1. Trang chủ
  2. » Ngoại Ngữ

Conductive polymer metal composites preparation methods on bulk and nano scales

227 526 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 227
Dung lượng 5,4 MB

Nội dung

CONDUCTIVE POLYMER-METAL COMPOSITES: PREPARATION METHODS ON BULK AND NANO SCALES WANG JINGGONG NATIONAL UNIVERSITY OF SINGAPORE 2004 CONDUCTIVE POLYMER-METAL COMPOSITES: PREPARATION METHODS ON BULK AND NANO SCALES WANG JINGGONG (B. Eng., Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2004 ACKNOWLEDGEMENT I would like to express my heart-felt gratitude to the following people for their help and support in the completion of this thesis: — to my supervisors, Professor Neoh Koon Gee and Professor Kang En-Tang, for their constant guidance and invaluable advices throughout my research. I am indebted to them for their supports and patience by introducing me into this exciting field of research; — to the faculty and staff of Department of Chemical and Environmental Engineering, and National University of Singapore for rendering me help of one kind or another to facilitate my research, with special thanks to Dr. Zhang Yan and Dr. Li Sheng for their help in running the XPS measurements; — to my dear mother, father, sister and my wife Wang Xiu for their unfailing encouragement and spiritual support. I TABLE OF CONTENTS ACKNOWLEDGEMENTS I SUMMARY VII NOMENTCLATURE X LIST OF FIGURES XI CHAPTER INTRODUCTION CHAPTER LITERATURE REVIEW 2.1 Overview of Conductive Polymers 10 2.1.1 General Information of Conductive Polymers 10 2.1.2 Polyaniline, Polypyrrole and Polythiophene 13 2.2 Synthesis and Characterization of Polyaniline-Metals Systems 17 2.2.1 Polyaniline-Palladium Systems 19 2.2.2 Other Polyaniline-Metals (Gold, Copper, Iron etc.) Systems 21 2.3 Synthesis of Nanosized Conductive Polymers 23 2.3.1 Synthesis of Nanosized Conductive Polymers by Template Method 24 2.3.2 Other Popular Methods in the Synthesis of Nanosized Conductive Polymers (or Composites) 26 2.4 Plasma Polymerization of Conductive Polymers 28 2.4.1 Plasma Polymerized Aniline Systems 30 2.4.2 Plasma Polymerized Pyrrole Systems 31 2.4.3 Plasma Polymerized Thiophene Systems 32 2.5 Characterization of Conductive Polymers 33 2.5.1 Surface and Interface Analysis of Conductive Polymers 33 II 2.5.1.1 X-ray Photoelectron Spectroscopy (XPS) 34 2.5.1.2 Microscopic Techniques Applied in Surface Characterization 38 2.5.2 39 Spectroscopic Measurements Applied in Conductive Polymers Characterization CHAPTER CHEMICAL DEPOSITION OF PALLADIUM ON LEUCOEMERALDINE FROM SOLUTIONS: STATE AND DISTRIBUTION OF PALLADIUM SPECIES 41 3.1 Introduction 42 3.2 Experimental Section 42 3.2.1 Preparation of Polyaniline 42 3.2.2 Uptake of Pd from Solutions 43 3.2.3 Measurement of Metal Ion Concentration and Film Characterization 43 3.3 Results and Discussion 45 3.3.1 Pd Uptake from PdCl2, Pd(NO3)2 and Their Mixed Solutions 45 3.3.2 Pd Uptake from Mixed Solutions of PdCl2 and AuCl3 55 3.4 Conclusion 64 CHAPTER PREPARATION OF NANOSIZED METALLIC PARTICLES IN POLYANILINE 65 4.1 Introduction 66 4.2 Experimental Section 66 4.2.1 Preparation of Polyaniline 66 4.2.2 Reactions of EM with AuCl3 in NMP (Method 1) 66 4.2.3 Reactions of EM with AuCl3 in Water (Method 2) 67 4.2.4 Reactions of LM with Pd(NO3)2 in Acid (Method 3) 67 4.2.5 Dispersion of Metal Particles in Polyaniline 68 4.2.6 Characterization 68 III 4.3 Results and Discussion 70 4.3.1 Synthesis of Nanosized Particles by Method 70 4.3.2 Synthesis of Nanosized Particles by Method and 78 4.4 Conclusion 88 CHAPTER POLYANILINE-PALLADIUM COMPOSITE COATINGS FOR METALLIZATION OF POLYETHYLENE SUBSTRATE 92 5.1 Introduction 93 5.2 Experimental Section 93 5.2.1 Preparation of AAc-graft Copolymerized LDPE 93 5.2.2 Preparation of Polyaniline 94 5.2.3 Reactions of LM Thin Films with Pd(NO3)2 (Method 1) 94 5.2.4 Reactions of LM Powder with Pd(NO3)2 Followed by Film Casting (Method 2) 95 5.2.5 Characterization 95 5.3 Results and Discussion 96 5.3.1 AAc-graft Copolymerization with LDPE 96 5.3.2 Reactions of LM Thin Films with Pd(NO3)2 (Method 1) 99 5.3.3 Reactions of LM Powder with Pd(NO3)2 Followed by Film Casting (Method 2) 104 5.3.4 Adhesion and Conductivity of Polyaniline-Palladium Films 111 5.4 Conclusion 115 CHAPTER THIN FILMS OF CONDUCTIVE POLYMERS VIA PLASMA POLYMERIZATION 117 6.1 Plasma Polymerization of Aniline on Different Surface Functionalized Substrates 118 6.1.1 Introduction 118 IV 6.1.2 Experimental Section 118 6.1.2.1 AAc-graft Copolymerized LDPE (AAc-g-LDPE) 118 6.1.2.2 PSSA Coated LDPE (PSSA-c-LDPE) 118 6.1.2.3 Viologen-graft Copolymerized LDPE (viologen-g-LDPE) 119 6.1.2.4 Plasma Polymerization of Aniline 120 6.1.2.5 Reactions of Plasma Polymerized Aniline 120 6.1.2.6 Film Characterization 121 6.1.3 122 Results and Discussion 6.1.3.1 Characterization of Plasma Polymerized Aniline 122 6.1.3.2 Reactions Carried Out with Plasma Polymerized Aniline 130 6.1.4 Conclusion 141 6.2 Comparative Study of Chemically Synthesized and Plasma Polymerized Pyrrole and Thiophene Thin Films 143 6.2.1 Introduction 143 6.2.2 Experimental Section 143 6.2.2.1 AAc-graft Copolymerized LDPE (AAc-g-LDPE) 143 6.2.2.2 Chemical Synthesis of Polypyrrole and Polythiophene 143 6.2.2.3 Plasma Polymerization of Pyrrole and Thiophene 144 6.2.2.4 Doping of Plasma Polymerized Monomers with Iodine 145 6.2.2.5 Film Characterization 145 6.2.3 146 Results and Discussion 6.2.3.1 Characterization of Plasma Polymerized Pyrrole and Thiophene 146 6.2.3.2 Stability of Chemically Synthesized and Plasma Polymerized Pyrrole and Thiophene 159 6.2.4 168 Conclusion V CHAPTER ELECTROACTIVE POLYMER PATTERNS WITH METAL INCORPORATION ON POLYMERIC SUBSTRATE 169 7.1 Introduction 170 7.2 Experimental Section 170 7.2.1 Preparation of Polyaniline-Viologen Film 170 7.2.2 Plasma Treatment of Polyaniline-Viologen Film 171 7.2.3 Pattern Formation via Plasma Polymerization of Aniline 171 7.2.4 Incorporation of Metals/Metal Ions 171 7.2.5 Sample Characterization 172 7.3 Results and Discussion 172 7.3.1 Plasma Treatment of PANI-Viologen Film 172 7.3.2 Plasma Polymerized Aniline System 177 7.3.3 Incorporation of Metals/Metal Ions 179 7.4 Conclusion 179 CHAPTER CONCLUSION 182 CHAPTER REFERENCES 186 PUBLICATIONS 209 VI SUMMARY This thesis is a graduate study on the synthesis of nanosized conductive polymers and its metal composites. The two purposes of the study are first, to investigate the reactions between polyaniline and metals, and second, to synthesize nanosized composites of conductive polymers and metals by different methods. The reactions of polyaniline in leucoemeraldine (LM) state with palladium ions in PdCl2, Pd(NO3)2, mixed solutions of PdCl2 and Pd(NO3)2 and mixed solutions of PdCl2 and AuCl3 were investigated. The results showed that a much faster and more complete reduction of Pd ions to Pd0 occurred in the Pd(NO3)2 solution as compared to the PdCl2 solution. The mixing of Pd(NO3)2 with PdCl2 appears to affect the Pd coordination states in solution which in turn affects the Pd uptake rate and the manner in which the Pd is deposited on the LM surface. In mixed solutions of PdCl2 and AuCl3, it was clearly seen that the presence of a small amount of AuCl3 (molar ratio of AuCl3/PdCl2 of 0.1) can greatly accelerate the uptake of Pd and complete removal of Pd ions from PdCl2 can be accomplished. When the reduction of AuCl3 was carried out in N-methylpyrrolidinone (NMP) solutions of polyaniline, the Au particles were of the order of 20 nm. The reduction of AuCl3 or Pd(NO3)2 by polyaniline in the powder form in aqueous media resulted in the accumulation of the elemental Au or Pd on the surface of the polyaniline particles. Subsequent dissolution of the polyaniline in NMP resulted in metal particles of about 50 to 200 nm being dispersed in the NMP solution of polyaniline. The rate of metal salt reduction and the size of the metal particles were found to be strongly dependent on the medium used, the initial ratio of metal ions to polyaniline and the reaction time. VII The coating of acrylic acid grafted low-density polyethylene (AAc-g-LDPE) films with a polyaniline-palladium composite layer was investigated. In the first method, polyaniline was first deposited on the AAc-g-LDPE, followed by reaction with Pd(NO3)2. This resulted in a layer of palladium being deposited on the polyaniline surface. In the second method, polyaniline powder was first reacted with Pd(NO3)2 and the powder was then treated with NMP and coated on the AAc-g-LDPE. In both methods, the amount of palladium deposited can be varied by controlling the reaction time and the proportion of palladium to polyaniline used. In the second method, nanosized palladium metal particles are distributed in the polyaniline coating rather then confined to the surface of the polyaniline layer. In both cases, the palladium metal particles confer surface conductivity to the LDPE substrate even with the polyaniline in the undoped state. The adhesion of the polyaniline-palladium coating to the AAc-g-LDPE substrate is excellent at low palladium content but is significantly weakened when a high palladium content interferes with the interactions between the polyaniline and the AAc-graft copolymerized chains. A high grafting density of AAc will promote better adhesion. The plasma polymerizations of aniline, pyrrole and thiophene on different surface functionlized LDPE substrates were investigated. For all three monomers, the results showed that the structures were rather different from those synthesized by conventional chemical and electrochemical methods. For plasma polymerized aniline, the use of AAcg-LDPE substrate significantly enhanced the adhesion of the plasma polymerized aniline layer to the substrate over that observed with pristine LDPE. The plasma polymerized aniline can be rendered electrically conductive if the polymerization is carried out on a polystyrenesulfonic acid coated low-density polyethylene (PSSA-c-LDPE) substrate. VIII Hasik, M., A. Drelinkiewicz, M. Choczynski, S. Quillard and A. Pron. Polyaniline Containing Palladium – New Conjugated Polymer Supported Catalysts, Synth. Met., 84, pp.93-94. 1997. Hatchett, D.W., M. Josowicz and J. Janata. Electrochemical Formation of Au Clusters in Polyaniline, Chem. Mater., 11, pp.2989-2994. 1999. Hatta, S., T. Hosaka and W. Shimotsuma. Electrochemical preparation of A Polythienylene Film and A Polypyrrole Film Containing AsF6 Groups. Synth. Met., 6, pp.319-320. 1983. Hernandez, R., A.F. Diaz, R. Waltman and J. Bargon. Surface Characteristics of Thin Films Prepared By Plasma and Electrochemical Polymerizations. J. Phys. Chem. 88, pp.3353-3357. 1984. Hertz, H. Wiedemannische. Ultraviolettes Licht Hatb Die Fähigkeit, Die Schlagweite Eines Induktoriums Zu Vergrößern. Annal. Phys., 31, pp.983-1000. 1887. Higuchi, H., D. Imoda and T. Hirao. Redox Behavior of Polyaniline-Transition Metal Complexes in Solution, Macromolecules, 29, pp.8277-8279. 1996. Higuchi, M., S. Yamaguchi and T. Hirao. Construction of Palladium-Polypyrrole Catalytic System in the Wacker Oxidation, Synlett, 12, pp.1213-1218. 1996. Holdcroft, S. and B.L. Funt. Preparation and Electrocatalytic Properties of Conducting Films of Polypyrrole Containing Platinum Microparticulates, J. Electroanal. Chem., 240, pp.89-103. 1988. Holland, L. and L. Laurenson. The Electrical Properties of Silicone Films Polymerized By Electron Bombardment. Vacuum, 14, pp.325-332. 1964. Hotta, S. In Handbook of Organic Conductive Molecules and Polymers, Vol.2, ed by H.S. Nalwa, pp.309-312. New York: Wiley. 1997. Hotta, S., M. Soga and N. Sonoda. Novel Organosynthetic Routes to Polythiophene and Its Derivatives, Synth. Met., 26, pp.267-279. 1988. Huang, S.W., K.G. Neoh, C.W. Shih, D.S. Lim, E.T. Kang, H.S. Han and K.L. Tan. Synthesis, Characterization and Catalytic Properties of Palladium-containing Electroactive Polymers, Synth. Met., 96, pp.117 – 122. 1998. Huang, S.W., K.G. Neoh, E.T. Kang, H.S. Han and K.L. Tan. Palladium-Containing Polyaniline and Polypyrrole Microparticles, J. Mater. Chem., 8, pp.1743-1748. 1998. 194 Huang, W.S., M. Angelopoulos, J.R. White and J.M. Park. Metallization of PrintedCircuit Boards Using Conducting Polyaniline, Mol. Cryst. Liq. Cryst., 189, pp.227-235. 1990. Huczko, A. Template-Based Synthesis of Nanomaterials, Appl. Phys. A-Mater., 70, pp.365-376. 2000. Hulteen, J.C. and C.R. Martin. A General Template-Based Method for the Preparation of Nanomaterials, J. Mater. Chem., 7, pp.1075-1087. 1997. Hynek, B. and O. Yoshihito. Plasma Polymerization Processes. pp.3-5, New York: Elsevier Science Publishers. 1992. Innes, P.D. On The Velocity of The Cathode Particles Emitted By Various Metals Under The Influence of Rontgen Rays, and Its Bearing On The Theory of Atomic Disintegration. Proc. R. Soc., A79, pp.442-462. 1907. Inoue, M. B., K. W. Nebesny, Q. Fernando, M. M. Castillo-Ortega, M. Inoue. Complexation of Electroconducting Polypyrrole with Copper, Synth. Met., 38, pp.205-212. 1990. Inoue, M.B., E.F. Velazquez and M. Inoue. One-Step Chemical Synthesis of Doped Polythiophene by Use of Copper(II) Perchlorate as an Oxidant, Synth. Met., 24, pp.223229. 1988. Ito, S., K. Murata, S. Teshima, R. Aizawa, Y. Asako, K. Takahashi and B.M. Hoffman. Short Communication – Simple Synthesis of Water Soluble Conducting Polyaniline, Synth. Met., 96, pp.161-163. 1998. Ito, T., H. Shirakawa and S. Ikeda. Simultaneous Polymerization and Formation of Polyacetylene Film On The Surface of Concentrated Soluble Ziegler-Type Catalyst Solution. J. Polym. Sci. Polym. Chem. Ed., 12, pp.11-20. 1974. Jarjayes, O., P.H. Fries and G. Bidan. New Nanocomposites of Polypyrrole Including γFe2O3 Particles: Electrical and Magnetic Characterizations, Synth. Met., 69, pp.343-344. 1995. Jewell, J.L., J.P. Harbison and A. Scherer. A. Microlasers, Sci. Am., 265, pp.56-62. 1991. John, R.K. and D.S. Kumar. Structural, Electrical, and Optical Studies of Plasma – Polymerized and Iodine-Doped Polypyrrole, J. Appl. Polymer Sci., 83, pp.1856-1859. 2002. 195 Joo, J. and A.J. Epstein. Electromagnetic-Radiation Shielding by Intrinsically Conducting Polymers, Appl. Phys. Lett., 65, pp.2278-2280. 1994. Joo, J., K.T. Park, B.H. Kim, M.S. Kim, S.Y. Lee, C.K. Jeong, J.K. Lee, D.H. Park, W.K. Yi, S.H. Lee and K.S. Ryu. Conducting Polymer Nanotube and Nanowire Synthesized by Using Nanoporous Template: Synthesis, Characteristics, and Applications, Synth. Met., 135, pp.7-9. 2003. Kanazawa, K.K., A.F. Diaz, W.D. Gill, P.M. Grant, G.B. Street, G.P. Gardini and J.F. Kwak. Polypyrrole: An Electrochemically Synthesized Conducting Organic Polymer. Synth. Met., 1, pp.329-336. 1980. Kang, E.T., H.C. Ti, K.G. Neoh and T.C. Tan. XPS Studies of Some Chemically Synthesized Polypyrrole Organic Acceptor Complexes, Polym. J., 20, pp.845-850. 1988. Kang, E.T., K.G. Neoh and K.L. Tan. Polyaniline: A Polymer with Many Interesting Intrinsic Redox States, Prog. Polym. Sci., 23, pp.277-324. 1998. Kang, E.T., K.G. Neoh and K.L. Tan. The Intrinsic Redox States in Polypyrrole and Polyaniline - A Comparative-Study by XPS, Surf. Interf. Anal., 19, pp.33-37. 1992. Kang, E.T., K.G. Neoh and K.L. Tan. X-Ray Photoelectron Spectroscopic Studies of Poly(2,2'-Bithiophene) and Its Complexes, Phys. Rev. B, 44, pp.10461-10469. 1991. Kang, E.T., K.G. Neoh and K.L. Tan. X-Ray Photoelectron Spectroscopic Studies of Electroactive Polymers, Adv. Polym. Sci., 106, pp.135-190. 1993. Kang, E.T., K.G. Neoh, W. Chen, K.L. Tan, D.J. Liaw and C.C. Huang. Surface Structures and Adhesion Characteristics of Poly(tetrafluoroethylene) Films after Modification by Graft Copolymerization, J. Adhes. Sci. Technol., 10, pp.725-743. 1996. Kang, E.T., Y.P. Ting, K.G. Neoh and K.L. Tan, Electroless Recovery of Precious Metals from Acid-Solutions by N-Containing Electroactive Polymers, Synth. Met., 69, pp.477478. 1995. Kang, E.T., Y.P. Ting, K.G. Neoh and K.L. Tan. Spontaneous and Sustained Gold Reduction by Polyaniline in an Acid-Solution, Polymer, 34, pp.4994-4996. 1993. Keane, M.P., S. Svensson, A. Navesde Brito, N. Correia, S. Lunell, B. Sjogren, O. Inganas and W.R. Salaneck. Gas-Phase X-Ray Photoelectron-Spectroscopy of Model Molecules Relating to the Thermochromism in Poly(3-Alkylthiophene), J. Chem. Phys., 93, pp.63576362. 1990. 196 Kelaidopoulou, A., A. Papoutsis, G. Kokkinidis, W.T. Napporn, J.M. Leger and C. Lamy. Electrooxidation of Beta-D(+) Glucose on Bare and UPD Modified Platinum Particles Dispersed in Polyaniline, J. Appl. Electrochem., 29, pp.101-107. 1999. Kelaidopoulou, A., E. Abelidou, A. Papoutsis, E.K. Polychroniadis and G. Kollinidis. Electrooxidation of Ethylene Glycol on Pt-Based Catalysts Dispersed in Polyaniline, J. Appl. Electrochem., 28, pp.1101-1106. 1998. Kessel, R., G. Hansen and J.W. Schultze. Ber. Bunsenges. XPS-Spectra, Sputter Experiments and UV-Vis-Reflection Spectra of Polyaniline, Ber. Bunsen. Phys. Chem., 92, pp.710-717. 1988. Khabbaz, F. and A.C. Albertsson. Great Advantages in Using a Natural Rubber instead of a Synthetic SBR in a Pro-Oxidant System for Degradable LDPE, BioMacromolecules, 4, pp.665-673. 2000. Khan, M.A., C. Perruchot, S.P. Armes and D.P. Randall. Synthesis of Gold-Decorated Latexes via Conducting Polymer Redox Templates, J. Mater. Chem., 11, pp2363-2372. 2001. Kiesow, A. and A. Heilmann. Deposition and Properties of Plasma Polymer Films Made From Thiophenes, Thin Solid Films, 344, pp.338-341. 1999. Kim, I.W., J.Y. Lee and H. Lee. Solution-Cast Polypyrrole Film: The Electrical and Thermal Properties, Synth. Met., 78, pp.177-180. 1996. Kim, J.H., J.H. Cho, G.S. Cha, C.W. Lee, H.B. Kim and S.H. Paek. Conductimetric Membrane Strip Immunosensor with Polyaniline-Bound Gold Colloids as Signal Generator, Biosens. Bioelectron., 14, pp.907-915. 2000. Klein, J.D., R.D.I. Herrick, D. Palmer, M.J. Sailor, C.J. Brumlik and C.R. Martin. Electrochemical Fabrication of Cadmium Chalcogenide Microdiode Arrays, Chem. Mater., 5, pp.902-904. 1993. Kobayashi, K., J. Chen, T.C. Chung, F. Moraes, A.J. Heeger and F. Wudl. Synthesis and Properties of Chemically Coupled Polythiophene. Synth. Met., 9, pp.77-86. 1984. Kost, K.M., D.E. Bartak, B. Kazee and T. Kuwana. Electrodeposition of Platinum Microparticles Into Polyaniline Films with Electrocatalytic Applications, Anal. Chem., 60, pp.2379-2384. 1988. 197 Kou, C.T. and T.R. Liou. Characterization of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) for Polypyrrole and Poly(N-alkylpyrrole)s Prepared by Electrochemical Synthesis, Synth. Met., 82, pp.167-173. 1996. Kulkarni, M.V., K.V. Annamraju, R. Marimuthu and T. Seth. Spectroscopic, Transport, and Morphological Studies of Polyaniline Doped With Inorganic Acids, Polym. Engin. Sci., 44, pp.1676-1681. 2004. Kumar D.S., K. Nakamura, S. Nishiyama, S. Ishii, H. Noguchi, K. Kashiwagi and Y. Yoshida. Optical and Electrical Characterization of Plasma Polymerized Pyrrole Films, J. Appl. Phys., 93, pp.2705-2711. 2003. Kumar, S., R. Verma, B. Venkataramani, V.S. Raju and S. Gangadharan. Sorption of Platinum, Palladium, Iridium and Gold Complexes on Polyaniline, Solvent Extr. Ion Exc., 13, pp.1097-1121. 1995. Laborde, H., J.M. Leger and C. Lamy. Electrocatalytic Oxidation of Methanol and C1 Molecules on Highly Dispersed Electrodes .1. Platinum in Polyaniline, J. Appl. Electrochem., 24, pp.219-226. 1994. Langmaier, J. and J. Janata. Sensitive Layer for Electrochemical Detection of HydrogenCyanide, Anal. Chem., 64, pp.523-527. 1992. Lee, K.P., S.Y. Park, N.J. Kim and S.K. Song. New Field – Effect Transistor Using the Semiconducting Plasma – Polymerized Films, Mol. Cryst. Liq. Cryst., 224, pp.53-59. 1993. Lee, W., G. Du, S.M. Long, A.J. Epstein, S. Shimizu, T. Saitoh and M. Uzawa. Charge Transport Properties of Fully-Sulfonated Polyaniline, Synth. Met., 84, pp.807-808. 1997. Leone, A., W. Marino and B.R. Scharifker. Electrodeposition and ElectrochemicalBehavior of Palladium Particles at Polyaniline and Polypyrrole Films, J. Electrochem. Soc., 139, pp.438-443. 1992. Li, H.S., M. Josowicz, D.R. Baer, M.H. Engelhard and J. Janata. Preparation and Characterization of Polyaniline-Palladium Composite Films, J. Electrochem. Soc., 142, pp.798-805. 1995. Liang, W.B. and C.R. Martin. Template-Synthesized Polyacetylene Fibrils Show Enhanced Supermolecular Order, J. Am. Chem. Soc., 112, pp.9666-9668. 1990. Lin, W.P. and L.P. Dudek. Synthesis and Properties of Poly (2,5-thienylene). J. Poly. Sci. Polym. Chem. Ed., 18, pp.2869-2873. 1980. 198 Liu, F.T., K.G. Neoh, E.T. Kang, S. Li, H.S. Han and K.L. Tan. Effects of Crosslinking on Polyaniline Films’ Doping Behavior and Degradation under Weathering, Polymer, 40, pp.5285-5296. 1999. Liu, J., Y.H. Lin, L. Liang, J.A. Voigt, D.L. Huber, Z.R. Tian, E. Coker, B. Mckenzie and M.J. Mcdermott. Templateless Assembly of Molecularly Aligned Conductive Polymer Nanowires: A New Approach for Oriented Nanostructures, Chem.-Eur. J., 9, pp.605-611. 2003. Long, Y., Z.J. Chen, N.L. Wang, Y.J. Ma, Z. Zhang, L.J. Zhang and M.X. Wan. Electrical Conductivity of a Single Conducting Polyaniline Nanotube, Appl. Phys. Lett., 83, pp.1863-1865. 2003. Ma, Z.H., H.S. Han, K.L. Tan, E.T. Kang and K.G. Neoh. Thermally Induced Surface Graft Copolymerization with Concurrent Lamination of Polyaniline Films under Atmospheric Conditions, Int. J. Adhes. Adhes., 19, pp.359-365. 1999. Ma, Z.H., S.L. Lim, K.L. Tan, S. Li and E.T. Kang. In-situ X-ray Photoelectron Spectroscopy Study of the Interactions of Evaporated Magnesium with Polyaniline Films, Surf. Sci., 454, pp.995-999. 2000. MacDiarmid, A.G. and A.J. Epstein. Polyanilines - A Novel Class of Conducting Polymers, Faraday Discuss., 88, pp.317-323. 1989. MacDiarmid, A.G. and A.J. Epstein. The Concept of Secondary Doping as Applied to Polyaniline, Synth. Met., 65, pp.103-116. 1994. MacDiarmid, A.G. Polyaniline and Polypyrrole: Where Are We Headed, Synth. Met., 84, pp.27-34. 1997. MacDiarmid, A.G., J.C. Chiang, A.F. Richter and A.J. Epstein. Polyaniline: A New Concept in Conducting Polymers. Synth. Met., 18, pp.285-290. 1987. MacDiarmid, A.G., J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W. Wu and S.I. Yaniger. Polyaniline-Interconversion of Metallic and Insulating Forms. Mol. Cryst. Liq. Cryst., 121, pp.173-187. 1985. Machida, S., S. Miyata and A. Techagumpuch. Chemical Synthesis of Highly Electrically Conductive Polypyrrole, Synth. Met., 31, pp.311-318. 1989. Maeda, S. and S.P. Armes. Preparation of Novel Polypyrrole Silica Colloidal Nanocomposites, J. Colloid Interface Sci., 159, pp.257-259. 1993. 199 Maeda, S. and S.P. Armes. Surface – Area Measurements on Conducting Polymer – Inorganic Oxide Nanocomposites, Synth. Met., 73, pp.151-155. 1995. Malleron, J.L., J.C. Fiaud and J.Y. Legros, Handbook of Palladium-Catalyzed Organic Reactions: Synthesis Aspects and Catalytic Cycles. pp.304-305, San Diego: Academic. 1997. Mansouri, J. and R.P. Burford. Novel Membranes from Conducting Polymers, J. Membr. Sci., 87, pp.23-34. 1994. Mansouri, J. and R.P. Burford. Structural Studies of Polypyrroles with Fibrillar Morphology, J. Mater. Sci., 29, pp.2500-2506. 1994. Marinakos, S.M., D.A. Shultz and D.L. Feldheim. Gold Nanoparticles as Templates for The Synthesis of Hollow Nanometer – Sized Conductive Polymer Capsules, Adv. Mater., 11, pp.34-37. 1999. Martin, C.R. Membrane-Based Synthesis of Nanomaterials, Chem. Mater., 8, pp.17391746. 1996. Martin, C.R. Nanomaterials - A Membrane-Based Synthetic Approach, Science, 266, pp.1961-1966. 1994. Martin, C.R. Template Synthesis of Polymeric and Metal Microtubules, Adv. Mater., 3, pp.457-459. 1991. Martin, C.R., R. Parthasarathy and V. Menon. Template Synthesis of Electronically Conductive Polymers - A New Route for Achieving Higher Electronic Conductivities, Synth. Met., 55, pp.1165-1170. 1993. Maser, W.K., A.M. Benito, M.A. Callejas, T. Seeger, M.T. Martinez, J. Schreiber, J. Muszynski, O. Chauvet, Z. Osvath, A.A. Koos and L.P. Biro. Synthesis and Characterization of New Polyaniline/Nanotube Composites, Mat. Sci. Eng. C-Bio. S., 23, pp.87-91. 2003. Masters, J.G., Y. Sun, A.G. MacDiarmid and A.J. Epstein. Polyaniline-Allowed Oxidation-States, Synth. Met., 41, pp.715-718. 1991. Mathai, C.J., S. Saravanan, S. Jayalekshmi, S. Venkitachalam and M.R. Anantharaman. Conduction Mechanism in Plasma Polymerized Aniline Thin Films, Mater. Lett., 57, pp.2253-2257. 2003. 200 Mazur, M., M. Tagowska, B. Palys and K. Jackowska. Template Synthesis of Polyaniline and Poly(2-methoxyaniline) Nanotubes: Comparison of the Formation Mechanisms, Electrochem. Commun., 5, pp.403-407. 2003. Mearns, A.M. Insulator Thin Films Formed By Glow Discharge and Radiation Techniques. Thin Sol. Films, 3, pp.201-228. 1969. Mickelson, A.R. Polymers Make the OEIC Connection, IEEE Circuit Devic., 10, pp.8-13. 1994. Miller, J.S. Molecular Materials .7. B. Conducting Polymers – Materials of Commerce, Adv. Mater., 5, pp.671-676. 1993. Morales J., M.G. Olayo, G.J. Cruz and R. Olayo. Plasma Polymerization of Random Polyaniline-Polypyrrole-Iodine Copolymers, J. Appl. Polymer Sci., 85, pp.263-270. 2002. Morales J., M.G. Olayo, G.J. Cruz and R. Olayo. Synthesis by Plasma and Characterization of Bilayer Aniline-Pyrrole Thin Films Doped with Iodine, J. Polym. Sci. Pol. Phys., 40, pp.1850-1856. 2002. Morales, J., M.G. Olayo, G.J. Cruz, M.M. Castillo-Ortega and R. Olayo. Electronic Conductivity of Pyrrole and Aniline Thin Films Polymerized by Plasma, J. Polymer Sci. B Polymer Phys., 38, pp.3247-3255. 2000. Neoh, K.G., E.T. Kang and K.L. Tan. Structural Study of Polyaniline Films in Reprotonation / Deprotonation Cycles, J. Phys. Chem., 95, pp.10151-10156. 1991. Neoh, K.G., H.W. Teo and E.T. Kang. Enhancement of Growth and Adhesion of Electroactive Polymer Coatings on Polyolefin Substrates, Langmuir, 14, pp.2820-2826. 1998. Neoh, K.G., K.K. Tan, P.L. Goh, S.W. Huang, E.T. Kang and K.L. Tan. Electroactive Polymer-SiO2 Nanocomposites for Metal Uptake, Polymer, 40, pp.887-893. 1999. Neoh, K.G., K.K.S. Lau, V.V.T. Wong, E.T. Kang and K.L. Tan. Structure and Degradation Behavior of Polypyrrole Doped with Sulfonate Anions of Different Sizes Subjected to Undoping – Redoping Cycles, Chem. Mater., 8, pp.167-172. 1996. Neoh, K.G., M.Y. Pun, E.T. Kang and K.L. Tan. Polyaniline Treat with Organic Acids: Doping Characteristics and Stability, Synth. Met., 73, pp.209-215. 1995. 201 Neoh, K.G., T.T. Young, N.T. Looi and E.T. Kang. Oxidation-Reduction Interactions between Electroactive Polymer Thin Films and Au (III) Ions in Acid Solutions, Chem. Mater., 9, pp.2906-2912. 1997. Ng, S.W., K.G. Neoh, Y.T. Wong, J.T. Sampanthar, E.T. Kang and K.L.Tan. Surface Fraft Copolymerization of Viologens on Polymeric Substrates, Langmuir, 17, pp.1766-1772. 2001. Noufi, R. The Incorporation of Ruthenium Oxide In The Polypyrrole Films and The Subsequent Photooxidation of Water At N-Gap Photoelectrode. J. Electrochem. Soc., 130, pp.2126-2128. 1983. Ohsaka, T., Y. Ohnuki, N. Oyama, G. Katagiri and K. Kamisako. Ir Absorption Spectroscopic Identification of Electroactive and Electroinactive Polyaniline Films Prepared By The Electrochemical Polymerization of Aniline. J. Electroanal. Chem. Interf. Electrochem., 161, pp.399-406. 1984. Olayo, M.G., J. Morales, G.J. Cruz, R. Olayo, E. Ordonez and S.R. Barocio. On the Influence of Electron Energy on Iodine-Doped Polyaniline Formation by Plasma Polymerization, J. Polymer Sci. B Polymer Phys., 39, pp.175-183. 2001. Omastova, M., S. Kosina, J. Pionteck, A. Janke and J. Pavlinec. Electrical Properties and Stability of Polypyrrole Containing Conducting Polymer Composites, Synth. Met., 81, pp.49-57. 1996. Ozin, G.A. Nanochemistry - Synthesis in Diminishing Dimensions, Adv. Mater., 4, pp.612-649. 1992. Park, S.H., J.S. Lee and K.D. Suh. Low Density Polyethylene with an Isocyanate Functional Group, J. Mater. Sci., 33, pp.5145-5148. 1998. Park, S.Y., K.P. Lee, D.H. Choi, N.J. Kim and S.K. Song. Semiconductor – Devices Using the Plasma – Polymerized Pyrrole, Mol. Cryst. Liq. Cryst., 247, pp.321-329. 1994. Parthasarathy, R.V. and C.R. Martin. Synthesis of Polymeric Microcapsule Arrays and Their Uus for Enzyme Immobilization, Nature, 369, pp.298-301. 1994. Pauling, L. The Nature of the Chemical Bond and The Structure of Molecules and Crystals. Ithaca: Cornell University Press. 1960. Pei, Q., O. Inganas, G. Gustafsson, M. Granstrom, M. Anderson, T. Hjertberg, O. Wennerstrom, J.E. Osterholm, J. Laakso and H. Jarvinen. The Routes Towards Processible and Stable Conducting Poly(thiophene)s, Synth. Met., 55, pp.1221-1226. 1993. 202 Penner, R.M. and C.R. Martin. Controlling The Morphology of Electronically Conductive Polymers. J. Electrochem. Soc., 133, pp.2206-2208. 1986. Pfluger, P. and G.B. Street. Chemical, Electronic and Structural Properties of Conducting Heterocyclic Polymers: A View By XPS. J. Chem. Phys., 80, pp.544-553. 1984. Piraux, L., S. Dubois and S. Demoustier-Champagne. Template Synthesis of Nanoscale Materials Using the Membrane Porosity, Nucl. Instrum. Meth. B, 131, pp.357-363. 1997. Rajeshwar, K., C. Wei, W. Wampler, C.S.C. Bose, S. Basak, S. German, D. Evans and V. Krishna. Polypyrrole Composites Containing Platinum or Carbon-Black - from Synthesis to Novel Applications, Abstr. Pap. Am. Chem. S, 207, 169-Poly Part 2. 1994. Ray, A., G.E. Asturias, D.L. Kershner, A.F. Richter, A.G. MacDiarmid and A.J. Epstein. Polyaniline – Doping, Structure and Derivatives, Synth. Met., 29, pp.E141-E150. 1989. Rocha, I.S., L.H.C. Mattoso, L.F. Malmonge and R. Gregório Jr. Effect of Low Contents of A Polyaniline Derivative on The Crystallization and Electrical Properties of Blends with PVDF. J. Polym. Sci. Part B: Polym. Phys., 37, pp.1219-1224. 1999. Rout, T.K., G. Jha, A.K. Singh, N. Bandyopadhyay and O.N. Mohanty. Development of Conducting Polyaniline Coating: a Novel Approach to Superior Corrosion Resistance, Surf. Coat. Tech., 167, pp.16-24. 2003. Sadhir, R.K. and J.K.F. Schoch. Effect of Deposition Conditions on Properties of PlasmaPolymerized Carbon-Disulfide, ABSTR PAP AM CHEM S 210: 207-PMSE Part 2. 1995. Sadhir, R.K. and J.K.F. Schoch. Morphology of Plasma-Polymerized Thiophene Conducting Films, ABSTR PAP AM CHEM S 204: 227-POLY Part 2. 1992. Sadhir, R.K. and K.F. Schoch. Preparation and Properties of Plasma – Polymerized Thiophene (PPT) Conducting Films, Thin Solid Films, 223, pp.154-160. 1993. Salaneck, W.R., R. Erlandsson, J. Prejza, I. Lundstrom and O. Inganas. X-Ray Photoelectron Spectroscopy of Boron Fluoride Doped Polypyrrole. Synth. Met., 5, pp.125139. 1983. Shi, J.L., E.T. Kang, K.G. Neoh, K.L. Tan and D.J. Liaw. Surface Graft Copolymerization of Low Density Polyethylene Films and Its Relevance to Auto-adhesion, Eur. Polym. J., 34, pp.1429-1434. 1998. 203 Shimizu, S., T. Saitoh, M. Uzawa, M. Yuasa, K. Yano, T. Maruyama and K. Watanabe. Synthesis and Applications of Sulfonated Polyaniline, Synth. Met., 85, pp.1337-1338. 1997. Siddaramaiah, R.T. Nagaralli, P. Ravi, K.R. Kumar and K.S. Jagadeesh. Effect of Fillers on the Properties of LDPE Films, J. Polym. Mater., 16, pp.233-237. 1999. Silverstein, M.S. and I. Visoly-Fisher. Plasma Polymerized Thiophene: Molecular Structure and Electrical Properties, Polymer, 43, pp.11-20. 2002. Skotheim, T.A., M.I. Florit, A. Melo and W.E. O’erady. Ultrahigh-Vacuum In Situ Electrochemistry With Solid Polymer Electrolyte and X-Ray Photoelectron Spectroscopy Studies of Polypyrrole. Phys. Rev. B, 30, pp.4846-4849. 1984. Snauwaert, P., R. Lazzaroni, J. Riga and J.J. Verbist. Electronic Structure of Polyanilines: An XPS Study of Electrochemically Prepared Compounds. Synth. Met., 16, pp.245-255. 1986. Snauwaert, P., R. Lazzaroni, J. Riga and J.J. Verbist. Electronic Structure of Polyaniline and Substituted Derivatives. Synth. Met., 18, pp.335-340. 1987. Snauwaert, P., R. Lazzaroni, J. Riga, J.J. Verbist and D. Gonbeau. A Photoelectron Spectroscopic Study of the Electrochemical Processes in Polyaniline, J. Chem. Phys., 92, pp.2187-2193. 1990. Snover, J.L. and M.E. Thompson. Synthesis and Study of Zirconium Viologen Phosphonate Thin-Films Containing Colloidal Platinum, J. Am. Chem. Soc., 116, pp.765766. 1994. Sobczak, J.W., A. Kosinski, A. Bilinski and W. Palczewska. Surface Chemical Sensitivity of Polyaniline Doped with Palladium or Platinum Compounds, Adv. Mater. Optics Electro., 8, pp. 295-302. 1998. Stejskal J., A., Riede, D. Hlavata, J. Prokes, M. Helmstedt and P. Holler. The Effect of Polymerization Temperature on Molecular Weight, Crystallinity, and Electrical Conductivity of Polyaniline, Synth. Met., 96, p.55-61. 1998. Sukeerthi, S. and A.Q. Contractor. A Study of Polyaniline Microtubules: Toward Superior Transducing Abilities, Chem. Mater., 10, pp.2412-2418. 1998. Surville, R.D., M. Josefowicz, L.T. Yu, J. Perichon and R. Buvet. Electrochemical Chains Using Protolytic Organic Semiconductors. Electrochem. Acta, 13, pp.1451-1458. 1968. 204 Tan, K.L., B.T.G. Tan, E.T. Kang and K.G. Neoh. Study of Charge-Transfer Interactions in Polyvinylpyridine-halobenzoquinone Complexes by X-Ray, J. Appl. Phys., 66, pp.5868-5871. 1989. Tan, K.L., B.T.G. Tan, E.T. Kang and K.G. Neoh. X-Ray Photoelectron Spectroscopy Studies of the Chemical Structure of Polyaniline, Phys. Rev. B, 39, pp.8070-8073. 1989. Tan, K.L., B.T.G. Tan, E.T. Kang, K.G. Neoh and Y.K. Ong. X-Ray Photoelectron Spectroscopic Studies of Conductive Polypyrrole Complexes Chemically Synthesized with FeCl3, Phys. Rev. B, 42, pp.7563-7566. 1990. Tan, K.L., B.T.G. Tan, S.H. Khor, K.G. Neoh and E.T. Kang. The Effects of Synthesis Conditions on the Characteristics and Chemical Structures of Polyaniline–A ComparativeStudy, J. Chem. Phys. Solids, 52, pp.673-680. 1991. Tan, K.L., L.L. Woon, H.K. Wong, E.T. Kang, K.G. Neoh. Surface Modification of Plasma-Pretreated Poly(Tetrafluoroethylene) Films by Graft-Copolymerization, Macromolecules, 26, pp.2832-2836. 1993. Tanaka, K., K. Yoshizawa, T. Takeuchi, T. Yamabe and J. Yamauchi. Plasma Polymerization of Thiophene and 3-Methylthiophene, Synth. Met., 38, pp.107-116. 1990. Tanaka, K., T. Yamabe, T. Takeuchi, K. Yoshizawa and S. Nishio. Plasma Polymerization of 1-Benzothiophene, J. Appl. Phys., 70, pp.5653-5660. 1991. Tang, J.S., X.B. Jing, B.C. Wang and F.S. Wang. Infrared Spectra of Soluble Polyaniline, Synth. Met., 24, pp.231-238. 1988. Tian, Z.Q., Y.Z. Lian, J.Q. Wang, S.J. Wang and W.H. Li. Electrochemical and XPS Studies on the Generation of Silver Clusters in Polyaniline Films, J. Electroanal. Chem., 308, pp.357-363. 1991. Tibbitt, J.M., R. Jensen, A.T. Bell and M. Shen, A Model For The Kinetics of Plasma Polymerization Macromolecules, 10, pp.647-653. 1977. Ting, Y.P., K.G. Neoh, E.T. Kang and K.L. Tan. Recovery of Gold by Electroless Precipitation From Acid-Solutions Using Polyaniline, J. Chem. Tech. Biotech., 59, pp.3136. 1994. Tourillon, G. and F. Garnier. New Electrochemically Generated Organic Conducting Polymers. J. Electroanal. Chem., 135, pp.173-178. 1982. 205 Tourillon, G. and F. Garnier. Stability of Conducting Polythiophene and Derivatives. J. Electrochem. Soc., 88, pp.2042-2044. 1983. Tourillon, G. and Y. Jugnet. Electronic and Structural Characteristics of Poly Membered Heterocycles (Polythiophene, Polypyrrole) - an Ultraviolet and X-Ray PhotoelectronSpectroscopy Study, J. Chem. Phys., 89, pp.1905-1913. 1988. Tourillon, G. In Handbook of Conducting Polymers, Vol.1, ed by T.A. Skotheim, pp.293298. New York: Marcel Dekker. 1986. Tourillon, G., E. Dartyge, H. Dexpert, A. Fontaine, A. Iucha, P. Lagarde and D.E. Sayers. Electrochemical Inclusion of Metallic Clusters In Organic Conducting Polymers. J. Electroanal. Chem., 178, pp.357-366. 1984. Tung, C.H., Z.Y. Yuan, L.Z. Wu and R.G. Weiss. Enhancement of Intramolecular Photocycloaddition of Bichromophoric Compounds via Inclusion in Low-Density Polyethylene Films, J. Org. Chem., 64, pp.5156-5161. 1999. Van Dyke, L.S. and C.R. Martin. Electrochemical Investigations of Electronically Conductive Polymers .4. Controlling the Supermolecular Structure Allows Charge Transport Rates to be Enhanced, Langmuir, 6, pp.1118-1123. 1990. Verissimo, C. and O.L. Alves. Preparation of the Conducting Nanocomposites Using Molded Inorganic Matrix: Fibrous Cerium(IV) Hydrogenphosphate as a Self-Supported Pyrrole Polymerization Agent, J. Mater. Chem., 13, pp.1378-1383. 2003. Viehbeck, A., C.A. Kovac, S.L. Buchwalter, M.J. Goldberg and S.L. Tisdale. In Metallization of Polymers, ACS Symposium Series No. 40, ed by E. Sacher, J.J. Pireaux and S.P. Kowalczyk, pp.390-398. Washington DC: American Chemical Society. 1990. Vivekchand, S.R.C., L. Sudheendra, M. Sandeep, A. Govindaraj and C.N.R. Rao. A Study of Polyaniline-Carbon Nanotube Composites, J. Nanosci. Nanotechno., 2, pp.631-635. 2002. Vork, F. T. A., L. J. J. Janssen and E. Barendrecht. Oxidation of Hydrogen At PlatinumPolypyrrole Electrodes. Electrochem. Acta, 31, pp.1569-1575. 1986. Vork, F. T. A., L.J.J. Janssen and E. Barendrecht. Oxidation of Hydrogen at PlatinumPolypyrrole Electrodes. Electrochem. Acta, 31, pp.1569-1575. 1986. Wan, M.X., Z.X. Wei, Z.M. Zhang, L.J. Zhang, K. Huang and Y.S. Yang. Studies on Nanostructures of Conducting Polymers via Self-Assembly Method, Synth. Met., 135, pp.175-176. 2003. 206 Wang, J.X. and F.R. Keene. Mechanism of Mediation of the Electrochemical Oxidation of K4Fe(CN)6 at Poly-[Tris(3-{ω-[4-(2,2’-Bipyridyl)]Alkyl}-Thiophene)Iron(II)] – Film Modified Electrodes in Aqueous Solutions, Electrochim. Acta., 41, pp.2563-2569. 1996. Wang, T., E.T. Kang, K.G. Neoh, K.L. Tan and D.J. Liaw. Surface Modification of LowDensity Polyethylene Films by UV-Induced Graft Copolymerization and Its Relevance to Photolamination, Langmuir, 14, pp.921-927. 1998. Wang, Y. and N. Herron. X-Ray Photoconductive Nanocomposites, Science, 273, pp.632634. 1996. Wang, Y.D. and M.F. Rubner. Stability Studies of the Electrical Conductivity of Various Poly (3-alkythiophenes), Synth. Met., 39, pp.153-175. 1990. Wang, Z., M. Chen and H.L. Li. Preparation and Characterization of Uniform Polyaniline Nano – fibrils Using the Anodic Aluminum Oxide Template, Mater. Sci. Eng. A-Struct., 328, pp.33-38. 2002. Wei, Y., J.M. Yeh, D.L. Jin, X.R. Jia and J.G. Wang. Composites of Electronically Conductive Polyaniline with Polyacrylate-Silica Hybrid Sol-Gel Materials, Chem. Mater., 7, pp.969-974. 1995. Wu, C.G. and T. Bein. Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 264, pp.1757-1759. 1994. Wu, C.R., J.O. Nilsson, O. Inganas, W.R. Salaneck, J.E. Osterholm and J.L. Bredas. Electronic Structure of Polythiophene. Synth. Met., 21, pp.197-202. 1987. Wu, J.Z., E.T. Kang, K.G. Neoh, P.L. Wu and D.J. Liaw. Surface Modification of LowDensity Polyethylene Films by UV-Induced Graft Copolymerization with a Fluorescent Monomer, J. Appl. Polym. Sci., 80, pp.1526-1534. 2001. Xia, H.S. and Q. Wang. Preparation of Conductive Polyaniline/Nanosilica Particle Composites Through Ultrasonic Irradiation, J. Appl. Polym. Sci., 87, pp.1811-1817. 2003. Yang, C.H. and T.C. Wen. Electrodeposited Platinum Microparticles in SulfonatePolyaniline Film for the Electrosorption of Methanol and Sorbitol, Electrochem. Acta, 44, pp.207-218. 1998. Yassar, A., J. Roncali and F. Garnier. Preparation and Electroactivity of Polythiophene Electrodes Modified by Electrodeposition of Palladium Particles, J. Electroanal. Chem., 255, pp.53-69. 1988. 207 Ying, L., C. Yin, R.X. Zhuo, K.W. Leong, H.Q. Mao, E.T. Kang and K.G. Neoh. Immobilization of Galactose Ligands on Acrylic Acid Graft-Copolymerized Poly(ethylene terephthalate) Film and Its Application to Hepatocyte Culture, Bio. Macro., 4, pp.157-165. 2003. Zelenski, C.M. and P.K. Dorhout. Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2, J. Am. Chem. Soc., 120, pp.734-742. 1998. Zeller, M.V. and S.J. Hahn. The Correlation of Chemical-Structure and ElectricalConductivity in Polypyrrole Films by X-Ray Photoelectron-Spectroscopy, Surf. Interf. Anal., 11, pp.327-334. 1988. Zhang, A.Q., C.Q. Cui, J.Y. Lee and F.C. Loh. Interactions Between Polyaniline and Silver Cations, J. Electrochem. Soc., 142, pp.1097-1104. 1995. Zhang, Z.M. and M.X. Wan. Nanostructures of Polyaniline Composites Containing NanoMagnet, Synth. Met., 132, pp.205-212. 2003. Zhao, B.Z., K.G. Neoh, F.T. Liu, E.T. Kang and K.L. Tan. N-Alkylation of Polyaniline with Simultaneous Surface Graft Copolymerization for Inducing and Maintaining a Conductive State, Langmuir, 16, pp.10540-10546. 2000. Zhao, G.H., H.K. Lin, P. Yu, H.W. Sun, S.R. Zhu, X.C. Su and Y.T. Chen. Ethylenediamine-Palladium (II) Complexes with Pyridine and Its Derivatives: Synthesis, Molecular Structure and Initial Antitumor Studies, J. Inorg. Biochem., 73, pp.145-149. 1999. Zhao, L.P. Interactions of Viologens with Conducting Polymers, Metal Salt Solutions and Glucose Oxidase. Ph.D Thesis, National University of Singapore. 2004. Zhao, L.P., K.G. Neoh and E.T. Kang. Photoinduced and Thermal-Activated Doping of Polyaniline, Chem. Mater., 14, pp.1098-1106. 2002. 208 PUBLICATIONS 1. Wang, J.G., K.G. Neoh, E.T. Kang and K.L. Tan. Chemical Deposition of Palladium on Leucoemeraldine from Solutions: State and Distribution of Palladium Species, J. Mater. Chem., 10, pp.1933-1938. 2000. 2. Wang, J.G., K.G. Neoh and E.T. Kang. Preparation of Nanosized Metallic Particles in Polyaniline, J. Colloid. Interf. Sci., 239, pp.78-86. 2001. 3. Wang, J.G., K.G. Neoh, L.P. Zhao and E.T. Kang. Plasma Polymerization of Aniline on Different Surface Functionalized Substrates, J. Colloid. Interf. Sci., 251, pp.214-224. 2002. 4. Wang, J.G., K.G. Neoh and E.T. Kang. Polyaniline-Palladium Composite Coatings for Metallization of Polyethylene Substrate, Appl. Surf. Sci., 218, pp.231-244. 2003. 5. Wang, J.G., K.G. Neoh and E.T. Kang. Comparative Study of Chemically Synthesized and Plasma Polymerized Pyrrole and Thiophene Thin Films, Thin Solid Films, 446, pp.205-217. 2004. 6. Zhao, L.P., K.G. Neoh, J.G. Wang and E.T. Kang. Electroactive Polymer Patterns with Metal Incorporation on a Polymeric Substrate, Polym. Eng. Sci., 44, pp.20612069. 2004. 209 [...]... interactions between conductive polymers and metal ions are essential from both a theoretical and application point of view The conductive polymers are more suitable for hosting metallic microparticles than the fixed redox-site polymers because conductive polymers have multi-coordination sites to give multi-nuclear complexes (Tourillon and Garnier, 1982) 17 Complexation of transition metals to a conjugated... applications such as secondary batteries and display devices 2.2 Synthesis and Characterization of Polyaniline-Metals Systems In the recent years, one can observe a growing interest in conductive polymermetal systems since such incorporation of metals is known to enhance conductivity of the polymer, be applied as novel catalysts for a great number of synthetic reactions and allow metal- ligand interactions... recombine rapidly, and this results in changes in the plasma polymer network over time (Hynek and Yoshihito, 1992) As reported earlier, the chemical structures of plasma polymerized conductive polymers are rather different from conventional polymers and are dependent on the plasma polymerization conditions (Cruz et al., 1999; Cruz et al., 1997; Bhat and Wavhal, 1998) Although detailed information on the structures... containing metal particles include the use of templates for arranging the nanoscopic metal and conductive polymer clusters into spatially well-defined structures (Marinakos et al., 1999), and the 2 incorporation of the metal clusters during electrosynthesis of the polymer (Rajeshwar and Bose, 1994; Vork et al., 1986; Noufi, 1983) There are also a number of investigations on the electrodeposition of metal. .. investigations, the commonly recognized conclusions are: the deposition rate and film thickness are dependent on the carrier gas and plasma power, and hence the thickness of layer can be controlled; the molecular structures are different from counterparts synthesized via conventional methods; conductivity in plasma polymerized aniline, pyrrole and thiophene can be induced with I2 doping but the conductivity level... spectroscopy 6 (XPS) for monitoring the changes in the chemical states of the polymer and metal species, and laser light scattering and electron microscopy for particle size determination The synthesis of polyaniline-palladium composite coatings for the metallization of an inert substrate is described in Chapter 5 The effects of reaction conditions on the particle size and distribution in such systems are... Chapter 7 is on the selective surface deposition of polyaniline via plasma polymerization through a mask By utilizing the special characteristics of plasma polymerization, patterns on the micro and nanoscale can be conveniently fabricated on surfaces of polymeric substrates through a photomask Furthermore, metal incorporation on the electroactive patterns was applied to the assynthesized plasma polymerized... theoretical chemists and physicists 2.1.1 General Information of Conductive Polymers The structures of all conductive polymers have the same signature Each atom along the backbone is involved in a π bond which is much weaker than the σ bonds that hold the atoms in the polymer chain together Placed side by side, these π bonds can delocalize over all the atoms The extent of delocalization of an electron in an extended... interpretation and debate: although every electronic wave function is defined for any point in space, the majority of electron density is smeared over a relatively small volume (Tolbert and Ogle, 1990) A polaron is a type of “electronic 10 defect” that occurs within those π orbitals and is the charge carrier responsible for the conductivity of conductive polymers Thus, the mechanism for charge transport in conductive. .. interaction of polyaniline with transition metal ions with the subsequent reduction of these ions to produce metal nanoparticles with high surface areas (Huang et al., 1998) The selection of a substrate for the conductive polymers -metal systems (and for the subsequent work) is an issue of concern Low-density polyethylene (LDPE) is a useful substrate for many experiments in the laboratory and for many . CONDUCTIVE POLYMER-METAL COMPOSITES: PREPARATION METHODS ON BULK AND NANO SCALES WANG JINGGONG NATIONAL UNIVERSITY OF. UNIVERSITY OF SINGAPORE 2004 CONDUCTIVE POLYMER-METAL COMPOSITES: PREPARATION METHODS ON BULK AND NANO SCALES WANG JINGGONG (B. Eng., Tianjin University) . of nanosized conductive polymers and its metal composites. The two purposes of the study are first, to investigate the reactions between polyaniline and metals, and second, to synthesize nanosized

Ngày đăng: 15/09/2015, 22:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN