Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 282 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
282
Dung lượng
7,56 MB
Nội dung
ELECTRICALLY CONDUCTIVE POLYMER COMPOSITES A Dissertation Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Susan M Rhodes December 2007 ELECTRICALLY CONDUCTIVE POLYMER COMPOSITES Susan Rhodes Dissertation Approved: Accepted: Advisor Dr Roderic Quirk Department Chair Dr Mark Foster Committee Member Dr Alexei Sokolov Dean of the College Dr Stephen Cheng Committee Member Dr Gary Hamed Dean of the Graduate School Dr George Newkome Committee Member Dr Judit Puskas Date Committee Member Dr Mark Soucek ii ABSTRACT Carbon nanofiber composites Hyperbranched polyol carbon nanofiber (CNF) composites were synthesized by the chemical modification of oxidized CNF with glycidol and boron trifluoride diethyl etherate to improve the dispersion of CNF in polymer matrices The resulting polyol CNF were characterized by thermogravimetric analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy Hydroxyl groups were reacted with heptafluorobutyryl chloride to determine the amount of oxidized groups in the sample The amount of hydroxyl groups increased by 417 % for the polyol CNF compared to the oxidized CNF and an improvement in dispersion was observed Silver- and polyaniline-filled epoxy composites Composites with high electrical conductivity have been formulated from 3,4epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, undoped polyaniline (PANI), silver particles, and a Brønsted acid initiator to yield an order of magnitude decrease in electrical resistivity (10-5 ohm-cm) compared to the non-PANI containing composite (10-4 ohm-cm) Formulations were characterized by scanning electron microscopy, thermogravimetric analysis, solid-state 13C nuclear magnetic resonance spectroscopy and 4-point probe conductivity It was postulated that an interaction between PANI and the silver particle surfactants resulted in improved connectivity of the silver particles iii Formulations using undoped PANI exhibited higher conductivity than doped PANI, due to improved dispersion and latent doping from the Brønsted acid and the acidic silver surfactants Radiation-cured, silver-filled epoxy composites Silver fillers were investigated to determine the best aspect ratio for ultraviolet (UV) radiation curing A matrix dependency on the ability to cure a Ag-filled composition was revealed, with Ag-filled acrylate compositions providing higher cure than Ag-filled epoxy compositions Photo-differential scanning calorimetry measurements provided information relating UV curability and the connectivity of Ag particles in the composites The addition of PANI reduced the UV curability of these composites Synthesis of silver nanomaterials Silver nanowire syntheses have been reported, but incorporation of these materials into polymers to reduce percolation thresholds has not been reported The potential to use silver nanowires as conductive fillers in polymer composites was explored Despite numerous attempts, high quantity synthesis of silver nanowires is still an unachieved target Additional research is required to understand the nucleation and kinetics of silver nanowire synthesis to enable their scale-up iv ACKNOWLEDGEMENTS Several individuals actively supported the completion of this dissertation: • Dr William Brittain for the past three years of encouragement, assistance, dedication and advice • My graduate committee members, Dr Roderic Quirk, Dr Alexei Sokolov, Dr Gary Hamed, Dr Judit Puskas and Dr Mark Soucek (Polymer Engineering) • Dr Bernadette Higgins for her background in carbon nanofiber modification and analysis • Dr Jennifer Cross and Dr Matthew Espe (Chemistry) for their collaboration in solid-state 13C NMR spectroscopy of polyaniline • Dr Darrell Reneker, Dr Dale Galehouse and Steve Roberts for their collaboration in DC electrical conductivity measurements • Jamie Himesson (Polymer Engineering) for her knowledge of photo-DSC experimentation • Rajesh Ranjan for his expertise in RAFT technology and assistance with NMR characterization • Richard Wells and Engineered Conductive Materials for their financial support • Dr Wayne Jennings of Case Western Reserve University and Dr Thomas Wittberg of The University of Dayton for their assistance with XPS analysis v • Dr Bojie Wang and Jon Page for their assistance with instrumentation and characterization • Brittain group members for their support for the past three years: Rajesh Ranjan, Kathryn McGinty, Andrew Constable and Crystal Cyrus • Quirk group members for their support over the last year in preparation for job interviews and my research presentation: Manuela Ocampo, Mike Olechnowicz, John Janowski, and Camilla Garces • My family for their support throughout all my education and for making this journey possible • Special thanks to my husband, who has learned more than his share about polymer science I would like to thank him for his patience and understanding Thank you for encouraging me to pursue my educational goals and for supporting my career goals as well vi TABLE OF CONTENTS Page LIST OF TABLES…………………………………………………………………… xvi LIST OF FIGURES………………………………………………………………… xviii LIST OF SCHEMES………………………………………………………………… xxx CHAPTER I II INTRODUCTION…………………………………………………………….1 1.1 Carbon nanofiber composites…………………………………………1 1.2 Silver- and polyaniline filled epoxy composites………………………3 1.3 Radiation-cured, silver-filled epoxy composites…………………… 1.4 Synthesis of silver nanomaterials……….…………………………… HISTORICAL BACKGROUND…………………………………………… 2.1 Carbon nanofiber composites…………………………………………7 2.1.1 Oxidized CNF synthesized by Applied Sciences, Inc…… 10 2.1.2 Determination of CNF oxides by acid-base titration………11 2.1.3 2.1.2.1 Determination of CNF oxides by infrared spectroscopy………………………………… 12 2.1.2.2 Determination of CNF oxides by X-ray photoelectron spectroscopy………………… 13 2.1.2.3 Determination of CNF oxides by Raman spectroscopy………………………… 15 Dispersion of CNF in polymer matrices………………… 19 vii 2.1.3.1 Solution blending of CNF into polymer systems……………………………………… 20 2.1.3.2 Melt blending of CNF into polymer systems……………………………………… 20 2.1.3.3 Surfactants to reduce CNF aggregation……… 21 2.1.3.4 In-situ polymerization……………………… 22 2.1.3.5 CNF surface modifications…………………….22 2.1.3.6 2.2 2.1.3.5.1 “Grafting-to” approach………… 22 2.1.3.5.2 “Grafting-from” approach……….24 Hyperbranched polymer composites………… 26 Silver-filled epoxies………………………………………………….30 2.2.1 Common formulation ingredients in silver-filled epoxies…………………………………………………… 31 2.2.2 Cationic cure mechanism………………………………… 34 2.2.3 Silver particles………………………… 39 2.2.3.1 Surfactants…………………………………… 40 2.2.4 Percolation theory…………………………………………41 2.2.5 Electrical conductivity…………………… .43 2.2.5.1 2.2.6 AC electrical conductivity by dielectric spectroscopy………………………………… 45 Inherently conducting polymers………………………… 49 2.2.6.1 Polyaniline…………………………………… 51 2.2.6.1.1 Synthesis of PANI……………….51 2.2.6.1.2 PANI doping…………………… 54 2.2.6.1.3 Electrical conductivity of doped and undoped PANI……….56 viii 2.2.7 Polyaniline in epoxy adhesives…………………………….61 2.2.7.1 2.3 Ultraviolet radiation curing………………………………………… 68 2.3.1 Excitation processes by absorption of UV light………… 70 2.3.2 Photopolymerization……………………………………….74 III 2.3.2.1 Free-radical photoinitiators and photosensitizers……………………………… 74 2.3.2.2 Cationic photoinitiators……………………….76 2.3.3 Limitations of UV radiation curing……………………… 81 2.3.4 Photopolymerization kinetics and reaction monitoring……84 2.3.5 2.4 Latent doping………………………………… 68 2.3.4.1 UV/VIS absorption spectroscopy…………… 85 2.3.4.2 Fluorescence spectroscopy…………………….85 2.3.4.3 Real-time infrared spectroscopy……………….86 2.3.4.4 Differential photocalorimetry (photo-DSC)… 88 Ultraviolet light curable electrically conductive composites using silver filler………………………………92 Synthesis of silver nanomaterials……………………………………93 2.4.1 The seed mediated “polyol” process………………………93 2.4.2 The seed mediated wet chemical synthesis of silver nanorods and nanowires……………………………………96 2.4.3 Seedless, surfactantless wet chemical synthesis of silver nanowires……………………………………………98 2.4.4 Structural characterization of silver nanowires……………99 EXPERIMENTAL………………………………………………………….102 3.1 CNF composite materials………………………………………… 102 ix 3.1.1 Instrumental methods of characterization for carbon nanofiber materials……………………………………….103 3.1.2 Purification of oxidized carbon nanofibers………………104 3.1.3 Surface induced polymerization of CNF with glycidol………………………………………………… 106 3.1.4 Free glycidol polymerization…………………………….106 3.1.5 Acid-base titration of CNF-OX………………………… 107 3.1.6 Esterification of CNF-OX and CNF-polyol with a fluorinated acid chloride………………………………….107 3.1.7 Dispersion study of CNF-OX and CNF-polyol by visual inspection………………………………………….108 3.1.8 Dispersion study of CNF-OX and CNF-polyol by TEM………………………………………………… 108 3.1.9 Synthesis of CNF-COCl………………………………….108 3.1.9.1 Synthesis of extended CNF-OH…………… 109 3.1.9.1.1 3.1.9.2 3.2 Polymerization of glycidol with extended CNF-OH…………… 109 Synthesis of the macroinitiator CNF-Br…… 110 3.1.9.2.1 Polymerization of aniline……….110 3.1.9.2.2 Polymerization of aniline with CNF-Br……………………111 Silver and polyaniline filled epoxy composites……………………112 3.2.1 Silver particles……………………………………………112 3.2.2 Polyaniline……………………………………………… 114 3.2.3 Formulation of silver-filled epoxy adhesives…………….115 x [B6] Pedigo, J.L.; Iwamoto, N.E.; Grieve, A.; Zhou, X.-Q Via fill formulations which are electrically and/or thermally conductive, or non-conductive U.S Patent 6,312,621, November 6, 2001 [B7] Kang, S.K.; Purushothaman, S J Elecron Mater 1999, 28, 1314 [B8] Chiang, C.K.; Fincher, C.R., Jr.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G Phys Rev Lett 1977, 39, 1098 [B9] Kobayashi, M.; Chen, J.; Chung, T.C.; Moraes, F.; Heeger, A.J.; Wudl, F Synthetic Met 1984, 9, 77 [B10] Dall’Acqua, L.; Tonin, C.; Peila, R.; Ferrero, F.; Catellani, M Synthetic Met 2004, 146, 213 [B11] Neoh, K.G.; Kang, E.T.; Khor, S.H.; Tan, K.L Polym Degrad Stabil 1990, 27, 107 [B12] Iwamoto, N.E.; Pedigo, J.L.; Li, S.W.; Grieve, A Adhesive composition for bonding a semiconductor device U.S Patent 5,744,533, April 28, 1998 [B13] Kint, D.P.R.; Salhi, F.; Seeley, G.J.; Burgess, A.N Dispersions, films, coatings and composites W.O Patent 2006037949 A1, April 13, 2006 [B14] Miller, B J Appl Polym Sci 1966, 10, 217 [B15] Jagt, J.C IEEE T Compon Pack T., Part A 1998, 21, 215 [B16] Adhihetty, I.; Miller, B.; Padmanabhan, R Ceramic conductor package having varying conductive bonds U.S Patent 5,510,649, April 23, 1996 [B17] Mahulikar, D.; Braden, J.; Noe, S.P Metal electronic package having improved resistance to electromagnetic interference U.S Patent 5,043,534, August 27, 1991 [B18] Crivello, J.V.; Lam, J.H.W J Polym Sci Symp 1976, 56, 383 [B19] Crivello, J.V.; Lam, J.H.W.; Volante, C.N J Rad Curing 1977, 4, [B20] Crivello, J.V.; Lam, J.H.W Macromolecules 1977, 10, 1307 [B21] Fouassier, J.P Chemistry, Excited-state processes, and reactivity of cationic photoinitiators In Photoinitiation, photopolymerization and photocuring Hanser/Gardner Publications, Inc.; Cincinnati, 1995; p 107-108 236 [B22] In Encyclopedia of Polymer Science and Engineering; Wiley-Interscience; New York, 1986; vol.6 [B23] Puskas, J.E.; Brister, L.B.; Michel, A.J.; Lanzendörfer, M.G.; Jamieson, D.; Pattern, W.G J Polym Sci Pol Chem 2000, 38, 444 [B24] Bessing, D.W.; Tyler, W.P.; Kurtz, D.M.; Harrison, S.A Anal Chem 1954, 26, 878 [B25] http://www.ndmaterials.com/silver.php, accessed 8/10/07 [B26] http://www.ferro.com/Our+Products/Electronic/Products+and+Markets/ Metal+Powder+and+Flake+Products/Silver+Flake.htm, accessed 8/10/07 [B27] Lu, D.; Tong, Q.K.; Wong, C.P Conductivity mechanisms of isotropic conductive adhesives (ICAs) 1999 International Symposium on Advanced Packaging Materials, Atlanta, GA, March, 1999 [B28] Zhang, C.; Wang, P.; Ma, C.; Guozhang, W.; Sumita, M Polymer 2006, 47, 466 [B29] Weber, M.; Kamal, M.R Polym Compos 1997, 18, 711 [B30] Ruschau, G.R.; Yoshikawa, S.; Newnham, R.E J Appl Phys 1992, 72, 953 [B31] Holm, R Electric contacts; Springer: Berlin, 1967 [B32] Dietrich, I Z Phys 1952, 132, 231 [B33] Yakuphanoglu, F.; Okutan, M.; Zhuang, Q.; Han, Z Physica B 2005, 365, 13 [B34] Masoud, M.S.; Shaker, M.A.; Ali, A.E Spectrochim Acta A 2006, 65, 127 [B35] Khanin, S.D.; Karulina, E.A Low-frequency dielectric spectroscopy of polymer dielectric films Proc 10th International Symposium on Electrets, Athens, Greece, 1999, 521 [B36] Gonon, P.; Boudefel, A J Appl Phys 2006, 99, 024308 [B37] http://artsci-ccwin.concordia.ca/facstaff/a-c/bird/c241/images/p-orbitals.gif, accessed 4/13/06 [B38] http://www.chemsoc.org/exemplarchem/entries/2001/williamson/, accessed 4/13/06 [B39] MacDiarmid, A.G Rev Mod Phys 2001, 73, 701 237 [B40] Kohlman, R.S.; Zibold, A.; Tanner, D.B.; Ihas, G.G.; Ishiguro, T.; Min, Y.G.; MacDiarmid, A.G.; Epstein, A.J Phys Rev Lett 1997, 78, 3915 [B41] Cao, Y.; Andreatta, A.; Heeger, A.J.; Smith, P Polymer 1989, 30, 2305 [B42] Pron, A.; Genoud, F.; Menardo, C.; Nechtschein, M Synth Metals 1988, 24, 193 [B43] MacDiarmid, A.G The polyanilines: a novel class of conducting polymers In Conjugated Polymers and Related Materials: The interconnection of chemical and electronic structure Salaneck, W.R.; Lundstrom, I.; Ranby, B (Eds.) Oxford Science Publications; 1993, pp 73-98 [B44] Lee, K.; Cho, S.; Park, S.H.; Heeger, A.J.; Lee, C.-W.; Lee, S.-H Nature 2006, 441, 65 [B45] Ikkala, O.; Pietila, L.-O.; Ahjopalo, L.; Österholm, H.; Passiniemi, P.J J Chem Phys 1995, 103, 9855 [B46] Özdemir, C.; Can, H.K.; Çolak, N.; Güner, A J Appl Polym Sci 2006, 99, 2182 [B47] MacDiarmid, A.G.; Zhou, Y.; Feng, J Synth Metals 1999, 100, 131 [B48] Allcock, H.R.; Lampe, F.W Contemporary Polymer Chemistry; Prentice Hall: Upper Saddle River, NJ, 1990 [B49] Huang, C.M.; Liu, J.; Sandreczki, T.C.; Jean, Y.C Positron lifetime studies of polyaniline conducting polymer Mat Res Soc Symp Proc 413, Electrical, optical, and magnetic properties of organic solid state materials III Jen, A.; Lee, C.; Dalton, L.; Rubner, M.; Wnek, G.; Chiang, L (Eds.), 1996, 653 [B50] Zuo, F.; Angelopoulos, M.; MacDiarmid, A.G.; Epstein, A.J Phys Rev B 1989, 39, 3570 [B51] Javadi, H.H.S.; Cromack, K.R.; MacDiarmid, A.G.; Epstein, A.J Phys Rev B 1989, 39, 3579 [B52] Reghu, M.; Cao, Y.; Moses, D.; Heeger, A.J Phys Rev B 1993, 47, 1758 [B53] Singh, R.; Arora, V.; Tandon, R.P.; Mansingh, A.; Chandra, S Synth Metals 1999, 104, 137 [B54] Palaniappan, S.; Sreedhar, B.; Nair, S.M Macromol Chem Phys 2001, 202, 1227 [B55] Jia, W.; Tchoudakov, R.; Segal, E.; Joseph, R.; Narkis, M.; Siegmann, A Synth Metals 2003, 132, 269 238 [B56] Tsotra, P.; Friedrich, K Synth Metals 2004, 143, 237 [B57] Tsotra, P.; Gryshchuk, O.; Friedrich, K Macromol Chem Phys 2005, 206, 787 [B58] Tsotra, P.; Gatos, K.G.; Gryshchuk, O.; Friedrich, K J Mater Sci 2005, 40, 569 [B59] Kaplan, S.; Conwell, E.M.; Richter, A.F.; MacDiarmid, A.G J Am Chem Soc 1988, 110, 7647 [B60] Merck Index: An encyclopedia of chemicals, drugs and biologicals, 13th Ed.; O’Neil, M.J.; Smith, A.; Heckelman, P.E.; Budavari, S Eds.; Wiley, John & Sons, Inc.: New York, November 2006 Radiation-Cured Silver-Filled Epoxy Composites [C1] Pappas, S.P Radiation Curing – A Personal Perspective In Radiation Curing, Science and Technology; S Peter Pappas, Ed.; Plenum Press; New York, 1992; p.1 [C2] http://www.bigbrandwaterfilters.com/water_filter_images/electromagnetic.jpg (accessed 3/29/06) [C3] Fouassier, J.P An introduction to basic principles in UV curing In Radiation curing in polymer science and technology; Fouassier, J.P.; Rabek, J.F (Eds); Elsevier applied science: New York, 1993; Volume 1, p 51 [C4] http://www.nordson.com/NR/rdonlyres/A540053A-DEFD-4F8CA82B-5617A011F842/0/UVL3140.pdf (accessed 4/3/06) [C5] Drobny, J.G Ultraviolet radiation processes In Radiation technology for polymers; CRC Press: New York, 2003; volume #, p 45 [C6] http://www.cibasc.com/index/ind-index/ind-paints_and_coatings/ind-pai_coa-tecnew/ind-paints_and_coatings_technologies_protection/ind-paints_and_coatings _technologies_protection_light-stabilizers.htm (accessed 4/3/06) [C7] Andrzejewska, E Progr Polym Sci 2001, 26, 605 [C8] Davidson, S Production of surface coatings using free radical reactions In Exploring the Science, Technology and Applications of UV and EB Curing SITA Technology, Ltd; London, 1999; pp 133-134 [C9] Overberger, C.G.; Ehring, R.J.; Marcus, R.A J Amer Chem Soc 1958, 80, 2456 [C10] Brann, B.L RadTech Rep 1990, 4, 11 239 [C11] Hanrahan, B.D Eaton, R.F Proc Annual Inter Waterborne, High-Solids, and Powder Coatings Symp., New Orleans, LA, 1998 [C12] Hupfield, P.C.; Hurford, S.R.; Tonge, J.S Proc RadTech 1998, 468, 1998 [C13] Soucek, M.D.; Chen, J J Coating Technol 2003, 75, 49 [C14] Davidson, S Production of surface coatings using free radical reactions In Exploring the Science, Technology and Applications of UV and EB Curing SITA Technology, Ltd: London, 1999; p 166 [C15] Decker, C J Polym Sci Chem Ed 1992, 30, 913 [C16] Davidson, S Assessing the efficiency of photoinitiators, photoinitiation and photopolymerization In Exploring the Science, Technology and Applications of UV and EB Curing SITA Technology, Ltd: London, 1999; pp 214-216 [C17] Rettig, W Angew Chem Int Edit 1986, 25, 971 [C18] Song, J.C.; Neckers, D.C Polym Mater Sci Eng 1994, 71, 71 [C19] Nash, H.A.; Docktor, H.J.; Webster, D.C JCT Research 2004, 1, 153 [C20] Cho, J.-D.; Hong, J.-W Eur Polym J 2001, 41, 367 [C21] Krohn, R.C Ultraviolet curable silver composition and related method U.S patent 6,290,881, September 18, 2001 [C22] Cheng, W.T.; Chih, Y.W.; Lin, C.W J Adhesion Sci Technol 2005, 19, 511 [C23] Leonard, J Heats and Entropies of Polymerization In Polymer Handbook, 4th Ed.; Brandrup, J.; Immergut, E.H.; Grulke, E.A., Eds.; John Wiley & Sons: New York, 1999; p 368 Synthesis of silver nanomaterials [D1] Jana, N.R.; Gearheart, L.; Murphy, C.J Chem Commun 2001, 2001, 617 [D2] Jana, N.R.; Gearheart, L.; Murphy, C.J J Phys Chem B 2001, 105, 4065 [D3] Lee, G.-J.; Shin, S.-I; Kim, Y.-C; Oh, S.-G Mat Chem Phys 2004, 84, 197 [D4] Sau, T.K.; Murphy, C.J Mat Res Soc Symp Proc 2004, 789, N10.1.1 [D5] Liu, Y.; Chu, Y.; Yang, L.; Han, D.; Lü, Z Mat Res Bull 2005, 40, 1796 240 [D6] Wiley, B.; Sun, Y.; Xia, Y Langmuir 2005, 21, 8077 [D7] [D8] Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y Chem Eur J 2005, 11, 454 Henglein, A.; Giersig, M J Phys Chem B 1999, 103, 9533 [D9] Sun, Y.G.; Xia, Y.N Science 2002, 298, 2176 [D10] Jin, R.; Cao, Y.W.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G Science 2001, 294, 1901 [D11] Comelissen, J.L.M.; van Heerbeek, R.; Kamer, P.C.J.; Reek, J.N.H.; Sommerdijk, N.A.J.M.; Nolte, R.J.M Adv Mater 2002, 14, 489 [D12] Sun, Y.G.; Yin, Y.D.; Mayers, B.T.; Herricks, T.; Xia, Y Chem Mater 2002, 14, 4736 [D13] Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y Chem Eur J 2005, 11, 454 [D14] Sun, Y.; Xia, Y Metal nanowires synthesized by solution-phase methods In Nanowires and nanobelts Wang, Z.L Ed Kluwer Academic Publishers: Boston, 2003; volume 1, pp 211-234 [D15] Roosen, A.R.; Carter, W.C Physica A 1998, 261, 232 [D16] Guodan, W.; Cewen, N.; Dapeng, Y Tsinghua Science and Technology 2005, 10, 736 [D17] Murphy, C.J.; Jana, N.R Adv Mater 2002, 14, 80 [D18] Caswell, K.K.; Bender, C.M.; Murphy, C.J Nano Lett 2003, 3, 667 241 APPENDICES 242 APPENDIX A CALCULATION FOR THEORETICAL FLUORINE CONTENT IN CNF-OX-F XPS: 30/70 carboxyl/hydroxyl (reactive) 40/60 reactive/non-reactive (e.g quinoid) Elemental analysis: 13.4 atom % of oxygen 13.4 atoms of oxygen for every 100 atoms present atom % C 82.0 O 13.4 Other 4.6 atomic wt 12.011 15.999 (varied) wt 984.9 222.4 110.7 wt % 74.7 16.9 8.4 For every 1.0 g of CNF-OX: 16.9 % oxygen = 6.76 % reactive 1.0 g of CNF-OX Æ 0.0676 g of oxygen 0.1062 g of CNF-OX used Æ 7.179 x 10-3 g of oxygen (7.179 x 10-3 g of oxygen) * (1 mol / 16 g) = 4.486 x 10-4 mol of oxygen For –COOH: only reactive oxygen for every oxygen present: 1.345 x 10-4 (30 %) 6.725 x 10-5 mol of reactive COOH For –OH: 3.402 x 10-4 mol of reactive OH (70 %) Acid chloride (F cpd): FW = 232.48 g/mol ρ = 1.556 g/mL (1 mL)(1.556 g/mL)(1mol/232.48 g) = 6.693 x 10-3 mol of F cpd (6.693 x 10-3 mol of F compound) * (98 % purity) = 6.559 x 10-3 mol of F cpd = 16-fold excess used (6.559 x 10-3 mol of F cpd) (6.725 x 10-5 mol of COOH + 3.402 x 10-4 mol of OH) mol of F cpd needed for every mol of reactive oxygen = 4.070 x 10-4 mol of F cpd (4.070 x 10-4 mol of F cpd) * (232.48 g/mol) = 9.467 x 10-2 g of F cpd F in every F cpd Æ (7) * (18.998) = 132.986 g of F (per mol of F cpd) 132.986 g of F 232.48 g of F cpd = x g of F 9.467 x 10-2 g of F cpd 243 x = 5.415 x 10-2 g of F (4.070 x 10-4 mol) * (36 g/mol HCl) = 0.01465 g HCl lost Total weight = 0.1062 g of CNF-OX + 0.09467 g of F cpd – 0.01465 g HCl lost = 0.1862 5.415 x 10-2 g of F 0.1862 g total = 0.2908 Æ 29,000 ppm F 244 APPENDIX B CALCULATION FOR THEORETICAL FLUORINE CONTENT IN CNF-POLYOL-F XPS: 30/70 carboxyl/hydroxyl (reactive) 40/60 reactive/non-reactive (e.g quinoid) Elemental analysis: 19.4 atom % of oxygen 19.4 atoms of oxygen for every 100 atoms present atom % C 78.0 O 19.4 Other 2.6 atomic wt 12.011 15.999 (varied) wt 936.9 310.4 61.7 wt % 71.6 23.7 4.7 For every 1.0 g of CNF-OX: 23.7 % oxygen Assume 1:1 ratio of O linkages to –OH end groups = 11.9 wt % OH 1.0 g of CNF-OX Æ 0.1190 g of oxygen 0.1044 g of CNF-OX used Æ 1.242 x 10-2 g of oxygen (1.242 x 10-2 g of oxygen) * (1 mol / 16 g) = 7.762 x 10-4 mol of oxygen Acid chloride (F cpd): FW = 232.48 g/mol ρ = 1.556 g/mL (1 mL)(1.556 g/mL)(1mol/232.48 g) = 6.693 x 10-3 mol of F cpd (6.693 x 10-3 mol of F compound) * (98 % purity) = 6.559 x 10-3 mol of F cpd (6.559 x 10-3 mol of F cpd) = 9-fold excess used (7.762 x 10-4 mol of COOH + 3.402 x 10-4 mol of OH) mol of F cpd needed for every mol of reactive oxygen = 4.070 x 10-4 mol of F cpd (7.762 x 10-4 mol of F cpd) * (232.48 g/mol) = 0.18045 g of F cpd F in every F cpd Æ (7) * (18.998) = 132.986 g of F (per mol of F cpd) 132.986 g of F 232.48 g of F cpd = x g of F 0.18045 g of F cpd (7.762 x 10-4 mol) * (36 g/mol HCl) = 0.01465 g HCl lost 245 x = 0.10322 g of F Total weight = 0.1044 g of CNF-OX + 0.18045 g of F cpd – 0.02794 g HCl lost = 0.2569 0.10322 g of F = 0.25691 g total 0.40178 Æ 40,200 ppm F 246 APPENDIX C CALCULATION FOR THEORETICAL FLUORINE CONTENT IN CNF-POLYOL-F XPS: 30/70 carboxyl/hydroxyl (reactive) 40/60 reactive/non-reactive (e.g quinoid) Elemental analysis: 19.4 atom % of oxygen 19.4 atoms of oxygen for every 100 atoms present atom % C 78.0 O 19.4 Other 2.6 atomic wt 12.011 15.999 (varied) wt 936.9 310.4 61.7 wt % 71.6 23.7 4.7 For every 1.0 g of CNF-OX: 23.7 % oxygen Assume all oxygen reactive (no linking O) 1.0 g of CNF-OX Æ 0.237 g of oxygen 0.1044 g of CNF-OX used Æ 2.474 x 10-2 g of oxygen (2.474 x 10-2 g of oxygen) * (1 mol / 16 g) = 1.546 x 10-3 mol of oxygen Acid chloride (F cpd): FW = 232.48 g/mol ρ = 1.556 g/mL (1 mL)(1.556 g/mL)(1mol/232.48 g) = 6.693 x 10-3 mol of F cpd (6.693 x 10-3 mol of F compound) * (98 % purity) = 6.559 x 10-3 mol of F cpd (6.559 x 10-3 mol of F cpd) = 4-fold excess used (1.546 x 10-3 mol of oxygen) mol of F cpd needed for every mol of reactive oxygen = 1.546 x 10-3 mol of F cpd (1.546 x 10-3 mol of F cpd) * (232.48 g/mol) = 0.35951 g of F cpd F in every F cpd Æ (7) * (18.998) = 132.986 g of F (per mol of F cpd) 132.986 g of F 232.48 g of F cpd = x g of F 0.35951 g of F cpd (1.546 x 10-3 mol) * (36 g/mol HCl) = 0.05567 g HCl lost 247 x = 0.20565 g of F Total weight = 0.1044 g of CNF-OX + 0.3591 g of F cpd – 0.05567 g HCl lost = 0.40824 0.20565 g of F = 0.40824 g total 0.50375 Æ 50,400 ppm F 248 APPENDIX D CALCULATION FOR MOLES OF ACID AND NUMBER OF ACID GROUPS IN CNF-OX Galbraith Laboratories: 18,000 ppm F 18,000 ppm = 0.18 0.18 = (x g of F / 0.18622 g total) 132.986 g of F 232.48 g of F cpd = x = 3.335 x 10-2 g of F 3.335 x 10-2 g of F x g of F cpd x = 5.8597 x 10-2 g of F cpd Acid chloride (F cpd): FW = 232.48 g/mol (5.8597 x 10-2 g of F cpd) * (1 mol/232.48 g) = 2.52 x 10-4 mol F cpd mol of F cpd for every mol –OH 2.52 x 10-4 mol –OH per gram sample 1.52 x 1020 –OH groups per gram sample 249 APPENDIX E CALCULATION FOR MOLES OF ACID AND NUMBER OF ACID GROUPS IN CNF-POLYOL Galbraith Laboratories: 75,000 ppm F 75,000 ppm = 0.75 0.75 = (x g of F / 0.18622 g total) 132.986 g of F 232.48 g of F cpd = x = 0.1397 g of F 0.1397 g of F x g of F cpd x = 0.2442 g of F cpd Acid chloride (F cpd): FW = 232.48 g/mol (0.2442 g of F cpd) * (1 mol/232.48 g) = 1.05 x 10-3 mol F cpd mol of F cpd for every mol –OH 1.05 x 10-3 mol –OH per gram sample 6.32 x 1020 –OH groups per gram sample 250