1. Trang chủ
  2. » Ngoại Ngữ

Fabrication of micro and nano fluidic lab on a chip devices utilizing proton beam writing technique

234 248 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 234
Dung lượng 13,11 MB

Nội dung

FABRICATION OF MICRO- AND NANOFLUIDIC LAB-ON-A-CHIP DEVICES UTILIZING PROTON BEAM WRITING TECHNIQUE WANG LIPING A THESIS SUBMITTED FOR THE DEGREE OF PhD DEPARTMENT OF PHYSICS NATIONAL UNIVERSITY OF SINGAPORE 2008 © Copyright by Wang Liping, 2008 NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF PHYSICS The undersigned hereby certify that they have read and recommend to the Examination Committee for acceptance a thesis entitled “Fabrication of Micro- and Nanofluidic Lab-on-a-chip Devices Utilizing Proton Beam Writing Technique” by Wang Liping© in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thesis Submission: Oct 2007 Oral Defense: Feb 2008 Resubmission: Feb 2008 Research Supervisor : ----------------------------------------------Prof. Frank Watt Internal Examiner : ----------------------------------------------A/Prof. Sow Chorng Haur Internal Examiner : ----------------------------------------------A/Prof. Johan R.C. van der Maarel External Examiner : ----------------------------------------------A/Prof. Stuart Victor Springham ii NATIONAL UNIVERSITY OF SINGAPORE Date: Feb 2008 Author: Wang Liping © Title: Fabrication of micro- and nanofluidic lab-on-a-chip devices utilizing Proton Beam Writing technique. Department: Physics Degree: PhD Year: 2008 Permission is herewith granted to National University of Singapore to circulate and to copy for noncommercial purposes, at its discretion, the above title upon the request of individuals or institutions. ------------------------------------------------Signature of author THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WIHTOUT THE AUTHOR'S WRITTEN PERMISSION. THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENTS IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED. iii To my dearest parents iv Table of Contents Table of Contents v Synopsis ix Acknowledgements xii Introduction Micro- and Nano-fabrication Technologies 1.1 Optical Lithography . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Deep UV Lithography . . . . . . . . . . . . . . . . . . . . . . . 1.3 Extreme UV Lithography . . . . . . . . . . . . . . . . . . . . . 1.4 X-Ray Lithography . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Electron Beam Lithography . . . . . . . . . . . . . . . . . . . . 1.6 Ion Beam Lithography . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Focused Ion Beam . . . . . . . . . . . . . . . . . . . . . 1.6.2 Proton Beam Writing . . . . . . . . . . . . . . . . . . . . 1.6.3 Ion Projection Lithography . . . . . . . . . . . . . . . . 1.7 Polymer materials and replication techniques . . . . . . . . . . . 1.7.1 Polymer material properties . . . . . . . . . . . . . . . . 1.7.2 Hot embossing . . . . . . . . . . . . . . . . . . . . . . . 1.7.3 Injection Molding . . . . . . . . . . . . . . . . . . . . . . 1.7.4 Soft Lithography . . . . . . . . . . . . . . . . . . . . . . 1.8 Proton Beam Writing and methods for lab-on-a-chip production 1.8.1 Physical characteristics of protons . . . . . . . . . . . . . 1.8.2 Application areas of proton beam fabrication . . . . . . . 1.8.3 Strategies for lab-on-a-chip fabrication . . . . . . . . . . 1.9 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . . v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 12 13 15 19 20 21 23 24 25 26 27 28 29 30 32 33 36 Fast Prototyping of PMMA Nanofluidic Devices 2.1 Descriptive overview of micro- and nanofluidics . . . . . . . . . . 2.1.1 Classification of fluid flow . . . . . . . . . . . . . . . . . . 2.1.2 Reynolds number . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Fluid property at micro- and nanoscales . . . . . . . . . . 2.1.4 Related issues on micro- and nanofluidic devices . . . . . . 2.2 Instrumentation of PBW technique . . . . . . . . . . . . . . . . . 2.3 Resist materials for PBW . . . . . . . . . . . . . . . . . . . . . . 2.3.1 General properties of PMMA . . . . . . . . . . . . . . . . 2.3.2 Spin-coating of PMMA resist . . . . . . . . . . . . . . . . 2.3.3 PMMA development . . . . . . . . . . . . . . . . . . . . . 2.4 Fabrication of PMMA nanofluidic structures . . . . . . . . . . . . 2.4.1 Beam focusing . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Adjustment of the focal plane . . . . . . . . . . . . . . . . 2.4.3 Dose normalization . . . . . . . . . . . . . . . . . . . . . . 2.4.4 Dose correction . . . . . . . . . . . . . . . . . . . . . . . . 2.4.5 Single-loop scanning versus multi-loop scanning . . . . . . 2.4.6 Exposure strategies . . . . . . . . . . . . . . . . . . . . . . 2.5 Integration of nanofluidic device . . . . . . . . . . . . . . . . . . . 2.5.1 Bonding techniques . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Nanochannel integration by novel thermal bonding method 2.5.3 Optimization of bonding process . . . . . . . . . . . . . . . 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Batch Fabrication of PDMS Micro- and Nanofluidic Devices 3.1 Soft lithography and substrate material . . . . . . . . . . . . . . 3.1.1 Material properties of PMDS . . . . . . . . . . . . . . . 3.1.2 Technical problems of PDMS molding . . . . . . . . . . . 3.2 Polymer replication stamps . . . . . . . . . . . . . . . . . . . . 3.2.1 SU-8 stamp . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Metallic replication stamp . . . . . . . . . . . . . . . . . . . . . 3.3.1 Electroplating principles . . . . . . . . . . . . . . . . . . 3.3.2 Nickel sulfamate electroplating . . . . . . . . . . . . . . . 3.3.3 Fabrication of Ni stamp using PMMA resist template . . 3.4 PDMS fabrication strategies . . . . . . . . . . . . . . . . . . . . 3.4.1 Replication procedure . . . . . . . . . . . . . . . . . . . 3.4.2 Surface dynamic coatings . . . . . . . . . . . . . . . . . . 3.4.3 Hydrophilic treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . 77 . 78 . 80 . 83 . 83 . 87 . 88 . 91 . 93 . 97 . 98 . 101 . 103 vi . . . . . . . . . . . . . 37 37 37 38 39 40 44 50 51 52 55 56 58 60 61 62 63 64 69 69 69 73 75 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Electrokinetic Characterization of PDMS Microfluidic Channels 4.1 Electrokinetic phenomena . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Electroosmosis . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Characterization of electroosmotic effect . . . . . . . . . . . . . . . 4.2.1 Current monitoring . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Experimental setup and method . . . . . . . . . . . . . . . . 4.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 4.3 Characterization of electrophoretic effect . . . . . . . . . . . . . . . 4.3.1 Micro-particle image velocimetry (µPIV) . . . . . . . . . . . 4.3.2 Experimental setup and procedure . . . . . . . . . . . . . . 4.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 106 106 111 113 113 114 116 121 122 122 126 132 Investigation of Red Blood Cell (RBC) Deformability in PDMS Microchannels 134 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1.1 Physiological and mechanical properties of RBCs . . . . . . . 135 5.1.2 Inspection techniques . . . . . . . . . . . . . . . . . . . . . . . 138 5.2 Fabrication of microfluidic channel-device . . . . . . . . . . . . . . . . 142 5.3 Experimental instruments and methodology . . . . . . . . . . . . . . 145 5.3.1 Flow generating systems . . . . . . . . . . . . . . . . . . . . . 145 5.3.2 Visualization and data processing systems . . . . . . . . . . . 146 5.3.3 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4 Deformation of RBCs in micro-capillaries . . . . . . . . . . . . . . . . 148 5.5 Transportation of RBCs in micro-capillaries . . . . . . . . . . . . . . 154 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Application of Nanofluidic Devices in Fluorescence Correlation Spectroscopy 160 6.1 Fluorescence Correlation Spectroscopy(FCS) . . . . . . . . . . . . . . 161 6.1.1 FCS setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.1.2 What can be studied using FCS? . . . . . . . . . . . . . . . . 162 6.1.3 How to read FCS results? . . . . . . . . . . . . . . . . . . . . 163 6.1.4 How to improve FCS performance? . . . . . . . . . . . . . . . 165 6.1.5 FCS for single molecule detection . . . . . . . . . . . . . . . . 167 6.2 Nanoscale fluidic channels . . . . . . . . . . . . . . . . . . . . . . . . 167 vii 6.3 6.4 6.5 PMMA nanofluidic devices for FCS measurements . . . . . . . . 6.3.1 Channel design and fabrication . . . . . . . . . . . . . . 6.3.2 FCS instruments . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Perfusion and fluorescence imaging . . . . . . . . . . . . 6.3.4 FCS measurements in confined nanochannels . . . . . . . PDMS nanofluidic devices for FCS measurements . . . . . . . . 6.4.1 Channel design and fabrication . . . . . . . . . . . . . . 6.4.2 Perfusion and fluorescence imaging . . . . . . . . . . . . 6.4.3 FCS measurements in confining micro- and nanochannels Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 170 171 172 176 178 178 178 180 184 Overall conclusions 186 Appendix 190 A PMMA and SU-8 spin-coating curves 190 B Publications 192 Bibliography 193 viii Synopsis Proton Beam Writing (PBW), pioneered at the Center for Ion Beam Applications (CIBA), National University of Singapore, is a novel mask-less lithographic technique. It relies on a focused beam of high energy fast ions e.g. MeV protons or H+ to rapidly pattern resist materials with nanometer scale details. The inherent properties of protons endow the technique with unique advantages, and distinguish it from conventional optical lithography and various Next Generation Lithography (NGL) techniques. Potential applications of the technique are the fabrication of microand nanofluidic devices and biochips by both fast prototyping and batch fabrication methods to fulfill the need for lab-on-a-chip systems. In this thesis, we describe the development of proton beam writing for the fabrication of lab-on-a-chip devices. Chapter introduces alternative micro- and nano-fabrication technologies, including mainstream lithographic techniques and supplementary polymer replication techniques. The principle, application and prospective development to the respective approaches are given. In particular, fabrication strategies based on proton beam writing technique are detailed and the objective of the study is addressed. In Chapter 2, an overview of fluid principles is presented, and then the fast prototyping fabrication of PMMA nanofluidic devices is described. The instrumentation, substrate materials and related processing steps are explained for carrying out proton beam writing, followed by a detailed discussion of exposure procedures ix x and improvement of operation conditions for high-resolution patterning. In addition, a novel thermal bonding technique is presented, which has been demonstrated to be useful for enclosing PMMA nano-structures to construct functional lab-on-a-chip fluidic devices in a fast and direct way. Chapter presents a bulk fabrication strategy using PDMS elastomer. An introduction to the polymer property is given, then the fabrication of SU-8 polymer stamps and Nickel sulfamate bath electroplating of metallic stamps are described. The PDMS replication processes are described in detail, and the surface modifications, which are important to satisfy different application requirements, are explained. Chapter provides a fluidic characterization of PBW fabricated PDMS channels be means of electrokinetic on-chip testings. Current monitoring and µPIV methods are employed to examine the electrokinetic flow in the PDMS microchannels with inner surface treatment. Results from our study suggest further applications in complex bioparticle manipulations relying on electroosmosis and electrophoresis effects, such as DNA/protiens sequencing and separation. Chapter presents a investigation into deformation behaviors of healthy human Red Blood Cells (RBCs) in PDMS simulated micro-capillaries. The precision and fidelity of bulk-produced fluidic microchannels provides good reproducibility in the measured data. Preliminary analytical results on both cell deformation and transportation behavior of RBCs in constricted microchannels are described, which may be useful for the diagnosis of pathological cell samples in the future. In Chapter 6, both PMMA and PDMS nanofluidic lab-on-a-chip devices have been applied in Fluorescence Correlation Microscopy (FCS) measurements. Fluid perfusion, fluorescent imaging and FCS tests are carried out in these proton beam fabricated nanochannel systems. Results from these experiments suggest a potential 199 [56] E. J. Teo, M. B. H Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood. Three-dimensional microfabrication in bulk silicon using high-energy protons. Applied Physics Letters, 84:3202–3204, 2004. [57] M.B.H. Breese, E.J. Teo, D. Mangaiyarkarasi, F. Champeaux, A.A. Bettiol, and D. Blackwood. Proton beam writing of microstructures in silicon. Nuclear Instruments and Methods in Physics Research B, 231:357–363, 2005. [58] E.J. Teo, M.B.H. Breese, A.A. Bettiol, D. Mangaiyarkarasi, F. Champeauz, F. Watt, and D. Blackwood. Multicolour photoluminescence from porous silicon using focused high-energy helium ions advanced materials. Journal of Laboratory and Clinical Medicine, 18:51–55, 2006. [59] C.N.B. Udalagama, A.A. Bettiol, and F. Watt. A monte carlo study of the extent of proximity effects in e-beam and p-beam writing of PMMA. Nuclear Instruments and Methods in Physics Research B, 260:384–389, 2007. [60] A.A. Bettiol, C.N.B. Udalagama, J.A. van Kan, and F. Watt. Ionscan: scanning and control software for proton beam writing. Nuclear Instruments and Methods in Physics Research B, 231:400–406, 2005. [61] J. A. van Kan, A. A. Bettiol, and F. Watt. Proton beam writing of 3D nanostructures in hydrogen silsesquioxane. Nano Letters, 6:579–582, 2006. [62] K. A. Mahabadi, J. A. van Kan, A. A. Bettiol, and F. Watt. Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. Journal of Micromechanics and Microengineering, 16:1967–1974, 2006. [63] J.A. van Kan, P.G. Shao, P. Molter, M. Saumer, A.A. Bettiol, T. Osipowicz, and F. Watt. Fabrication of a free standing resolution standard for focusing mev ion beams to sub 30 nm dimensions. Nuclear Instruments and Methods in Physics Research B, 231:170–175, 2005. 200 [64] J. A. van Kan, P. G. Shao, K. Ansari, A. A. Bettiol, T. Osipowicz, and F. Watt. Proton beam writing: a tool for high-aspect ratio mask production. Microsystem Technologies, 13:431–434, 2006. [65] F. Zhang, F. Sun, J.A. van Kan, P.G. Shao, Z. Zheng, R.W. Ge, and F. Watt. Measurement of cell motility on proton beam micromachined 3D scaffolds. Nuclear Instruments and Methods in Physics Research B, 231:413–418, 2005. [66] J. Melngailis, A.A. Mondelli, I.L. Berry, and R. Mohondro. A review of ion projection lithography. J. Vac. Sci. Technol. B, 163:927–957, 1998. [67] R. Kaesmaier, H. Loschner, G. Stengl, J.C. Wolfe, and P. Ruchhoeft. Ion projection lithography: International development program. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17(6):3091– 3097, 1999. [68] H. Becker and L. E. Locascio. Polymer microfluidic devices. Talanta, 56:267– 287, 2002. [69] W.A. Kaplan. Modern Plastics Encyclopedia. McGraw-Hill, New York, 1998. [70] J.E. Mark. Polymer Data Handbook. Oxford University Press, New York, 1999. [71] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry, 69(23):4783 – 4789, 1997. [72] L.E. Locascio, M. Gaitan, J. Hong, and M. Eldefrawi. Plastic microfluid devices for clinic measurements. Proceedings of Micro-TAS’98, Banff, Canada, pages 367–370, 1998. [73] H. Becker and H. Heim. Cast epoxy-based microfluidic systems and their application in biotechnology. Proceedings of MEMS’99, Orlando, FL, pages 228–232, 1999. 201 [74] R.M. McCormick, R.J. Nelson, M.G. Alonson-Amigo, D.J. Benvegnu, and H.H. Hooper. Microchannel electrophoretic separations of dna in injection-molded plastic substrates. Analytical Chemistry, 69:2626–2630, 1997. [75] B. Ekstrom, G. Jacobsen, O. Ohman, and H. Sjodin. Microfluidic structure and process for its manufacture. International patent, (WO 91/16966), 1990. [76] D. Qin, Y. Xia, J.A. Rogers, R.J. Jackman, X.M. Zhao, and G.M. Whitesides. Microsystem technology in chemistry and life science. Springer, Heidelberg, 1998. [77] J. F. Ziegler and JP Biersack. SRIM-2000 The Stopping and Range of Ions in Matter (software). IBM Corporation, New York, 2000. [78] K. Ansari, J. A. van Kan, A. A. Bettiol, and F. Watt. Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing. Applied Physics Letters, 85:476–478, 2004. [79] A.E. Vardy. Fluid principles. McGraw-Hill, New York, 1990. [80] E. Guyon. Physical hydrodynamics. Oxford University Press, 2001. [81] A.A. Bettiol, J.A. van Kan, T.C. Sum, and F. Watt. A labview-based scanning and control system for proton beam micromachining. Nuclear Instruments and Methods B, 181:49–53, 2001. [82] C.N.B. Udalagama, A.A. Bettiol, J.A. van Kan, E.J. Teo, M.B.H. Breese, T. Osipowicz, and F. Watt. An automatic beam focusing system for mev protons. Nuclear Instruments and Methods in Physics Research B, 231:389–393, 2005. [83] online at. http://www.boedeker.com/acryl p.htm. [84] online at. http://www.matweb.com/search/SpecificMaterial.asp?bassnum=O1303. 202 [85] F. Zhang, J.A. van Kan, S.Y. Chiam, and F. Watt. Fabrication of free standing resolution standards using proton beam writing. Nuclear Instruments and Methods in Physics Research B, 260:474–478, 2007. [86] S. Ban, H. Hirayama, Y. Namito, S. Tanaka, H. Nakashima, Y. Nakane, and N. Nariyama. Calibration of silicon pin photodiode for measuring intensity of 7∼40 kev photons. Journal of Nuclear Science and Technology, 31(2):163–168, 1994. [87] I. Britvitch, Y. Musienko, and D. Renker. Investigation of a photon counting avalanche photodiode from hamamatsu photonics. Nuclear Instruments and Methods in Physics Research A, 567:276–280, 2006. [88] Si pin photo-diode: S1223 series. http://sales.hamamatsu.com/assets/pdf/parts S/. [89] F. Watt. Focused high energy proton beam micromachining: a perspective view. Nuclear Instruments and Methods. B, 158:165–172, 1999. [90] D. Mijatovic, J.C.T. Eijkel, and A. van den Berg. Technologies for nanofluidic systems: top-down vs. bottom-up: a review. Lab on a Chip, 5:492–500, 2005. [91] W. K. Schomburg, R. Ahrens, W. Bacher, J. Martin, and V. Saile. Amandasurface micromachining, molding, and diaphragm transfer. Sensors and Actuators, 76:343–348, 1999. [92] J.H. Li, D. Chen, and G. Chen. Low-temperature thermal bonding of pmma microfluidic chips. Nature Genetics, 38(7):1127 –1136, 2005. [93] P. E. Shao, J. A. van Kan, L. P. Wang, A. A. Bettiol K. Ansari, and F. Watt. Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding. Applied Physics Letters, 88, 2006. 203 [94] P.G. Shao, J.A. van Kan, L.P. Wang, K. Ansari, A.A. Bettiol, and F. Watt. Rapid prototyping of micro/nano poly(methyl methacrylate) fluidic systems using proton beam writing. Nuclear Instruments and Methods in Physics Research B, 260:362–365, 2007. [95] L.P. Wang, P.G. Shao, J.A. van Kan, A.A. Bettiol K. Ansari, X.T. Pan, T. Wohland, and F. Watt. Fabrication of nanofluidic devices utilizing proton beam writing and thermal bonding techniques. Nuclear Instruments and Methods in Physics Research B, 260:450–454, 2007. [96] Y.N. Xia and G.M. Whitesides. Soft lithography. Annual Review of Material Sciences, 28:153–184, 1998. [97] H. Becker and C. Gartner. Microreplication technologies for polymer-based µTAS applications. ELSEVIER B.V., Amsterdam, The Netherlands, 2003. [98] S.J. Clarson and J.A. Semlyen. Siloxane Polymers. Englewood Cliffs, NJ: Prentice Hall, 1993. [99] online at:. http://mrsec.wisc.edu/Edetc/PDMS/, page retrieved on 01 Apr 2007. [100] S.K. Sia and G.M. Whitesides. Microfluidic devices fabricated in poly(dimethlysiloxane) for biological studies. Electrophoresis, 24:3563–3576, 2003. [101] J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 23(20):3461–3473, 2002. [102] S.R. Quake and A. Scherer. From micro- to nanofabrication with soft materials. Science, 290:1536–1540, 2000. 204 [103] A. Bietsch and B. Michel. Conformal contact and pattern stability of stamps used for soft lithography. Journal of Applied Physics, 88(7):4310–4318, 2000. [104] E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck. Stability of molded polydimethylsiloxane microstructures. Advanced Materials, 9(12):741–746, 1997. [105] C. Donzel, M. Geissler, A. Bernard, H. Wolf, B. Michel, J. Hilborn, and E. Delamarche. Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Advanced Materials, 13(15):1164–1167, 2001. [106] H. Schmid and B. Michel. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, 33(8):3042–3049, 2000. [107] T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, and G.M. Whitesides. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 18:5314– 5320, 2002. [108] N. LaBianca and J. Delorme. High aspect ratio resist for thick film applications. Proc. of International Society for Optical Engineering (SPIE), 2438:846–852, 1998. [109] H. Lorenz, M. Despont, P. Vettiger, and P. Renaud. Fabrication of photoplastic higi-aspect ratio microparts and micromolds using SU-8 UV resist. Microsyst. Technol., 4:143–146, 1998. [110] A. Sazonov and A. Nathan. 120◦ C fabrication technology for a-si:h thin film transistors on flexible polyimide substrates. Journal of Vacuum Science and Technology A, 18(2):780–782, 1999. [111] Modern Electroplating. Wiley-Interscience, New Jersey, US, 2000. 205 [112] M. Schlesinger and M. Paunovic. Prentice Hall, Englewood Cliffs, New Jersey, 1991. [113] D.W. Baudrand and N.V. Mandich. Troubleshooting electroplating installations: Nickel sulfamate plating system. Plating and Surface Finishing, 89:68–76, 2002. [114] Y. Tsuru M. Nomura and F.R. Foulkes. Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath. Journal of Applied Electrochemistry, 32:629–634, 2002. [115] T. Saito, E. Sato, M. Matsuoka, and C. Iwakura. Electroless deposition of NiB, Co-B, and Ni-Co-B alloys using dimethylamineborane as a reducing agent. Journal of Applied Electrochemistry, 28:559–563, 1998. [116] N.V. Mandich. pH, hydrogen evolution and their significance in electroplating operations. Plating and Surface Finishing, 89:54–58, 2002. [117] M. Liu and Q.F. Chen. Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications. Journal of Micro/Nanolithography, MEMS and MOEMS, 6(2):02388– 02393, 2007. [118] G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis, 21:107–115, 2000. [119] E. Carrilho. DNA sequencing by capillary array electrophoresis and microfabricated array systems. Electrophoresis, 21:55–65, 2000. [120] J.F. Rabek. Polymer photodegration. Chapman and Hall, London, 1995. 206 [121] N. Inagaki. Plasma Surface Modification and Plasma Polymerization. Technomic, Lancaster, PA, 1996. [122] J. Horvath and V. Dolnik. Polymer wall coatings for capillary electrophoresis. Electrophoresis, 22:644–655, 2001. [123] Y. Liu, J.C. Fanguy, J.M. Bledsoe, and C.S. Henry. Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Analytical Chemistry, 72:5939–5944, 2000. [124] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Surface, 137:11–24, 1990. [125] V. Linder, E. Verpoorte, N. F. de Rooij, H. Sigrist, and W. Thormann. Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin g immunoassay with incorporated internal standard. Electrophoresis, 23:740–749, 2002. [126] T.L. Yang, S.Y. Jung, H.B. Mao, and P. S. Cremer. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Analytical Chemistry, 73:165–169, 2001. [127] D.P. Wu, Y. Luo, X.M. Zhou, Z.P. Dai, and B.C. Lin. Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis, 26(1):211–218, 2005. [128] B. Huang, H.K. Wu, S. Kim, and R. N. Zare. Coating of poly(dimethylsiloxane) with n-dodecyl-β-d-maltoside to minimize nonspecific protein adsorption. Lab on a chip, 5:1005–1007, 2005. [129] A. Manz. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromach. Microeng., 4:257–265, 1994. 207 [130] C.H. Chen and J.G. Santiago. A planner electroosmotic micropump. J. Micro Electromechanical Systems, 11:672–683, 2002. [131] R.F. Probstein. Physicochemical hydrodynamics. Wiley, New York, 1994. [132] S.D. Senturia. Microsystem design. Kluwer academic publisher, Boston, 2001. [133] M.A. Unger. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 228:113–116, 2000. [134] S. Arulanandam and D. Li. Determining zeta potential and surface conductance by monitoring the current in electro-osmotic flow. J. Colloid and Interface Science, 25:421–428, 2000. [135] J.L. Anderson and W. K. Chem. Effect of analyte adsorption on the electroosmotic flow in microfluidic channels. Anal. Chem, 38:93–106, 1985. [136] Br. J. Kirby and E. F. Hasselbrink Jr. Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations. Electrophoresis, 25:187–202, 2004. [137] L.Q. Ren, C. E. Canseco, and D.Q. Li. A new method of evaluating the average electro-osmotic velocity in miccrochannels. J. Colloid and interface Science, 250:238–242, 2002. [138] D. Erickson, D. Sinton, and D. Li. Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems. Lab on a chip, 3:141–149, 2003. [139] M.S. Bello, L. Capelli, and P.G. Righetti. Dependence of the electroosmotic mobility on the applied electric field and its reproducibility in capillary electrophoresis. J. Chromatogr., A684:311–322, 1994. 208 [140] A.M. Spehar, K. Sander Koster, V. Linder, S. Kulmala, N. F. de Rooij, E. Verpoorte, H. Sigrist, and W. Thormann. Electrokinetic characterization of poly(dimethylsiloxane microchannels. Electrophoresis, 24:3674–3678, 2003. [141] G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis, 21:105–115, 1999. [142] B. J. Kirby and E. F. Hasselbrink Jr. Zeta potential of microfluidic substrates:ii. data for polymers. Electrophoresis, 25:203–213, 2004. [143] L. Gui, S.T. Wereley, and S.Y. Lee. Digital filters for reducing background noise in micro PIV measurements. Proceedings of the 11th International Symposium on the Applied Laser Techniques to Fluid Mechanics, paper 12.4, 2002. [144] S. Inoue and K.R. Spring. Video microscopy the fundamentals 2nd edn. Plenum Press, New York, 1997. [145] A.E. Herr, J.I. Molho, J.G.Santiago, T.W. Kenny M.G. Mungal, and M.G. Garguilo. Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem., 72:1053–1059, 2000. [146] M.J. Kim and K.D. Kihm. Microscopic PIV measurements for electro-osmotic flows in PDMS microchannels. J. Visualization, 7:111–118, 2004. [147] M.G. Olsen and R.J. Adrian. Brownian motion and correlation in particle image veocimetry. Optics and Laser Technology, 32:621–627, 2000. [148] E.M. Sparrow, C.W. Hixon, and G. Shavit. Experiments on laminar flow development in rectangular ducts. ASME J. of Basic Engineering, 89:116–124, 1967. 209 [149] S. Arulanandam and D.Li. Liquid transport in rectangular microchannels by electroosmotic pumping. Colloid and Surfaces A: physicochemistry and engineering aspects, 161(1). [150] H. Huang, R. D. Kamm, and R.T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol, 287:1–11, 2004. [151] L. C. Junqueira, J. Carneiro, R. O. Kelley, and J. Carnerio. Basic Histology. Pearson, 1995. [152] N.A. Campell and J.B. Reece. Biology. Addision Wesley Longman, Inc, 2005. [153] E.A. Evans and P.L. La Celle. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood, 45:29–43, 1975. [154] online. http://www.herbs-hands-healing.co.uk/pictures/superfood/redbloodcells.jpg. [155] Y.C. Fung and P. Tong. Theory of the sphering of red blood cells. Bionhrs. J., 8:175–198, 1968. [156] E. A. Evans and Y. C. Fung. Improved measurements of the erythrocyte geometry. Microoasc. Res., 4:331–347, 1972. [157] C.T. Lim, E.H. Zhou, and S.T. Quek. Mechanical models for living cells: a review. Journal of Biomechanics, 39:195–216, 2006. [158] J.M. Mitchison and M.M. Swann. The mechanical properties of the cell surface: I. the cell elastimeter. Journal of Experimental Biology, 31:443–460, 1954. [159] A. Krogh. The Anatomy and Physiology of Capillaries. Hafner, New York, 1959. 210 [160] P.I. Branemark. Intracascular Anatomy of Blood Cells in Man. Karger, Basel, 1971. [161] B. Bull. Red cell biconcavity and deformability. Springer, Berlin, 1973. [162] J.W. Helfrich and H.J. Deulidg. Some theoretical shapes of red blood cells. Journal of Physique, 36:1–327, 1975. [163] Evan A. Evans. Minimum energy analysis of membrane deformation applied to pippet aspiration and surface adhesion of rbcs. Biophysical Journal, 30:265–284, 1980. [164] C.T. Lim, E.H. Zhou, A. Li, S.R.K. Vedula, and H.X. Fu. Experimental techniques for single cell and single molecule biomechanics. Mat. Sci. Eng., C 26:1278–1288, 2006. [165] M.P. Sheetz. Laser tweezers in cell biology. Academic Press, London, 1998. [166] S. Chu. Laser manipulation of atoms and particles. Science, 253:861–866, 1991. [167] A. Ashkin and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235:1517–1520, 1987. [168] C.T. Lim, M. Dao, S. Suresh, C.H. Sow, and K.T. Chew. Large deformation of living cells using laser traps. Acta Materialia, 52:837–845, 2004. [169] W.J. Wang and S. A. Soper, editors. Bio-MEMS: technologies and applications. CRC press, New York, 2006. [170] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl. Microfluidic diagnostic technologies for global public health. Nature, 442(7101):412–418, 2006. 211 [171] G. M. Whitesides, E. Ostuni, T. Shuichi, X. Jiang, and D.E. Ingber. Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 3:335–373, 2001. [172] P. Wilding, J. Pfahler, H.H. Bau, J.N. Zemel, and L.J. Kricka. Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clinical Chemistry, 40:43–47, 1994. [173] G.R. Cokelet, R. Soave, G. Pugh, and L. Rathbun. Fabrication of in vitro microvascular blood flow systems by photolithography. Microvasc Research, 46:394–400, 1993. [174] R.M. Hochmuth, P.R. Worthy, and E.A. Evans. Red cell extensional recovery and the determination of membrane viscosity. Biophysical Journal, 26:101–114, 1979. [175] N. Sutton, M.C.Tracey, R.S. Greenaway I.D. Johnston, and M.W. Rampling. A novel instrument for studying the flow behavior of erythrocytes through microchannels simulating human blood capillaries. Microvascular Research, 53:272–281, 1997. [176] E. A. Evans. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophysical Journal, 43:27–30, 1983. [177] J. P. Brody, Y. Han, R. H. Austin, and M. Bitensky. Deformation and flow of red blood cells in a synthetic lattice: evidence for an active cytoskeleton. Biophysical Journal, 68:2224–2232, 1995. [178] S. C. Gifford, M. G. Frank, J. Derganc, R. H. Austin C. Gabel, T. Yoshida, and M. W. Bitensky. Parallel microchannel-based measurements of individual erythrocyte areas and volumes. Biophysical Journal, 84:623–633, 2003. 212 [179] S. Chien. Red cell deformability and its relevance to blood flow. Nutrition, 49:177–192, 1987. [180] M.M. Brandao, J. Soren, A. Hult, and H. von Holst. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur. J. Hematol, 70:207–211, 2003. [181] B.M. Cooke, N. Mohandas, and R.L. Copper. The malaria-infected red blood cell: structural and functional changes. Advances in Parasitol, 50:1–86, 2001. [182] S.R. Aragon and R. Pecora. Fluorescence correlation spectroscopy as a probe of molecular dynamics. J. Chem. Phys., 64:1791–1803, 1976. [183] E.L. Elson and D. Madge. Fluorescence correlation spectroscopy: conceptual basis and theory. Biopolymers, 13:1–27, 1974. [184] Oleg Krichevsky and Gregoire Bonnet. Fluorescence correlation microscopy: the technique and its applications. Rep. Prog. Phys., 65:251–297, 2002. [185] N.L. Thompson. Fluorescence Correlation Spectroscopy. Plenum Press, New York, 1991. [186] M. Ehrenberg and R. Rigler. Rotational browinian motion and fluorescence intensity fluctuations. Chem Phys, 4:390–401, 1974. [187] P. Schwille and E. Haustein. Fluorescence correlation spectroscopy: an introduction to its concepts and applications. http://www.biotec.tu- dresden.de/schwille/group/teachingindex.html?teaching/practicalcourses/fcs.html, FCS lectures notes. [188] M. Magde, E.L. Elson, and W.W. Webb. Fluorescence correlation spectroscopy. ii. an experimental realizaqtion. Biopolymers, 13:29–61, 1974. 213 [189] E.L. Elson and M. Magde. Fluorescence correlation spectroscopy. i. conceptual basis and theory. Biopolymers, 13:1–27, 1974. [190] online at. http://research.stowers-institute.org/wiw/external/Technology/FCS/index.htm. [191] H. Qian and E. Elson. Analysis of confocal laser-microscope optics for 3-d fluorescence correlation spectroscopy. Appl Opt, 30:1185–1195, 1991. [192] R. Rigler, U. Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy with high count rate and low background-analysis of traslational diffusion. Eur Biophys J, 22:169–175, 1993. [193] J. B. Edel, E. K. Hill, and A. J. de Mello. Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection. Analyst, 126:1953–1957, 2001. [194] C. Eggeling, J. Widengren, R. Rigler, and C.A.M. Seidel. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis. Anal. Chem., 70:2651–2659, 1998. [195] U. Haupts, S.Maiti, P. Schwille, and W.W. Webb. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA, 97(13):573–578, 1998. [196] P. Schwille, J. Korlach, and W.W. Webb. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry, 36:176–182, 1999. [197] T. A. Laurence and S. Weiss. How to detect weak pairs. Science, 299:667–668, 2003. [198] M. Foquet, J. Korlach, W. Zipfel, W.W. Webb, and H.G. Craighead. Dna fragment sizing by single molecule detection in sub-micrometer sized closed fluidic channels. Analytical Chemistry, 70:432–437, 2002. 214 [199] S.M. Stavis, J.B. Edel, K.T. Samiee, and H.G. Craighead. Single molecule studies of quantum dot conjugates in a sub-micrometer fluidic channel. Lab on a chip, 5:337–343, 2005. [200] S.S. Verbridge, J.B. Edel, S.M. Stavis, J.M. Moran-Mirabal, S.D. Allen, G. Coates, and H.G. Craighead. Suspended glass nanochannels coupled with microstructures for single molecule detection. J. Applied Physics, 97:124311– 124314, 2005. [201] J.O.Tegenfeldt, C. Prinz, H. Cao, R.L. Huang, R.H. Austin, S.Y. Chou, E.C. Cox, and J.C. Sturm. Micro- and nanofluidics for dna anaysis. Analytical and Bioanalytical Chemistry, 378:1678–1692, 2004b. [202] A. Piruska, L. Nikcevic, S.H. Lee, C. Ahn, W.R. Heineman, P.A. Limbach, and C.J. Seliskar. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip, 5(12):1348–1354, 2005. [203] M.B. Wabuyele, S.M. Ford, W. Strjewski, J. Barrow, and S.A. Sober. Single molecule detection of double-standed dna in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis, 22(18):3939–3948, 2001. [204] H. Bayer and H. Engelhardt. Capillary electrophoresis in organic polymer capillaries. Journal of Microcolumn Seperations, 8(7):479–484, 1996. [205] A. Gennerich and D. Schild. Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophysical Journal, 79:3294–3306, 2000. [...]...xi application of PDMS nanochannel systems in single molecule detection and nano uidic analysis The final chapter gives an overall conclusion of the research projects Both the results of the fabrication and the characterization/application of the micro- and nano uidic devices are evaluated In addition, prospective developments of the fabrication strategies utilizing proton beam writing technique, and. .. complexity and the interdisciplinary nature of this area, it is crucial 4 to include a diverse range of expertise in both the fabrication and application areas to address issues relating to lab- on- a- chip devices This is one of the prime reasons for carrying out the research presented in this thesis Chapter 1 Micro- and Nano -fabrication Technologies The design and application of micro- and nano uidic devices. .. sample materials, and new chip designs Many next generation lithography (NGL) methods have been developed which will lead to great advancements in the area of lab- on- a- chip devices In this chapter, a variety of micro and nano -fabrication techniques are discussed This discussion starts from an array of conventional lithographic techniques which have attained an adequate level of maturity to allow for... device applications is the rapid evolution of miniaturized micro- and nano uidic systems, so-called micro total analysis systems (µTAS) or lab- on- a- chip devices, which have become 3 a dominant trend in emerging nano- science and nano- technologies The miniaturization of devices leads to many practical benefits including decreased analysis time, reduced volume of analytes and reagents, increased operation... detection systems, micro- reactors and micro- mixers, micro- arrays or combinations of the above Analytical operations of the devices involve sample preparation, sample injection, micro uid and microparticle handling, cell culture, separation and detection of biological particles, such as cells, proteins and DNA molecules These are carried out by means of chromatography, electrochemistry, fluorescence, optical... the labon -a- chip concept In this area, many existing technologies are being optimized, and many new micro- and nano -fabrication approaches are simultaneously being explored Though it is believed that the long-term impact of lab- on- a- chip technology in our lifetime will be similar to the impact made by the microelectronics and computer technologies, lab- on- a- chip science and engineering, as well as the... Synchrotron radiation(SR) represents a combination of bright short wavelength radiation with good collimation and hence provides X-ray lithography with an ideal radiation source [26] A main challenge in X-ray technology is the fragility and dimensional instability of 15 the mask [32] As most materials attenuate X-rays rapidly with increasing thickness, the X-ray mask can no longer be made on thick plates... bio-compatible properties which are desirable in biological operations In contrast, polymers offer an attractive alternative to Si and glass, because they are bio-compatible, disposable, optically transparent and inexpensive [6] Another particular advantage for polymers is that a wide range of fabrication technologies are available to construct polymer-based fluidic devices, either to fast prototype an experimental... devices are dedicated by the availability of technologies to construct and employ them into functional analytical systems with various detection modes Since the lab- on- a- chip concept has been conceived to be a powerful tool capable of performing versatile sample detection and analysis, it is important to improve the existing technology as well as to explore new fabrication and integration strategies, sample... 2.12 Proton- induced secondary electron image from a free-standing nickel grid The grid has been fabricated by a combination of proton beam writing and nickel electroplating The secondary electron image has been taken by a 2 MeV proton beam at 0.5 pA current 59 2.13 SEM image showing nano uidic channel system in 2 µm PMMA reisist 65 2.14 Detailed geometries of nanochannels: a minimum feature . they have read and recommend to the Examination Committee for acceptance a thesis entitled Fabrication of Micro- and Nanofluidic Lab-on-a-chip Devices Utilizing Proton Beam Writing Technique . FABRICATION OF MICRO- AND NANO- FLUIDIC LAB-ON-A-CHIP DEVICES UTILIZING PROTON BEAM WRITING TECHNIQUE WANG LIPING A THESIS SUBMITTED FOR THE DEGREE OF. Date: Feb 2008 Author: Wang Liping © Title: Fabrication of micro- and nanofluidic lab-on-a-chip devices utilizing Proton Beam Writing technique. Department: Physics Degree: PhD

Ngày đăng: 12/09/2015, 11:29

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN