caspase-3. J Biol Chem 278, 43245-43253. Blanchard, H., Grochulski, P., Li, Y., Arthur, J. S., Davies, P. L., Elce, J. S., and Cygler, M. (1997). Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol 4, 532-538. 122 Blikstad, I., Markey, F., Carlsson, L., Persson, T., and Lindberg, U. (1978). Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15, 935-943. Bobak, D., Moorman, J., Guanzon, A., Gilmer, L., and Hahn, C. (1997). Inactivation of the small GTPase Rho disrupts cellular attachment and induces adhesion-dependent and adhesion-independent apoptosis. Oncogene 15, 2179-2189. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptorinduced cell death. Cell 85, 803-815. Borner, C. (2003). The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39, 615-647. Breitman, T. R., Selonick, S. E., and Collins, S. J. (1980). Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 77, 2936-2940. Brown, S. B., Bailey, K., and Savill, J. (1997). Actin is cleaved during constitutive apoptosis. Biochem J 323 ( Pt 1), 233-237. Chan, S. L., Lee, M. C., Tan, K. O., Yang, L. K., Lee, A. S., Flotow, H., Fu, N. Y., Butler, M. S., Soejarto, D. D., Buss, A. D., and Yu, V. C. (2003). Identification of chelerythrine as an inhibitor of BclXL function. J Biol Chem 278, 20453-20456. Chan, S. L., and Mattson, M. P. (1999). Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58, 167-190. Chen, Q., Gong, B., Mahmoud-Ahmed, A. S., Zhou, A., Hsi, E. D., Hussein, M., and Almasan, A. (2001). Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferoninduced apoptosis in multiple myeloma. Blood 98, 2183-2192. Choi, D. W. (1994). Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747, 162-171. Chua, B. T., Guo, K., and Li, P. (2000). Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275, 5131-5135. Chua, B. T., Volbracht, C., Tan, K. O., Li, R., Yu, V. C., and Li, P. (2003). Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol 5, 10831089. Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J 326 ( Pt 1), 116. 123 Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001). Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3, 339-345. Conradt, B., and Horvitz, H. R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519529. Crowe, P. D., VanArsdale, T. L., Walter, B. N., Ware, C. F., Hession, C., Ehrenfels, B., Browning, J. L., Din, W. S., Goodwin, R. G., and Smith, C. A. (1994). A lymphotoxinbeta-specific receptor. Science 264, 707-710. Cryns, V., and Yuan, J. (1998). Proteases to die for. Genes Dev 12, 1551-1570. Daleke, D. L., and Lyles, J. V. (2000). Identification and purification of aminophospholipid flippases. Biochim Biophys Acta 1486, 108-127. Datta, S. R., Katsov, A., Hu, L., Petros, A., Fesik, S. W., Yaffe, M. B., and Greenberg, M. E. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6, 41-51. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J. C. (1999). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891-901. Desnoyers, S., and Hengartner, M. O. (1997). Genetics of apoptosis. Adv Pharmacol 41, 35-56. Deveraux, Q. L., and Reed, J. C. (1999). IAP family proteins--suppressors of apoptosis. Genes Dev 13, 239-252. Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen, G. S., and Reed, J. C. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17, 2215-2223. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. Elce, J. S., Hegadorn, C., Gauthier, S., Vince, J. W., and Davies, P. L. (1995). Recombinant calpain II: improved expression systems and production of a C105A activesite mutant for crystallography. Protein Eng 8, 843-848. Ellis, H. M., and Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817-829. 124 Fulda, S., Meyer, E., Friesen, C., Susin, S. A., Kroemer, G., and Debatin, K. M. (2001). Cell type specific involvement of death receptor and mitochondrial pathways in druginduced apoptosis. Oncogene 20, 1063-1075. Gil-Parrado, S., Fernandez-Montalvan, A., Assfalg-Machleidt, I., Popp, O., Bestvater, F., Holloschi, A., Knoch, T. A., Auerswald, E. A., Welsh, K., Reed, J. C., et al. (2002). Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem 277, 27217-27226. Gohla, A., and Bokoch, G. M. (2002). 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12, 1704-1710. Goll, D. E., Thompson, V. F., Li, H., Wei, W., and Cong, J. (2003). The calpain system. Physiol Rev 83, 731-801. Goll, D. E., Thompson, V. F., Taylor, R. G., and Zalewska, T. (1992). Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 14, 549556. Gonzalez-Baro, M. R., Granger, D. A., and Coleman, R. A. (2001). Mitochondrial glycerol phosphate acyltransferase contains two transmembrane domains with the active site in the N-terminal domain facing the cytosol. J Biol Chem 276, 43182-43188. Goping, I. S., Gross, A., Lavoie, J. N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S. J., and Shore, G. C. (1998). Regulated targeting of BAX to mitochondria. J Cell Biol 143, 207-215. Granville, D. J., and Gottlieb, R. A. (2003). The mitochondrial voltage-dependent anion channel (VDAC) as a therapeutic target for initiating cell death. Curr Med Chem 10, 1527-1533. Grutter, M. G. (2000). Caspases: key players in programmed cell death. Curr Opin Struct Biol 10, 649-655. Hatanaka, H., Ogura, K., Moriyama, K., Ichikawa, S., Yahara, I., and Inagaki, F. (1996). Tertiary structure of destrin and structural similarity between two actin-regulating protein families. Cell 85, 1047-1055. Hengartner, M. O., Ellis, R. E., and Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499. Hengartner, M. O., and Horvitz, H. R. (1994a). Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318-320. 125 Hengartner, M. O., and Horvitz, H. R. (1994b). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-676. Horvitz, H. R. (2001). Genetic control of programmed cell death in C. Elegans. ScientificWorldJournal 1, 137. Hsu, H., Xiong, J., and Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504. Huang, D. C., Adams, J. M., and Cory, S. (1998). The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. Embo J 17, 1029-1039. Jacobson, M. D., Weil, M., and Raff, M. C. (1997). Programmed cell death in animal development. Cell 88, 347-354. Jeong, S. Y., Sorimachi, H., Lee, H. J., Ishiura, S., and Suzuki, K. (1997). Molecular cloning and characterization of cDNAs for the mu-type large subunit and the small subunit of chicken calpain. Comp Biochem Physiol B Biochem Mol Biol 118, 539-547. Jones, J. M., Datta, P., Srinivasula, S. M., Ji, W., Gupta, S., Zhang, Z., Davies, E., Hajnoczky, G., Saunders, T. L., Van Keuren, M. L., et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721-727. Kaibuchi, K., Kuroda, S., and Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68, 459486. Karuman, P., Gozani, O., Odze, R. D., Zhou, X. C., Zhu, H., Shaw, R., Brien, T. P., Bozzuto, C. D., Ooi, D., Cantley, L. C., and Yuan, J. (2001). The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7, 1307-1319. Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B. Z., and Leder, P. (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297-303. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14, 55795588. 126 Kishimoto, A., Mikawa, K., Hashimoto, K., Yasuda, I., Tanaka, S., Tominaga, M., Kuroda, T., and Nishizuka, Y. (1989). Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264, 4088-4092. Kobayashi, S., Yamashita, K., Takeoka, T., Ohtsuki, T., Suzuki, Y., Takahashi, R., Yamamoto, K., Kaufmann, S. H., Uchiyama, T., Sasada, M., and Takahashi, A. (2002). Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J Biol Chem 277, 33968-33977. Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15, 1942-1952. Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A. (1994). Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8, 1613-1626. Lankiewicz, S., Marc Luetjens, C., Truc Bui, N., Krohn, A. J., Poppe, M., Cole, G. M., Saido, T. C., and Prehn, J. H. (2000). Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem 275, 17064-17071. Lappalainen, P., Fedorov, E. V., Fedorov, A. A., Almo, S. C., and Drubin, D. G. (1997). Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. Embo J 16, 5520-5530. Lawen, A. (2003). Apoptosis-an introduction. Bioessays 25, 888-896. Li, H., Kolluri, S. K., Gu, J., Dawson, M. I., Cao, X., Hobbs, P. D., Lin, B., Chen, G., Lu, J., Lin, F., et al. (2000). Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159-1164. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. Liu, Q. A., and Hengartner, M. O. (1999). The molecular mechanism of programmed cell death in C. elegans. Ann N Y Acad Sci 887, 92-104. 127 Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. Lutter, M., Perkins, G. A., and Wang, X. (2001). The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol 2, 22. Lynch, G., and Baudry, M. (1987). Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull 18, 809-815. Machesky, L. M., and Hall, A. (1997). Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 138, 913-926. Maciver, S. K., and Hussey, P. J. (2002). The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3, reviews3007. Madesh, M., and Hajnoczky, G. (2001). VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155, 1003-1015. Mandic, A., Viktorsson, K., Strandberg, L., Heiden, T., Hansson, J., Linder, S., and Shoshan, M. C. (2002). Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22, 3003-3013. Melino, G. (2001). The Sirens' song. Nature 412, 23. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590. Minamide, L. S., Striegl, A. M., Boyle, J. A., Meberg, P. J., and Bamburg, J. R. (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2, 628-636. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993). Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653-660. Moran, J., and Patel, A. J. (1989). Stimulation of the N-methyl-D-aspartate receptor promotes the biochemical differentiation of cerebellar granule neurons and not astrocytes. Brain Res 486, 15-25. 128 Moriyama, K., Yonezawa, N., Sakai, H., Yahara, I., and Nishida, E. (1992). Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J Biol Chem 267, 7240-7244. Motyka, B., Korbutt, G., Pinkoski, M. J., Heibein, J. A., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C. F., et al. (2000). Mannose 6-phosphate/insulinlike growth factor II receptor is a death receptor for granzyme B during cytotoxic T cellinduced apoptosis. Cell 103, 491-500. Nagao, S., Saido, T. C., Akita, Y., Tsuchiya, T., Suzuki, K., and Kawashima, S. (1994). Calpain-calpastatin interactions in epidermoid carcinoma KB cells. J Biochem (Tokyo) 115, 1178-1184. Nagaoka, R., Abe, H., and Obinata, T. (1996). Site-directed mutagenesis of the phosphorylation site of cofilin: its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskeleton 35, 200-209. Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y. (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 95, 14681-14686. Nechushtan, A., Smith, C. L., Hsu, Y. T., and Youle, R. J. (1999). Conformation of the Bax C-terminus regulates subcellular location and cell death. Embo J 18, 2330-2341. Newmeyer, D. D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490. Nishida, E., Maekawa, S., and Sakai, H. (1984). Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23, 5307-5313. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233-246. Nobes, C. D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62. Nouraini, S., Six, E., Matsuyama, S., Krajewski, S., and Reed, J. C. (2000). The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L). Mol Cell Biol 20, 1604-1615. Opferman, J. T., and Korsmeyer, S. J. (2003). Apoptosis in the development and maintenance of the immune system. Nat Immunol 4, 410-415. 129 Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K., and Hall, A. (1990). Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111, 1001-1007. Peitsch, M. C., Polzar, B., Stephan, H., Crompton, T., MacDonald, H. R., Mannherz, H. G., and Tschopp, J. (1993). Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). Embo J 12, 371-377. Petit, P., Breard, J., Montalescot, V., El Hadj, N. B., Levade, T., Popoff, M., and Geny, B. (2003). Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell Microbiol 5, 761-771. Pope, B. J., Gonsior, S. M., Yeoh, S., McGough, A., and Weeds, A. G. (2000). Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J Mol Biol 298, 649-661. Porn-Ares, M. I., Samali, A., and Orrenius, S. (1998). Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5, 1028-1033. Rami, A., Agarwal, R., Botez, G., and Winckler, J. (2000). mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866, 299-312. Ridley, A. J., and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-410. Rosenquist, M. (2003). 14-3-3 proteins in apoptosis. Braz J Med Biol Res 36, 403-408. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997). The cIAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Embo J 16, 69146925. Ruggieri, R., Chuang, Y. Y., and Symons, M. (2001). The small GTPase Rac suppresses apoptosis caused by serum deprivation in fibroblasts. Mol Med 7, 293-300. Salvesen, G. S. (2002). Caspases and apoptosis. Essays Biochem 38, 9-19. Salvesen, G. S., and Duckett, C. S. (2002). IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3, 401-410. 130 Samstag, Y., Dreizler, E. M., Ambach, A., Sczakiel, G., and Meuer, S. C. (1996). Inhibition of constitutive serine phosphatase activity in T lymphoma cells results in phosphorylation of pp19/cofilin and induces apoptosis. J Immunol 156, 4167-4173. Samstag, Y., Eckerskorn, C., Wesselborg, S., Henning, S., Wallich, R., and Meuer, S. C. (1994). Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc Natl Acad Sci U S A 91, 4494-4498. Sanchez Mejia, R. O., and Friedlander, R. M. (2001). Caspases in Huntington's disease. Neuroscientist 7, 480-489. Scaffidi, C., Schmitz, I., Krammer, P. H., and Peter, M. E. (1999). The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274, 1541-1548. Schurmann, A., Mooney, A. F., Sanders, L. C., Sells, M. A., Wang, H. G., Reed, J. C., and Bokoch, G. M. (2000). p21-activated kinase phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20, 453-461. Scorrano, L., and Korsmeyer, S. J. (2003). Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304, 437-444. Shea, T. B., Beermann, M. L., Griffin, W. R., and Leli, U. (1994). Degradation of protein kinase C alpha and its free catalytic subunit, protein kinase M, in intact human neuroblastoma cells and under cell-free conditions. Evidence that PKM is degraded by mM calpain-mediated proteolysis at a faster rate than PKC. FEBS Lett 350, 223-229. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850-858. Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000a). Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275, 12321-12325. Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000b). BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A 97, 31003105. Shimizu, S., Narita, M., and Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487. Shu, H. B., Halpin, D. R., and Goeddel, D. V. (1997). Casper is a FADD- and caspaserelated inducer of apoptosis. Immunity 6, 751-763. 131 Siman, R., Ahdoot, M., and Lynch, G. (1987). Ontogeny, compartmentation, and turnover of spectrin isoforms in rat central neurons. J Neurosci 7, 55-64. Song, Y., Hoang, B. Q., and Chang, D. D. (2002). ROCK-II-induced membrane blebbing and chromatin condensation require actin cytoskeleton. Exp Cell Res 278, 45-52. Sorimachi, H., Saido, T. C., and Suzuki, K. (1994). New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett 343, 1-5. Spector, D. L., Goldman, R. D., and Leinwand, L. A. (1997a). Sub-cellular Fractionation: Isolation of Mitochondria from Cells and Tissues. In Cells: A Laboratory Manual (Cold Spring Habor Laboratory), pp. 41.41-41.47. Spector, M. S., Desnoyers, S., Hoeppner, D. J., and Hengartner, M. O. (1997b). Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653-656. Squier, M. K., and Cohen, J. J. (1997). Calpain, an upstream regulator of thymocyte apoptosis. J Immunol 158, 3690-3697. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1996). Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci U S A 93, 14486-14491. Srinivasula, S. M., Gupta, S., Datta, P., Zhang, Z., Hegde, R., Cheong, N., FernandesAlnemri, T., and Alnemri, E. S. (2003). Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 278, 31469-31472. Stennicke, H. R., Deveraux, Q. L., Humke, E. W., Reed, J. C., Dixit, V. M., and Salvesen, G. S. (1999). Caspase-9 can be activated without proteolytic processing. J Biol Chem 274, 8359-8362. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. Suzuki, K., Yamaguchi, T., Tanaka, T., Kawanishi, T., Nishimaki-Mogami, T., Yamamoto, K., Tsuji, T., Irimura, T., Hayakawa, T., and Takahashi, A. (1995). Activation induces dephosphorylation of cofilin and its translocation to plasma membranes in neutrophil-like differentiated HL-60 cells. J Biol Chem 270, 19551-19556. Takahashi, H., Koshimizu, U., Miyazaki, J., and Nakamura, T. (2002). Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase gene. Dev Biol 241, 259-272. 132 Takaishi, K., Sasaki, T., Kato, M., Yamochi, W., Kuroda, S., Nakamura, T., Takeichi, M., and Takai, Y. (1994). Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9, 273-279. Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovich, J. A., Banach, D., Ghayur, T., Brady, K. D., and Wong, W. W. (1997). Substrate specificities of caspase family proteases. J Biol Chem 272, 9677-9682. Tartaglia, L. A., Ayres, T. M., Wong, G. H., and Goeddel, D. V. (1993). A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845-853. Thornberry, N. A. (1997). The caspase family of cysteine proteases. Br Med Bull 53, 478-490. Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., and et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768-774. Toyota, H., Yanase, N., Yoshimoto, T., Moriyama, M., Sudo, T., and Mizuguchi, J. (2003). Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189, 221-230. Trump, B. F., Berezesky, I. K., Chang, S. H., and Phelps, P. C. (1997). The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25, 82-88. Tu, S., and Cerione, R. A. (2001). Cdc42 is a substrate for caspases and influences Fasinduced apoptosis. J Biol Chem 276, 19656-19663. Vanags, D. M., Orrenius, S., and Aguilar-Santelises, M. (1997). Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis. Br J Haematol 99, 824-831. Vaux, D. L., Cory, S., and Adams, J. M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-442. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. Verhagen, A. M., Silke, J., Ekert, P. G., Pakusch, M., Kaufmann, H., Connolly, L. M., Day, C. L., Tikoo, A., Burke, R., Wrobel, C., et al. (2002). HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277, 445-454. 133 Villa, P. G., Henzel, W. J., Sensenbrenner, M., Henderson, C. E., and Pettmann, B. (1998). Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci 111 ( Pt 6), 713-722. Volbracht, C., Leist, M., and Nicotera, P. (1999). ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol Med 5, 477-489. Vyssokikh, M. Y., and Brdiczka, D. (2003). The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50, 389-404. Wakabayashi, T., and Karbowski, M. (2001). Structural changes of mitochondria related to apoptosis. Biol Signals Recept 10, 26-56. Walker, N. P., Talanian, R. V., Brady, K. D., Dang, L. C., Bump, N. J., Ferenz, C. R., Franklin, S., Ghayur, T., Hackett, M. C., Hammill, L. D., and et al. (1994). Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78, 343-352. Wang, K. K., Posmantur, R., Nadimpalli, R., Nath, R., Mohan, P., Nixon, R. A., Talanian, R. V., Keegan, M., Herzog, L., and Allen, H. (1998). Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356, 187-196. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, 2060-2071. White, R. J., and Reynolds, I. J. (1995). Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15, 1318-1328. Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T., and Mann, M. (1996). Femtomole sequencing of proteins from polyacrylamide gels by nanoelectrospray mass spectrometry. Nature 379, 466-469. Wolf, B. B., Goldstein, J. C., Stennicke, H. R., Beere, H., Amarante-Mendes, G. P., Salvesen, G. S., and Green, D. R. (1999). Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94, 1683-1692. Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139, 1281-1292. Xue, D., Shaham, S., and Horvitz, H. R. (1996). The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10, 1073-1083. 134 Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J. (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase and its role in Racmediated actin reorganization. Nature 393, 809-812. Yang, Q. H., Church-Hajduk, R., Ren, J., Newton, M. L., and Du, C. (2003). Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17, 1487-1496. Yonezawa, N., Homma, Y., Yahara, I., Sakai, H., and Nishida, E. (1991). A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin. J Biol Chem 266, 17218-17221. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 betaconverting enzyme. Cell 75, 641-652. Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619-628. Zhan, Q., Bamburg, J. R., and Badwey, J. A. (2003). Products of phosphoinositide specific phospholipase C can trigger dephosphorylation of cofilin in chemoattractant stimulated neutrophils. Cell Motil Cytoskeleton 54, 1-15. Zhivotovsky, B., Cedervall, B., Jiang, S., Nicotera, P., and Orrenius, S. (1994). Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis. Biochem Biophys Res Commun 202, 120-127. Zimmerman, U. J., Wang, M., Nelson, J. B., Ekwunife, F. S., and Liu, L. (1996). Secretagogue-induced proteolysis of cAMP-dependent protein kinase in intact rat alveolar epithelial type II cells. Biochim Biophys Acta 1311, 117-123. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481-1486. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413. 135 [...]... phosphorylated cofilin in F-actin depolymerisation function Figure 5.4.2 Cofilin S3D acts in a dominant negative manner blocking cofilin translocation Figure 5.4.3 Cofilin S3D blocks translocation of endogenous cofilin Figure 5.5 Mitochondrial-localised cofilin induces apoptosis Figure 5.6.1 Cofilin1 5-166, cofilin1 5-30/106-166 and M -cofilin trigger caspase-dependent apoptosis Figure 5.6.2 M -cofilin triggers... 5.6.3 Recombinant Cofilin1 5-166 does not induce cytochrome c release from isolated mitochondria Figure 5.7.1 Mitochondrial localisation of cofilin is independent on its actin-binding activity Figure 5.7.2 Mitochondrial-localised cofilin mutant-induced apoptosis is dependent on the actin-binding domain Figure 5.7.3 Cofilin KQ3 inhibits STS-induced apoptosis xviii List of Schematic Diagrams and Tables... accumulation of cofilin prior to cytochrome c release Figure 5.1.5 Sub-cellular localisation of cofilin Figure 5.1.6 Apoptosis and mitochondrial translocation of cofilin induced by STS is blocked by Bcl-xL overexpression Figure 5.1.7 Cofilin is localised to the mitochondrial outer membrane xvi Figure 5.2.1 Silencing of cofilin expression using cofilin siRNA Figure 5.2.2 Lack of cytochrome c release and apoptotic... morphology in cofilin knockdown cells Figure 5.2.3 Depletion of endogenous cofilin protein inhibits apoptosis Figure 5.2.4 Cofilin silencing confers cellular viability Figure 5.3.1 Phosphorylation status of cofilin Figure 5.3.2 Exclusively dephosphorylated cofilin is observed in neutrophil-like HL60 upon PMA activation Figure 5.4.1 Cofilin S3A and S3D mutants mimicked the dephosphorylated and the phosphorylated... Conservation of apoptotic pathway in C.elegans and mammalian system Diagram 2 The extrinsic and intrinsic apoptotic signal transduction pathways Diagram 3 The role of mitochondria in apoptosis Diagram 4 Schematic structure of calpain II Diagram 5 Cofilin is regulated by Rho family of small GTPase Diagram 6 Protein alignment of human destrin and cofilin Diagram 7 Rasmol model of human destrin protein (1AK6)... cysteine protease in the presence of calcium Figure 4.2 Direct cleavage of caspase-7 by rat recombinant calpain II Figure 4.3 Calpain cleaves both caspase-8 and –9 Figure 4.4 Cleavage of caspase-9 by calpain renders it incapable of caspase-3 activation Figure 4.5 Cleavage of caspase-9 by calpain blocked dATP and cytochrome c induced caspase-3 cleavage Figure 4.6 Time course of calpain activation and. .. independent of caspase activation as well as its actin-binding capacity Using over-expression system, cofilin localised on the organelle induced massive caspase-dependent cell death The proapoptotic effect required the actin-binding property Although, we had shown domains required for cofilin translocation and apoptosis induction, the direct mechanism of cell death induction is not clear As actin-binding ability... 9 (ced-9), 4 (ced-4) and 3 (ced-3) (Horvitz, 2001) Gain -of- function of ced-9 gene in C.elegans prevented the death of the 131 cells, suggesting a protective role of the protein (Hengartner et al., 1992) On the contrary, loss -of- function of ced-4 and ced-3 resulted in the living of the 131 doomed cells, indicating an opposing role of these two proteins with Ced-9 function (Ellis and Horvitz, 1986) More... depolymerising factor AIF Apoptosis- inducing factor AP Calf Intestinal Alkaline Phosphatase Apaf-1 Apoptotic protease-activating factor-1 ATP Adenosine triphosphate Bcl-2 B-cell lymphoma 2 proteins BH domain Bcl-2 homology domain BIR Baculoviral IAP repeat BSA Bovine serum albumin CaCl2 Calcium chloride CARD Caspase recuitment domain Calp In I Calpain inhibitor I Calp In II Calpain inhibitor II Ced Cell... that cofilin induced cell death is actin-dependent The change of cytoskeletal network around the organelle may serve to comprise the integrity of the mitochondria and aid in the release of apoptogenic factors from the organelle Alternatively, cofilin may play a novel role in death induction when translocated to the mitochondria x Previous studies have linked cytoskeletal proteins to apoptosis It is often . TIN NATIONAL UNIVERSITY OF SINAGPORE 2004 ROLE OF CALPAIN AND COFILIN IN APOPTOSIS REGULATION CHUA BOON TIN NATIONAL UNIVERSITY OF SINAGPORE 2004 ROLE OF CALPAIN AND. translocation of cofilin induces apoptosis via the intrinsic pathway 83 5.1. Cofilin translocation into mitochondria in early stage of apoptosis 83 5.2. Silencing of cofilin by siRNA prevents. Mitochondrial-localised cofilin induces apoptosis Figure 5.6.1. Cofilin 15-166 , cofilin 15-30/106-166 and M -cofilin trigger caspase-dependent apoptosis Figure 5.6.2. M -cofilin triggers cytochrome