1. Trang chủ
  2. » Ngoại Ngữ

An asthma allergen specific animal model for the study of responses to dust mite allergen induced asthma

254 302 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 254
Dung lượng 18,7 MB

Nội dung

AN ASTHMA ALLERGEN SPECIFIC ANIMAL MODEL FOR THE STUDY OF RESPONSES TO MITE ALLERGEN INDUCED ASTHMA KENNETH WONG HOK SUM B.Sc. (Hons), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY YONG LOO LIN SCHOOL OF MEDICINE DEPARTMENT OF MICROBIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2013     ACKNOWLDGEMENTS       Acknowledgements First and foremost, I would like to express my gratitude to Prof. Kemeny for his patient guidance and support. When things did not work, and that happened a lot, you were always a calming influence and helped get me back on track. I also learnt so much more than just science from you and I really appreciate the discussions we had. To Dr Gijsbert Grotenbreg, thank you for taking me under your wing. I learnt a lot from you and your focus and drive is always a source of inspiration. Things certainly wouldn’t have gotten this far without your help on the project. To Dr Paul MacAry, thank you for all your advice and guidance throughout this project. To the members of the DMK lab, past and present, I am very grateful to have had the opportunity to work with you all. Most of you had been more than just good colleagues. You are great friends. I could not have asked for a better bunch of people to work with. Thank you especially to Yafang and Sophie for guiding me with the asthma studies. Thank you as well to Nayana for all the discussions and your help on those busy harvest days. So many people, so little time to acknowledge them. A big thank you to Benson as well. The lab would have been a mess without you handling the orders and the mice colonies. I am also very grateful to the people in the GMG lab. It had been great to work with you guys and we had more than our fair share of laughs. This is especially with Cynthia as we embarked on the big scary world of protein expression together, both knowing absolutely nothing to start with and making i     ACKNOWLDGEMENTS       every mistake in the book. To Joanna, Lionel and Michelle, I missed those weekends in the lab with you guys. Who says working overtime is not fun! And to Adrian Sim, Fatimah, Chien Tei, Michael, Lawrence and everyone else, thank you for your help and for simply adding color to my life. I also owe a debt of gratitude to my family in Malaysia. Thank you for your unconditional support in everything I do, no matter how dumb. Finally, to my long-suffering wife, the biggest thank you. You’ve endured the past few years with this grumpy ogre and bore the brunt of it when my experiments did not work. Hopefully I can make it up to you after this! I wouldn’t have made it through this without you. ii     SUMMARY       Summary T cells play a central role in the pathogenesis of allergic asthma. However, many studies into the roles of T cells in asthma had been performed using ovalbumin as a surrogate allergen. This is mainly due to the greater availability of research tools for use in the ovalbumin model. However, true asthma allergens had been shown to behave very differently than ovalbumin. In this study, we aim to expand the tools available for the study of mite allergen-induced asthma. Using a plasmid DNA immunization method, we induced T cell responses against allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. We identified a number of epitopes recognized by allergenspecific CD4 T cells, including several novel epitopes for Blo t 5. We next demonstrated that the Blo t 5-specific CD4 T cells identified in this study were recruited into the lungs following Blo t inhalation. When administered intradermally, the peptides induced a tolerogenic response and attenuated the allergic airway inflammation induced by Blo t sensitization and challenge. The identification of CD4 T cell epitopes for Blo t would allow for the study of T cell responses to Blomia tropicalis, a major source of mite allergen in the tropics that remained poorly studied to date. Work done on the OVA model suggested a role for CD8 T cells in the attenuation of the allergic airway responses to allergen. In this study, we adoptively transferred Der p specific T cells into mice sensitized and challenged with house dust mite (HDM) extract. CD8 T cell responses were tracked by class I MHC tetramers produced in-house. Our results showed that, iii     SUMMARY       unlike in the ovalbumin model, the CD8 T cells were unable to attenuate the allergic airway inflammatory responses to HDM. However, we showed that the Th2 airway inflammation was reduced following the adoptive transfer of Der p specific CD8 T cells when mice were sensitized and challenged by purified Der p protein. We proceeded to demonstrate in vivo and in vitro that exogenous HDM was a poor inducer of CD8 T cell responses. Finally, using peptide-pulsed BMDCs to induce a Der p 1-specific immune response, we observed that CD8 T cell responses exacerbated the allergic lung inflammation response to HDM by increasing the number of infiltrating immune cells and the production of IL-5 and IL-13. Therefore, our results suggested that the induction of a CD8 T cell response by HDM was markedly inefficient and it is unlikely that CD8 T cells could play a role in the acute phase of asthma development. However, our results showed also that a CD8 T cell response might actually be detrimental and exacerbate the inflammatory responses in the lung. Finally, we cloned and characterized the T cell receptor (TCR) gene from a Der p specific CD8 T cell. The TCR genes were cloned into expression cassettes for the generation of TCR transgenic mice with CD8 T cells specific for the HDM allergen, Der p 1. We believe that these mice could be useful in the study of chronic asthma, where CD8 T cells had been shown to play a role. iv     LIST  OF  PUBLICATIONS       List of publications 1. Wong KL, Tang LF, Lew FC, Wong HS, Chua YL, MacAry PA, Kemeny DM. CD44high memory CD8 T cells synergize with CpG DNA to activate dendritic cell IL-12p70 production. J Immunol. 2009 Jul 1; 183(1):41-50 2. Tang Y, Guan SP, Chua BY, Zhou Q, Ho AW, Wong KH, Wong KL, Wong WS, Kemeny DM. Antigen-specific effector CD8 T cells regulate allergic responses via IFN-γ and dendritic cell function. J Allergy Clin Immunol. 2012 Jun; 129(6):1611-20.e4 3. Ge MQ, Ho AW, Tang Y, Wong KH, Chua BY, Gasser S, Kemeny DM. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforindependent mechanisms. J Immunol. 2012 Sep 1; 189(5):2099-109. 4. Prabhu N, Ho AW, Wong KH, Hutchinson PE, Chua YL, Kandasamy M, Lee DC, Sivasankar B, Kemeny DM. Gamma interferon regulates contraction of the influenza virus-specific CD8 T cell response and limits the size of the memory population. 87(23):12510-22 v J Virol. 2013 Dec;     TABLE  OF  CONTENTS       Table of Contents Chapter 1.   Introduction .   1.1   Asthma .   1.1.1   Prevalence and cost of asthma .   1.1.2   Causes of asthma   1.2   The immunology of allergic asthma   1.2.1   The innate immune response in allergic asthma   1.2.1.1   Dendritic  cells  and  their  role  in  allergic  asthma   .  8   1.2.1.2   Eosinophils   .  11   1.2.1.3   Mast  cells   .  12   1.2.1.4   Basophils   .  13   1.2.1.5   Neutrophils   .  15   1.2.1.6   Macrophages    16   1.2.1.7   Innate  lymphoid  cells   .  17   1.2.1.8   Natural  killer  T  (NKT)  cells  and  γδ  T  cells   .  17   1.2.1.9   The  airway  epithelium    18   1.2.2   The adaptive immune system and allergic asthma 19   1.2.2.1   CD4  T  cells  in  allergic  asthma    20   1.2.2.2   CD8  T  cells  in  allergic  asthma    26   1.2.2.3   The  humoral  response  in  allergic  asthma   .  28   1.3   Asthma allergens . 29   1.3.1   The mite allergens 30   1.3.2   Mite allergens and the immune system 32   1.4   Aims of the study . 34   Chapter 2.   Materials and Methods . 38   2.1   Media and buffers . 38   2.1.1   PBS buffer 38   2.1.2   MACS buffer . 38   2.1.3   FACS buffer . 38   2.1.4   Red Blood cell (RBC) lysis solution . 39   2.1.5   Complete RPMI for cell culture . 39   2.1.6   Buffers for ELISA 40   2.1.7   LB broth . 40   2.1.8   LB agar . 40   2.1.9   CaCl2 solution for preparation of competent cells . 40   2.1.10   SDS-PAGE gel electrophoresis buffers . 40   2.1.11   Buffers for protein purification from E.coli . 41   2.1.12   Buffers for protein refolding and purification . 41   2.2   List of antibodies used 42   2.3   Mice 43   2.4   Molecular biology protocols . 43   2.4.1   Preparation of chemically competent E.coli 43   2.4.2   Transformation of E.coli 44   2.4.3   General PCR protocol 45   2.4.4   Agarose gel extraction . 47   2.4.5   Subcloning into TOPO vector by TA cloning . 47   2.4.6   Plasmid miniprep . 49   2.4.7   Restriction enzyme digest 49   2.4.8   PCR purification 50   vi     TABLE  OF  CONTENTS       2.4.9   Ligation into plasmid vector 51   2.4.10   RNA extraction and purification 51   2.4.11   Reverse transcription of mRNA . 52   2.4.12   5’ RACE reaction . 52   2.5   Protein expression and purification protocols . 55   2.5.1   SDS-PAGE gel electrophoresis . 55   2.5.2   Production of class I MHC tetramers . 56   2.5.3   Production of recombinant Blo t . 60   2.6   Cell isolation protocols . 62   2.6.1   Processing of splenic and lymph node cells 62   2.6.2   Isolation of CD8 cells by magnetic separation 63   2.7   Cell culture 64   2.7.1   T cell line production and maintenance . 64   2.7.2   Bone-marrow derived Dendritic Cells . 65   2.8   Protocols for evaluation of cell functionality 66   2.8.1   IFN-γ ELISPOT . 66   2.8.2   ELISA 68   2.8.3   3H-thymidine proliferation assay 68   2.8.4   Chromium-51 release assay . 69   2.9   Flow cytometry 70   2.9.1   Cell surface marker staining for flow cytometry . 70   2.9.2   Intracellular cytokine staining for flow cytometry 70   2.9.3   Peptide exchange and class I MHC tetramer staining . 71   2.10   Intradermal immunization of mice with plasmid DNA by skin tattoo 72   2.11   Murine model of asthma 72   2.11.1   Intranasal sensitization or challenge of mice . 72   2.11.2   Bronchoalveolar lavage analysis 72   2.11.3   Analysis of lung cells . 73   2.11.4   Culture of lung-draining mediastinal lymph node (MLN) cells 74   2.11.5   Lung histology . 75   Chapter 3.   Expression and purification of recombinant Blo t 78   3.1   Introduction . 78   3.2   The Blo t gene . 79   3.3   Cloning of the Blo t gene into pET 28 expression vector 81   3.4   Expression of recombinant Blo t in E. coli BL 21 . 83   3.5   Purification of recombinant tBlo t 85   Chapter 4.   Production of class I MHC tetramers . 90   4.1 Introduction 90   4.1   Expression and purification of class I MHC proteins . 91   4.2   Testing the functionality of UV cleavable class I MHC tetramers 96   Chapter 5.   Mapping of mite allergen T cell epitopes 99   5.1   Introduction 99   5.2   DNA immunization constructs 102   5.3   DNA vaccination of mice . 109   5.4   Epitope mapping studies 112   5.1.1   Mapping of Blo t epitopes . 116   vii     TABLE  OF  CONTENTS       5.1.2   Mapping of Der p epitopes . 124   5.5   Further characterization of Blo t epitopes 128   5.6   Discussion 138   Chapter 6.   6.1   6.2   6.3   6.4   6.5   6.6   6.7   Der p specific CD8 T cells and HDM-induced asthma. 145   Introduction 145   Immunization of mice 147   Generation of a Der p specific CD8 T-cell line. 153   Characterization of T cell receptor gene 156   Cloning of T cell receptor gene into cassette vectors 162   Role of CD8 T cells in immune response to mite allergens . 173   Discussion 198   Chapter 7.   Final discussion . 203   7.1   Summary of findings 203   7.2   Limitation of current study 210   7.3   Future work . 212   T cells epitopes as tools for immunotherapy . 216   viii     73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. REFERENCES       Alcorn, J. F., C. R. Crowe, and J. K. Kolls. 2010. TH17 Cells in Asthma and COPD. Annual Review of Physiology 72: 495-516. Green, R. H., C. E. Brightling, G. Woltmann, D. Parker, A. J. Wardlaw, and I. D. Pavord. 2002. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57: 875-879. Lagranderie, M., M.-A. Nahori, A.-M. Balazuc, H. Kiefer-Biasizzo, J.-R. Lapa E Silva, G. Milon, G. Marchal, and B. B. Vargaftig. 2003. Dendritic cells recruited to the lung shortly after intranasal delivery of Mycobacterium bovis BCG drive the primary immune response towards a type cytokine production. Immunology 108: 352-364. Franke-Ullmann, G., C. Pförtner, P. Walter, C. Steinmüller, M. L. Lohmann-Matthes, and L. Kobzik. 1996. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. The Journal of Immunology 157: 30973104. Bedoret, D., H. Wallemacq, T. Marichal, C. Desmet, F. Quesada Calvo, E. Henry, R. Closset, B. Dewals, C. Thielen, P. Gustin, L. de Leval, N. Van Rooijen, A. Le Moine, A. Vanderplasschen, D. Cataldo, P.-V. Drion, M. Moser, P. Lekeux, and F. Bureau. 2009. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. The Journal of clinical investigation 119: 3723-3738. Holt, P. G., J. Oliver, N. Bilyk, C. McMenamin, P. G. McMenamin, G. Kraal, and T. Thepen. 1993. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. The Journal of Experimental Medicine 177: 397-407. Thepen, T., C. McMenamin, J. Oliver, G. Kraal, and P. G. Holt. 1991. Regulation of immune response to inhaled antigen by alveolar macrophages: differential effects of in vivo alveolar macrophage elimination on the induction of tolerance vs. immunity. European Journal of Immunology 21: 2845-2850. Bilyk, N., and P. G. Holt. 1993. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. The Journal of Experimental Medicine 177: 1773-1777. Biswas, S. K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature immunology 11: 889-896. Yang, M., R. K. Kumar, P. M. Hansbro, and P. S. Foster. 2012. Emerging roles of pulmonary macrophages in driving the development of severe asthma. Journal of leukocyte biology 91: 557-569. Pappas, K., A. I. Papaioannou, K. Kostikas, and N. Tzanakis. The role of macrophages in obstructive airways disease: Chronic obstructive pulmonary disease and asthma. Cytokine. 225     84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. REFERENCES       Walker, J. A., J. L. Barlow, and A. N. McKenzie. 2013. Innate lymphoid cells--how did we miss them? Nature reviews. Immunology 13: 75-87. Klein Wolterink, R. G., A. Kleinjan, M. van Nimwegen, I. Bergen, M. de Bruijn, Y. Levani, and R. W. Hendriks. 2012. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42: 1106-1116. Halim, T. Y., R. H. Krauss, A. C. Sun, and F. Takei. 2012. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36: 451-463. Lloyd, C. M., and E. M. Hessel. 2010. Functions of T cells in asthma: more than just T(H)2 cells. Nature reviews. Immunology 10: 838-848. Hammad, H., M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor triggering of airway structural cells. Nat Med 15: 410-416. Lambrecht, B. N., and H. Hammad. 2012. The airway epithelium in asthma. Nat Med 18: 684-692. Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348-2357. Finkelman, F. D., S. P. Hogan, G. K. Hershey, M. E. Rothenberg, and M. Wills-Karp. 2010. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 184: 1663-1674. Robinson, D. S. 2010. The role of the T cell in asthma. J Allergy Clin Immunol 126: 1081-1091; quiz 1092-1083. Larché, M., D. S. Robinson, and A. B. Kay. 2003. The role of T lymphocytes in the pathogenesis of asthma. Journal of Allergy and Clinical Immunology 111: 450-463. Cohn, L., J. S. Tepper, and K. Bottomly. 1998. Cutting Edge: IL4-Independent Induction of Airway Hyperresponsiveness by Th2, But Not Th1, Cells. The Journal of Immunology 161: 3813-3816. Haczku, A., P. Macary, T. J. Huang, H. Tsukagoshi, P. J. Barnes, A. B. Kay, D. M. Kemeny, K. F. Chung, and R. Moqbel. 1997. Adoptive transfer of allergen-specific CD4+ T cells induces airway inflammation and hyperresponsiveness in Brown– Norway rats. Immunology 91: 176-185. Hart, T. K., M. N. Blackburn, M. Brigham-Burke, K. Dede, N. AlMahdi, P. Zia-Amirhosseini, and R. M. Cook. 2002. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clinical & Experimental Immunology 130: 93-100. Gauvreau, G. M., L.-P. Boulet, D. W. Cockcroft, J. M. FitzGerald, C. Carlsten, B. E. Davis, F. Deschesnes, M. Duong, B. L. Durn, K. J. Howie, L. Hui, M. T. Kasaian, K. J. Killian, T. X. Strinich, R. M. Watson, N. Y, S. Zhou, D. Raible, and P. M. O'Byrne. 2011. 226     98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. REFERENCES       Effects of Interleukin-13 Blockade on Allergen-induced Airway Responses in Mild Atopic Asthma. Am J Respir Crit Care Med 183: 1007-1014. Flood-Page, P., C. Swenson, I. Faiferman, J. Matthews, M. Williams, L. Brannick, D. Robinson, S. Wenzel, W. Busse, T. T. Hansel, and N. C. Barnes. 2007. A Study to Evaluate Safety and Efficacy of Mepolizumab in Patients with Moderate Persistent Asthma. Am J Respir Crit Care Med 176: 1062-1071. Leckie, M. J., A. t. Brinke, J. Khan, Z. Diamant, B. J. O'Connor, C. M. Walls, A. K. Mathur, H. C. Cowley, K. F. Chung, R. Djukanovic, T. T. Hansel, S. T. Holgate, P. J. Sterk, and P. J. Barnes. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsìveness, and the late asthmatic response. The Lancet 356: 2144-2148. Caruso, M., E. Crisafulli, R. Lizzio, and R. Polosa. 2013. Biologic therapy for atopic asthma and beyond. Current Opinion in Allergy and Clinical Immunology 13. Tanaka, H., M. Komai, K. Nagao, M. Ishizaki, D. Kajiwara, K. Takatsu, G. Delespesse, and H. Nagai. 2004. Role of Interleukin-5 and Eosinophils in Allergen-Induced Airway Remodeling in Mice. American journal of respiratory cell and molecular biology 31: 62-68. Shardonofsky, F. R., J. Venzor Iii, R. Barrios, K.-P. Leong, and D. P. Huston. 1999. Therapeutic efficacy of an anti–IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma. Journal of Allergy and Clinical Immunology 104: 215-221. Zhou, C.-Y., I. C. Crocker, G. Koenig, F. A. Romero, and R. G. Townley. 1997. Anti-interleukin-4 Inhibits Immunoglobulin E Production in a Murine Model of Atopic Asthma. Journal of Asthma 34: 195-201. Plantinga, M., M. Guilliams, M. Vanheerswynghels, K. Deswarte, F. Branco-Madeira, W. Toussaint, L. Vanhoutte, K. Neyt, N. Killeen, B. Malissen, H. Hammad, and Bart N. Lambrecht. 2013. Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper Cell-Mediated Immunity to House Dust Mite Allergen. Immunity 38: 322-335. Paul, W. E., and J. Zhu. 2010. How are T(H)2-type immune responses initiated and amplified? Nature reviews. Immunology 10: 225-235. Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-793. Ouyang, W., S. H. Ranganath, K. Weindel, D. Bhattacharya, T. L. Murphy, W. C. Sha, and K. M. Murphy. 1998. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9: 745-755. Finotto, S., M. F. Neurath, J. N. Glickman, S. Qin, H. A. Lehr, F. H. Green, K. Ackerman, K. Haley, P. R. Galle, S. J. Szabo, J. M. Drazen, G. T. De Sanctis, and L. H. Glimcher. 2002. 227     109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. REFERENCES       Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295: 336-338. Tournoy, K. G., J. C. Kips, and R. A. Pauwels. 2002. Is Th1 the solution for Th2 in asthma? Clin Exp Allergy 32: 17-29. Huang, T.-J., P. A. MacAry, P. Eynott, A. Moussavi, K. C. Daniel, P. W. Askenase, D. M. Kemeny, and K. F. Chung. 2001. Allergen-Specific Th1 Cells Counteract Efferent Th2 CellDependent Bronchial Hyperresponsiveness and Eosinophilic Inflammation Partly Via IFN-γ. The Journal of Immunology 166: 207-217. Hansen, G., G. Berry, R. H. DeKruyff, and D. T. Umetsu. 1999. Allergen-specific Th1 cells fail to counterbalance Th2 cell– induced airway hyperreactivity but cause severe airway inflammation. The Journal of clinical investigation 103: 175-183. Randolph, D. A., R. Stephens, C. J. Carruthers, and D. D. Chaplin. 1999. Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. The Journal of clinical investigation 104: 1021-1029. Li, L., Y. Xia, A. Nguyen, L. Feng, and D. Lo. 1998. Th2-induced eotaxin expression and eosinophilia coexist with Th1 responses at the effector stage of lung inflammation. J Immunol 161: 31283135. Boguniewicz, M., R. J. Martin, D. Martin, U. Gibson, A. Celniker, M. Williams, and D. Y. M. Leung. 1995. The effects of nebulized recombinant interferon-γ in asthmatic airways. Journal of Allergy and Clinical Immunology 95: 133-135. Yang, M., R. K. Kumar, and P. S. Foster. 2009. Pathogenesis of Steroid-Resistant Airway Hyperresponsiveness: Interaction between IFN-γ and TLR4/MyD88 Pathways. The Journal of Immunology 182: 5107-5115. Li, J. J., W. Wang, K. J. Baines, N. A. Bowden, P. M. Hansbro, P. G. Gibson, R. K. Kumar, P. S. Foster, and M. Yang. 2010. IL27/IFN-γ Induce MyD88-Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting Glucocorticoid Signaling in Macrophages. The Journal of Immunology 185: 4401-4409. Yang, M., R. K. Kumar, and P. S. Foster. 2010. Interferon-γ and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clinical & Experimental Allergy 40: 163-173. Korn, T., E. Bettelli, M. Oukka, and V. K. Kuchroo. 2009. IL-17 and Th17 Cells. Annual Review of Immunology 27: 485-517. Molet, S., Q. Hamid, F. Davoine, E. Nutku, R. Taha, N. Page, R. Olivenstein, J. Elias, and J. Chakir. 2001. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108: 430-438. Fogli, L. K., M. S. Sundrud, S. Goel, S. Bajwa, K. Jensen, E. Derudder, A. Sun, M. Coffre, C. Uyttenhove, J. Van Snick, M. Schmidt-Supprian, A. Rao, G. Grunig, J. Durbin, S. S. Casola, K. Rajewsky, and S. B. Koralov. 2013. T Cell–Derived IL-17 Mediates Epithelial Changes in the Airway and Drives 228     121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. REFERENCES       Pulmonary Neutrophilia. The Journal of Immunology 191: 31003111. Lajoie, S., I. P. Lewkowich, Y. Suzuki, J. R. Clark, A. A. Sproles, K. Dienger, A. L. Budelsky, and M. Wills-Karp. 2010. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nature immunology 11: 928-935. Kinyanjui, M. W., J. Shan, E. M. Nakada, S. T. Qureshi, and E. D. Fixman. 2013. Dose-Dependent Effects of IL-17 on IL-13– Induced Airway Inflammatory Responses and Airway Hyperresponsiveness. The Journal of Immunology 190: 38593868. Schnyder-Candrian, S., D. Togbe, I. Couillin, I. Mercier, F. Brombacher, V. Quesniaux, F. Fossiez, B. Ryffel, and B. Schnyder. 2006. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203: 2715-2725. Barlow, J. L., R. J. Flynn, S. J. Ballantyne, and A. N. McKenzie. 2011. Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin Exp Allergy 41: 1447-1455. Barboza, R., N. O. Camara, E. Gomes, A. Sa-Nunes, E. Florsheim, L. Mirotti, A. Labrada, N. M. Alcantara-Neves, and M. Russo. 2013. Endotoxin Exposure during Sensitization to Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2. PloS one 8: e67115. Chang, H. C., S. Sehra, R. Goswami, W. Yao, Q. Yu, G. L. Stritesky, R. Jabeen, C. McKinley, A. N. Ahyi, L. Han, E. T. Nguyen, M. J. Robertson, N. B. Perumal, R. S. Tepper, S. L. Nutt, and M. H. Kaplan. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nature immunology 11: 527-534. Lloyd, C. M., and C. M. Hawrylowicz. 2009. Regulatory T Cells in Asthma. Immunity 31: 438-449. Kearley, J., J. E. Barker, D. S. Robinson, and C. M. Lloyd. 2005. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 202: 1539-1547. Kearley, J., D. S. Robinson, and C. M. Lloyd. 2008. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol 122: 617-624 e616. Lewkowich, I. P., N. S. Herman, K. W. Schleifer, M. P. Dance, B. L. Chen, K. M. Dienger, A. A. Sproles, J. S. Shah, J. Kohl, Y. Belkaid, and M. Wills-Karp. 2005. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202: 15491561. Akdis, C. A., T. Blesken, M. Akdis, xFc, B. thrich, and K. Blaser. 1998. Role of interleukin 10 in specific immunotherapy. The Journal of clinical investigation 102: 98-106. 229     132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. REFERENCES       Meiler, F., S. Klunker, M. Zimmermann, C. A. Akdis, and M. Akdis. 2008. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy 63: 1455-1463. Jutel, M., M. Akdis, F. Budak, C. Aebischer-Casaulta, M. Wrzyszcz, K. Blaser, and C. A. Akdis. 2003. IL-10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. European Journal of Immunology 33: 1205-1214. Francis, J. N., S. J. Till, and S. R. Durham. 2003. Induction of IL10+CD4+CD25+ T cells by grass pollen immunotherapy. Journal of Allergy and Clinical Immunology 111: 1255-1261. Campbell, J. D., K. F. Buckland, S. J. McMillan, J. Kearley, W. L. G. Oldfield, L. J. Stern, H. Grönlund, M. van Hage, C. J. Reynolds, R. J. Boyton, S. P. Cobbold, A. B. Kay, D. M. Altmann, C. M. Lloyd, and M. Larché. 2009. Peptide immunotherapy in allergic asthma generates IL-10–dependent immunological tolerance associated with linked epitope suppression. The Journal of Experimental Medicine 206: 1535-1547. Thunberg, S., M. Akdis, C. A. Akdis, R. Grönneberg, V. Malmström, C. Trollmo, M. Van Hage, and G. Gafvelin. 2007. Immune regulation by CD4+CD25+ T cells and interleukin-10 in birch pollen-allergic patients and non-allergic controls. Clinical & Experimental Allergy 37: 1127-1136. Noble, A., P. A. Macary, and D. M. Kemeny. 1995. IFN-gamma and IL-4 regulate the growth and differentiation of CD8+ T cells into subpopulations with distinct cytokine profiles. J Immunol 155: 2928-2937. Croft, M., L. Carter, S. L. Swain, and R. W. Dutton. 1994. Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type versus type cytokine profiles. J Exp Med 180: 1715-1728. Seder, R. A., J. L. Boulay, F. Finkelman, S. Barbier, S. Z. BenSasson, G. Le Gros, and W. E. Paul. 1992. CD8+ T cells can be primed in vitro to produce IL-4. J Immunol 148: 1652-1656. Ying, S., M. Humbert, J. Barkans, C. J. Corrigan, R. Pfister, G. Menz, M. Larche, D. S. Robinson, S. R. Durham, and A. B. Kay. 1997. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J Immunol 158: 3539-3544. Huang, T. J., P. A. MacAry, D. M. Kemeny, and K. F. Chung. 1999. Effect of CD8+ T-cell depletion on bronchial hyperresponsiveness and inflammation in sensitized and allergenexposed Brown-Norway rats. Immunology 96: 416-423. Tsuchiya, K., S. Isogai, M. Tamaoka, N. Inase, T. Akashi, J. G. Martin, and Y. Yoshizawa. 2009. Depletion of CD8+ T cells enhances airway remodelling in a rodent model of asthma. Immunology 126: 45-54. 230     143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. REFERENCES       Sawicka, E., A. Noble, C. Walker, and D. M. Kemeny. 2004. Tc2 cells respond to soluble antigen in the respiratory tract and induce lung eosinophilia and bronchial hyperresponsiveness. Eur J Immunol 34: 2599-2608. Wells, J. W., C. J. Cowled, A. Giorgini, D. M. Kemeny, and A. Noble. 2007. Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol 119: 226-234. Wong, K. L., F. C. Lew, P. A. MacAry, and D. M. Kemeny. 2008. CD40L-expressing CD8 T cells prime CD8α+ DC for IL-12p70 production. European Journal of Immunology 38: 2251-2262. Tang, Y., S. P. Guan, B. Y. L. Chua, Q. Zhou, A. W. S. Ho, K. H. S. Wong, K. L. Wong, W. S. F. Wong, and D. M. Kemeny. 2012. Antigen-specific effector CD8 T cells regulate allergic responses via IFN-γ and dendritic cell function. Journal of Allergy and Clinical Immunology 129: 1611-1620.e1614. Enomoto, N., E. Hyde, J. Z.-I. Ma, J. Yang, E. Forbes-Blom, B. Delahunt, G. Le Gros, and F. Ronchese. 2012. Allergen-Specific CTL Require Perforin Expression To Suppress Allergic Airway Inflammation. The Journal of Immunology 188: 1734-1741. Miyahara, N., K. Takeda, T. Kodama, A. Joetham, C. Taube, J. W. Park, S. Miyahara, A. Balhorn, A. Dakhama, and E. W. Gelfand. 2004. Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 172: 25492558. Schaller, M. A., S. K. Lundy, G. B. Huffnagle, and N. W. Lukacs. 2005. CD8+ T cell contributions to allergen induced pulmonary inflammation and airway hyperreactivity. European Journal of Immunology 35: 2061-2070. Stock, P., T. Kallinich, O. Akbari, D. Quarcoo, K. Gerhold, U. Wahn, D. T. Umetsu, and E. Hamelmann. 2004. CD8+ T cells regulate immune responses in a murine model of allergeninduced sensitization and airway inflammation. European Journal of Immunology 34: 1817-1827. Gould, H. J., and B. J. Sutton. 2008. IgE in allergy and asthma today. Nature reviews. Immunology 8: 205-217. Fahy, J. V. 2006. Anti-IgE: Lessons learned from effects on airway inflammation and asthma exacerbation. Journal of Allergy and Clinical Immunology 117: 1230-1232. Schenka, S., H. Breitenedera, M. Susanib, N. Najafiana, S. Laffera, M. Duchênea, R. Valentaa, G. Fischerc, O. Scheinera, D. Krafta, and C. Ebnera. 1995. T-cell epitopes of Phl p 1, major pollen allergen of timothy grass (Phleum pratense): Evidence for crossreacting and non-crossreacting T-cell epitopes within grass group I allergens. Journal of Allergy and Clinical Immunology 96: 986-996. Verdino, P., R. Barderas, M. Villalba, K. Westritschnig, R. Valenta, R. Rodriguez, and W. Keller. 2008. Three-Dimensional Structure of the Cross-Reactive Pollen Allergen Che a 3: 231     155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. REFERENCES       Visualizing Cross-Reactivity on the Molecular Surfaces of Weed, Grass, and Tree Pollen Allergens. The Journal of Immunology 180: 2313-2321. Ayuso, R., G. Reese, S. Leong-Kee, M. Plante, and S. B. Lehrer. 2002. Molecular Basis of Arthropod Cross-Reactivity: IgEBinding Cross-Reactive Epitopes of Shrimp, House Dust Mite and Cockroach Tropomyosins. International Archives of Allergy and Immunology 129: 38-48. Hirschwehr, R., S. JÄGer, F. Horak, F. Ferreira, R. Valenta, C. Ebner, D. Kraft, and O. Scheiner. 1993. Allergens from birch pollen and pollen of the European chestnut share common epitopes. Clinical & Experimental Allergy 23: 755-761. Ebner, C., R. Hirschwehr, L. Bauer, H. Breiteneder, R. Valenta, H. Ebner, D. Kraft, and O. Scheiner. 1995. Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v and Bet v (birch profilin). Journal of Allergy and Clinical Immunology 95: 962-969. Eriksson, N. E., H. Formgren, and E. Svenonius. 1982. Food Hypersensitivity in Patients with Pollen Allergy. Allergy 37: 437443. Jacquet, A. 2011. The role of the house dust mite-induced innate immunity in development of allergic response. Int Arch Allergy Immunol 155: 95-105. Yeoh, S. M., I. C. Kuo, D. Y. Wang, C. K. Liam, C. K. Sam, J. A. de Bruyne, B. W. Lee, N. Cheong, and K. Y. Chua. 2003. Sensitization Profiles of Malaysian and Singaporean Subjects to Allergens from Dermatophagoides pteronyssinus and Blomia tropicalis. International Archives of Allergy and Immunology 132: 215-220. Chew, F. T., S. H. Lim, D. Y. T. Goh, and B. W. Lee. 1999. Sensitization to local dust-mite fauna in Singapore. Allergy 54: 1150-1159. Chew, Yi, Chua, C. Fernandez, Arruda, Chapman, and Lee. 1999. Allergenic differences between the domestic mites Blomia tropicalis and Dermatophagoides pteronyssinus. Clinical & Experimental Allergy 29: 982-988. Arlian, L. G., and T. A. E. Platts-Mills. 2001. The biology of dust mites and the remediation of mite allergens in allergic disease. Journal of Allergy and Clinical Immunology 107: S406-S413. Sporik, R., M. D. Chapman, and T. A. E. Platts-Mills. 1992. House dust mite exposure as a cause of asthma. Clinical & Experimental Allergy 22: 897-906. Tovey, E. R., M. D. Chapman, and T. A. Platts-Mills. 1981. Mite faeces are a major source of house dust allergens. Nature 289: 592-593. Gregory, L. G., and C. M. Lloyd. 2011. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32: 402-411. Thomas, W. R., B. J. Hales, and W. A. Smith. 2010. House dust mite allergens in asthma and allergy. Trends in molecular medicine 16: 321-328. 232     REFERENCES       168. Kidon, M. I., C. W. Chin, L. W. Kang, O. T. Ching, T. Y. Seng, W. K. Ning, A. C. Angus, O. S. Theng, G. Y. Feng, K. Reginald, B. X. Zhi, S. H. Shen, and C. F. Tim. 2011. Mite component– specific IgE repertoire and phenotypes of allergic disease in childhood: The tropical perspective. Pediatric Allergy and Immunology 22: 202-210. 169. Tan, K. W., T. C. Ong, Y. F. Gao, Y. S. Tiong, K. N. Wong, F. T. Chew, and Y. K. Mok. 2012. NMR Structure and IgE Epitopes of Blo t 21, a Major Dust Mite Allergen from Blomia tropicalis. Journal of Biological Chemistry 287: 34776-34785. 170. Wan, H., H. L. Winton, C. Soeller, D. C. Gruenert, P. J. Thompson, M. B. Cannell, G. A. Stewart, D. R. Garrod, and C. Robinson. 2000. Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin Exp Allergy 30: 685-698. 171. Deb, R., F. Shakib, K. Reid, and H. Clark. 2007. Major House Dust Mite Allergens Dermatophagoides pteronyssinus and Dermatophagoides farinae Degrade and Inactivate Lung Surfactant Proteins A and D. Journal of Biological Chemistry 282: 36808-36819. 172. Kouzaki, H., S. M. O'Grady, C. B. Lawrence, and H. Kita. 2009. Proteases Induce Production of Thymic Stromal Lymphopoietin by Airway Epithelial Cells through Protease-Activated Receptor2. The Journal of Immunology 183: 1427-1434. 173. Dai, X., K. Sayama, M. Tohyama, Y. Shirakata, Y. Hanakawa, S. Tokumaru, L. Yang, S. Hirakawa, and K. Hashimoto. 2011. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. Journal of Allergy and Clinical Immunology 127: 806-814.e804. 174. Da Silva, C. A., D. Hartl, W. Liu, C. G. Lee, and J. A. Elias. 2008. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181: 4279-4286. 175. Trompette, A., S. Divanovic, A. Visintin, C. Blanchard, R. S. Hegde, R. Madan, P. S. Thorne, M. Wills-Karp, T. L. Gioannini, J. P. Weiss, and C. L. Karp. 2009. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457: 585-588. 176. Moldaver, D. M., M. S. Bharhani, J. N. Wattie, R. Ellis, H. Neighbour, C. M. Lloyd, M. D. Inman, and M. Larche. 2013. Amelioration of ovalbumin-induced allergic airway disease following Der p peptide immunotherapy is not associated with induction of IL-35. Mucosal immunology 7: 379-390. 177. Harris, S. J., J. F. Roth, N. Savage, S. A. Woodrow, I. K. Hemingway, G. F. Hoyne, J. R. Lamb, and G. T. Layton. 1997. Prediction of murine MHC class I epitopes in a major house dust mite allergen and induction of T1-type CD8+ T cell responses. Int Immunol 9: 273-280. 178. Grotenbreg, G. M., N. R. Roan, E. Guillen, R. Meijers, J.-h. Wang, G. W. Bell, M. N. Starnbach, and H. L. Ploegh. 2008. 233     179. 180. 181. 182. 183. 184. 185. 186. 187. 188. REFERENCES       Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proceedings of the National Academy of Sciences 105: 38313836. Toebes, M., M. Coccoris, A. Bins, B. Rodenko, R. Gomez, N. J. Nieuwkoop, W. van de Kasteele, G. F. Rimmelzwaan, J. B. A. G. Haanen, H. Ovaa, and T. N. M. Schumacher. 2006. Design and use of conditional MHC class I ligands. Nat Med 12: 246-251. Rodenko, B., M. Toebes, S. R. Hadrup, W. J. E. van Esch, A. M. Molenaar, T. N. M. Schumacher, and H. Ovaa. 2006. Generation of peptide-MHC class I complexes through UVmediated ligand exchange. Nat. Protocols 1: 1120-1132. Arruda, L. K., L. D. Vailes, T. A. Platts-Mills, E. FernandezCaldas, F. Montealegre, K. L. Lin, K. Y. Chua, M. C. Rizzo, C. K. Naspitz, and M. D. Chapman. 1997. Sensitization to Blomia tropicalis in patients with asthma and identification of allergen Blo t 5. Am J Respir Crit Care Med 155: 343-350. Lim, L. H., H. Y. Li, N. Cheong, B. W. Lee, and K. Y. Chua. 2004. High-level expression of a codon optimized recombinant dust mite allergen, Blo t 5, in Chinese hamster ovary cells. Biochem Biophys Res Commun 316: 991-996. Goh, L.-T., I. C. Kuo, S. Luo, K. Chua, and M. White. 2001. Production and purification of recombinant Blomia tropicalis group allergen from Pichia pastoris culture. Biotechnology Letters 23: 661-665. Liaw, S.-H., H.-Z. Chen, G.-G. Liu, and K.-Y. Chua. 2001. AcidInduced Polymerization of the Group Mite Allergen from Dermatophagoides pteronyssinus. Biochem Biophys Res Commun 285: 308-312. Chan, S. L., T. C. Ong, Y. F. Gao, Y. S. Tiong, D. Y. Wang, F. T. Chew, and Y. K. Mok. 2008. Nuclear Magnetic Resonance Structure and IgE Epitopes of Blo t 5, a Major Dust Mite Allergen. The Journal of Immunology 181: 2586-2596. Altman, J. D., P. A. H. Moss, P. J. R. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic Analysis of Antigen-Specific T Lymphocytes. Science 274: 94-96. Chang, C. X. L., A. T. Tan, M. Y. Or, K. Y. Toh, P. Y. Lim, A. S. E. Chia, T. M. Froesig, K. D. Nadua, H.-L. J. Oh, H. N. Leong, S. R. Hadrup, A. J. Gehring, Y.-J. Tan, A. Bertoletti, and G. M. Grotenbreg. 2013. Conditional ligands for Asian HLA variants facilitate the definition of CD8+T-cell responses in acute and chronic viral diseases. European Journal of Immunology 43: 1109-1120. Frickel, E.-M., N. Sahoo, J. Hopp, M.-J. Gubbels, M. P. J. Craver, L. J. Knoll, H. L. Ploegh, and G. M. Grotenbreg. 2008. Parasite Stage-Specific Recognition of Endogenous Toxoplasma gondii-Derived CD8+ T Cell Epitopes. Journal of Infectious Diseases 198: 1625-1633. 234     189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. REFERENCES       Gredmark-Russ, S., E. J. Cheung, M. K. Isaacson, H. L. Ploegh, and G. M. Grotenbreg. 2008. The CD8 T-Cell Response against Murine Gammaherpesvirus 68 Is Directed toward a Broad Repertoire of Epitopes from both Early and Late Antigens. Journal of Virology 82: 12205-12212. Altman, J. D., and M. M. Davis. 2001. MHC-Peptide Tetramers to Visualize Antigen-Specific T Cells. In Current Protocols in Immunology. John Wiley & Sons, Inc. Garboczi, D. N., D. T. Hung, and D. C. Wiley. 1992. HLA-A2peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proceedings of the National Academy of Sciences 89: 3429-3433. Hoyne, G. F., M. G. Callow, M. C. Kuo, and W. R. Thomas. 1993. Characterization of T-cell responses to the house dust mite allergen Der p II in mice. Evidence for major and cryptic epitopes. Immunology 78: 65-73. Wu, B., G. Toussaint, L. Vander Elst, C. Granier, M. G. Jacquemin, and J. M. Saint-Remy. 2000. Major T cell epitopecontaining peptides can elicit strong antibody responses. Eur J Immunol 30: 291-299. Wu, B., L. V. Elst, V. Carlier, M. G. Jacquemin, and J.-M. R. Saint-Remy. 2002. The Dermatophagoides pteronyssinus Group Allergen Contains a Universally Immunogenic T Cell Epitope. The Journal of Immunology 169: 2430-2435. van de Veen, W., B. Stanic, G. Yaman, M. Wawrzyniak, S. Söllner, D. G. Akdis, B. Rückert, C. A. Akdis, and M. Akdis. 2013. IgG4 production is confined to human IL-10–producing regulatory B cells that suppress antigen-specific immune responses. Journal of Allergy and Clinical Immunology 131: 1204-1212. Tarzi, M., S. Klunker, C. Texier, A. Verhoef, S. O. Stapel, C. A. Akdis, B. Maillere, A. B. Kay, and M. Larché. 2006. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clinical & Experimental Allergy 36: 465-474. Verhoef, A., C. Alexander, A. B. Kay, and M. Larché. 2005. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity. PLoS Med 2: e78. Frickel, E. M., N. Sahoo, J. Hopp, M. J. Gubbels, M. P. Craver, L. J. Knoll, H. L. Ploegh, and G. M. Grotenbreg. 2008. Parasite stage-specific recognition of endogenous Toxoplasma gondiiderived CD8+ T cell epitopes. J Infect Dis 198: 1625-1633. Wells, J. W., C. J. Cowled, F. Farzaneh, and A. Noble. 2008. Combined Triggering of Dendritic Cell Receptors Results in Synergistic Activation and Potent Cytotoxic Immunity. The Journal of Immunology 181: 3422-3431. Bins, A. D., A. Jorritsma, M. C. Wolkers, C. F. Hung, T. C. Wu, T. N. Schumacher, and J. B. Haanen. 2005. A rapid and potent 235     201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. REFERENCES       DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med 11: 899-904. Bui, H.-H., J. Sidney, B. Peters, M. Sathiamurthy, A. Sinichi, K.A. Purton, B. Mothé, F. Chisari, D. Watkins, and A. Sette. 2005. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57: 304-314. Peters, B., and A. Sette. 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6: 132. Udaka, K., K.-H. Wiesmüller, S. Kienle, G. Jung, H. Tamamura, H. Yamagishi, K. Okumura, P. Walden, T. Suto, and T. Kawasaki. 2000. An automated prediction of MHC class Ibinding peptides based on positional scanning with peptide libraries. Immunogenetics 51: 816-828. Parker, K. C., M. A. Bednarek, and J. E. Coligan. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. The Journal of Immunology 152: 163-175. Tan, L. K., C.-H. Huang, I. C. Kuo, L. M. Liew, and K. Y. Chua. 2006. Intramuscular immunization with DNA construct containing Der p and signal peptide sequences primed strong IgE production. Vaccine 24: 5762-5771. Patel, D., P. Couroux, P. Hickey, A. M. Salapatek, P. Laidler, M. Larché, and R. P. Hafner. 2013. Fel d 1–derived peptide antigen desensitization shows a persistent treatment effect year after the start of dosing: A randomized, placebo-controlled study. Journal of Allergy and Clinical Immunology 131: 103-109.e107. van Rijt, L. S., J.-B. Prins, P. J. M. Leenen, K. Thielemans, V. C. de Vries, H. C. Hoogsteden, and B. N. Lambrecht. 2002. Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood 100: 3663-3671. Hoyne, G. F. C., M. G.; Kuo, M. C.; Thomas, W. R. 1993. Characterization of T-cell responses to the house dust mite allergen Der p II in mice. Evidence for major and cryptic epitopes. Immunology 78(1): 65-73. Huang, C.-H., E. X.-L. Loo, I. C. Kuo, G. H. Soh, D. L.-M. Goh, B. W. Lee, and K. Y. Chua. 2011. Airway Inflammation and IgE Production Induced by Dust Mite Allergen-Specific Memory/Effector Th2 Cell Line Can Be Effectively Attenuated by IL-35. The Journal of Immunology 187: 462-471. Naik, M. T., C.-F. Chang, I. C. Kuo, C. C. H. Kung, F.-C. Yi, K.-Y. Chua, and T.-H. Huang. 2008. Roles of Structure and Structural Dynamics in the Antibody Recognition of the Allergen Proteins: An NMR Study on Blomia tropicalis Major Allergen. Structure (London, England : 1993) 16: 125-136. Tsai, J.-J., F. C. Yi, K.-Y. Chua, Y.-H. Liu, B. W. Lee, and N. Cheong. 2003. Identification of the major allergenic components in Blomia tropicalis and the relevance of the specific IgE in 236     212. 213. 214. 215. 216. 217. 218. 219. 220. 221. REFERENCES       asthmatic patients. Annals of Allergy, Asthma & Immunology 91: 485-489. Caraballo, L., D. Mercado, S. Jiménez, L. Moreno, L. Puerta, and K. Y. Chua. 1998. Analysis of the Cross–Reactivity between BtM and Der p 5, Two Group Recombinant Allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. International Archives of Allergy and Immunology 117: 38-45. Simitsek, P. D., D. G. Campbell, A. Lanzavecchia, N. Fairweather, and C. Watts. 1995. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. The Journal of Experimental Medicine 181: 19571963. Yan, J., B. P. Harvey, R. J. Gee, M. J. Shlomchik, and M. J. Mamula. 2006. B Cells Drive Early T Cell Autoimmunity In Vivo prior to Dendritic Cell-Mediated Autoantigen Presentation. The Journal of Immunology 177: 4481-4487. Wong, F. S., L. Wen, M. Tang, M. Ramanathan, I. Visintin, J. Daugherty, L. G. Hannum, C. A. Janeway, and M. J. Shlomchik. 2004. Investigation of the Role of B-Cells in Type Diabetes in the NOD Mouse. Diabetes 53: 2581-2587. Quaratino, S., J. Ruf, M. Osman, J. Guo, S. McLachlan, B. Rapoport, and M. Londei. 2005. Human Autoantibodies Modulate the T Cell Epitope Repertoire but Fail to Unmask a Pathogenic Cryptic Epitope. The Journal of Immunology 174: 557-563. Miyahara, N., K. Takeda, T. Kodama, A. Joetham, C. Taube, J.W. Park, S. Miyahara, A. Balhorn, A. Dakhama, and E. W. Gelfand. 2004. Contribution of Antigen-Primed CD8+ T Cells to the Development of Airway Hyperresponsiveness and Inflammation Is Associated with IL-13. The Journal of Immunology 172: 2549-2558. Miyahara, N., B. J. Swanson, K. Takeda, C. Taube, S. Miyahara, T. Kodama, A. Dakhama, V. L. Ott, and E. W. Gelfand. 2004. Effector CD8+ T cells mediate inflammation and airway hyperresponsiveness. Nat Med 10: 865-869. Sawicka, E., A. Noble, C. Walker, and D. M. Kemeny. 2004. Tc2 cells respond to soluble antigen in the respiratory tract and induce lung eosinophilia and bronchial hyperresponsiveness. European Journal of Immunology 34: 2599-2608. Sedgwick, J. D., and P. G. Holt. 1984. Suppression of IgE responses in inbred rats by repeated respiratory tract exposure to antigen: Responder phenotype influences isotype specificity of induced tolerance. European Journal of Immunology 14: 893897. MacAry, P. A., B. J. Holmes, and D. M. Kemeny. 1998. Ovalbumin-Specific, MHC Class I-Restricted, αβ-Positive, Tc1 and Tc0 CD8+ T Cell Clones Mediate the In Vivo Inhibition of Rat IgE. The Journal of Immunology 160: 580-587. 237     222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. REFERENCES       Thomas, M. J., P. A. MacAry, A. Noble, P. W. Askenase, and D. M. Kemeny. 2001. T Cytotoxic and T Cytotoxic CD8 T Cells Both Inhibit IgE Responses. International Archives of Allergy and Immunology 124: 187-189. Takeda, K., S. W. Dow, N. Miyahara, T. Kodama, T. Koya, C. Taube, A. Joetham, J.-W. Park, A. Dakhama, R. M. Kedl, and E. W. Gelfand. 2009. Vaccine-Induced CD8+ T Cell-Dependent Suppression of Airway Hyperresponsiveness and Inflammation. The Journal of Immunology 183: 181-190. Draghi, M., E. R. Jarman, R. Grifantini, L. Galli-Stampino, J. R. Lamb, N. M. Valiante, and G. Grandi. 2002. Different profile of CD8+ effector T cells induced in Der p 1-allergic and naïve mice by DNA vaccination. European Journal of Immunology 32: 37203728. Bessot, J. C., and G. Pauli. 2011. [House dust mites allergens]. Revue des maladies respiratoires 28: 475-495. Chua, K. Y., N. Cheong, I. C. Kuo, B. W. Lee, F. C. Yi, C.-H. Huang, and L. N. Liew. 2007. The Blomia tropicalis allergens. Protein Pept Lett 14: 325-333. Chua, K. Y., G. A. Stewart, W. R. Thomas, R. J. Simpson, R. J. Dilworth, T. M. Plozza, and K. J. Turner. 1988. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. J Exp Med 167: 175-182. Herbert, C. A., C. M. King, P. C. Ring, S. T. Holgate, G. A. Stewart, P. J. Thompson, and C. Robinson. 1995. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. American journal of respiratory cell and molecular biology 12: 369-378. Asokananthan, N., P. T. Graham, J. Fink, D. A. Knight, A. J. Bakker, A. S. McWilliam, P. J. Thompson, and G. A. Stewart. 2002. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168: 35773585. Asokananthan, N., P. T. Graham, D. J. Stewart, A. J. Bakker, K. A. Eidne, P. J. Thompson, and G. A. Stewart. 2002. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 169: 4572-4578. Adam, E., K. K. Hansen, O. Astudillo Fernandez, L. Coulon, F. Bex, X. Duhant, E. Jaumotte, M. D. Hollenberg, and A. Jacquet. 2006. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. The Journal of biological chemistry 281: 6910-6923. King, C., S. Brennan, P. J. Thompson, and G. A. Stewart. 1998. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 161: 3645-3651. 238     233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. REFERENCES       Kouskoff, V., K. Signorelli, C. Benoist, and D. Mathis. 1995. Cassette vectors directing expression of T cell receptor genes in transgenic mice. J Immunol Methods 180: 273-280. Giudicelli, V., D. Chaume, and M. P. Lefranc. 2005. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic acids research 33: D256-261. Brochet, X., M. P. Lefranc, and V. Giudicelli. 2008. IMGT/VQUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic acids research 36: W503-508. Arden, B., S. Clark, D. Kabelitz, and T. Mak. 1995. Mouse T-cell receptor variable gene segment families. Immunogenetics 42: 501-530. Wilson, R. K., E. Lai, P. Concannon, R. K. Barth, and L. E. Hood. 1988. Structure, Organization and Polymorphism of Murine and Human T-Cell Receptor a and β Chain Gene Families. Immunological Reviews 101: 149-172. Arden, B., S. Clark, D. Kabelitz, and T. Mak. 1995. Human T-cell receptor variable gene segment families. Immunogenetics 42: 455-500. Brady, B. L., N. C. Steinel, and C. H. Bassing. 2010. Antigen Receptor Allelic Exclusion: An Update and Reappraisal. The Journal of Immunology 185: 3801-3808. Uematsu, Y., S. Ryser, Z. Dembic, P. Borgulya, P. Krimpenfort, A. Berns, H. von Boehmer, and M. Steinmetz. 1988. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52: 831-841. Bluthmann, H., P. Kisielow, Y. Uematsu, M. Malissen, P. Krimpenfort, A. Berns, H. von Boehmer, and M. Steinmetz. 1988. T-cell-specific deletion of T-cell receptor transgenes allows functional rearrangement of endogenous alpha- and beta-genes. Nature 334: 156-159. Post, S., M. C. Nawijn, T. L. Hackett, M. Baranowska, R. Gras, A. J. M. van Oosterhout, and I. H. Heijink. 2012. The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax 67: 488-495. Met, Ö., S. Buus, and M. H. Claesson. 2003. Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC. Cellular Immunology 222: 126-133. Coyle, A. J., G. Le Gros, C. Bertrand, S. Tsuyuki, C. H. Heusser, M. Kopf, and G. P. Anderson. 1995. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. American journal of respiratory cell and molecular biology 13: 54-59. Tanaka, S., Y. Motomura, Y. Suzuki, R. Yagi, H. Inoue, S. Miyatake, and M. Kubo. 2011. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in T(H)2 cells. Nature immunology 12: 77-85. 239     246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. REFERENCES       Stock, P., T. Kallinich, O. Akbari, D. Quarcoo, K. Gerhold, U. Wahn, D. T. Umetsu, and E. Hamelmann. 2004. CD8(+) T cells regulate immune responses in a murine model of allergeninduced sensitization and airway inflammation. Eur J Immunol 34: 1817-1827. del Rio, M.-L., J.-I. Rodriguez-Barbosa, E. Kremmer, and R. Förster. 2007. CD103− and CD103+ Bronchial Lymph Node Dendritic Cells Are Specialized in Presenting and CrossPresenting Innocuous Antigen to CD4+ and CD8+ T Cells. The Journal of Immunology 178: 6861-6866. Ho, A. W. S., N. Prabhu, R. J. Betts, M. Q. Ge, X. Dai, P. E. Hutchinson, F. C. Lew, K. L. Wong, B. J. Hanson, P. A. Macary, and D. M. Kemeny. 2011. Lung CD103+ Dendritic Cells Efficiently Transport Influenza Virus to the Lymph Node and Load Viral Antigen onto MHC Class I for Presentation to CD8 T Cells. The Journal of Immunology 187: 6011-6021. Wells, J. W., C. J. Cowled, A. Giorgini, D. M. Kemeny, and A. Noble. 2007. Regulation of allergic airway inflammation by class I–restricted allergen presentation and CD8 T-cell infiltration. Journal of Allergy and Clinical Immunology 119: 226-234. Ali, F. R., A. B. Kay, and M. Larche. 2007. Airway hyperresponsiveness and bronchial mucosal inflammation in T cell peptide-induced asthmatic reactions in atopic subjects. Thorax 62: 750-757. O'Sullivan, S., L. Cormican, J. L. Faul, S. Ichinohe, S. L. Johnston, C. M. Burke, and L. W. Poulter. 2001. Activated, cytotoxic CD8(+) T lymphocytes contribute to the pathology of asthma death. Am J Respir Crit Care Med 164: 560-564. van Rensen, E. L., J. K. Sont, C. E. Evertse, L. N. Willems, T. Mauad, P. S. Hiemstra, P. J. Sterk, and A. S. Group. 2005. Bronchial CD8 cell infiltrate and lung function decline in asthma. Am J Respir Crit Care Med 172: 837-841. Schwarze, J., M. Makela, G. Cieslewicz, A. Dakhama, M. Lahn, T. Ikemura, A. Joetham, and E. W. Gelfand. 1999. Transfer of the Enhancing Effect of Respiratory Syncytial Virus Infection on Subsequent Allergic Airway Sensitization by T Lymphocytes. The Journal of Immunology 163: 5729-5734. Linhart, B., and R. Valenta. 2012. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives. Vaccine 30: 4328-4335. Strait, R. T., S. C. Morris, and F. D. Finkelman. 2006. IgGblocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. The Journal of clinical investigation 116: 833-841. Niespodziana, K., M. Focke-Tejkl, B. Linhart, V. Civaj, K. Blatt, P. Valent, M. van Hage, H. Grönlund, and R. Valenta. 2011. A hypoallergenic cat vaccine based on Fel d 1–derived peptides fused to hepatitis B PreS. Journal of Allergy and Clinical Immunology 127: 1562-1570.e1566. 240 [...]... layers of the epithelium and lamina propria of the airways These DCs are at an immature state Therefore, at steady state, uptake and presentation of antigen by these DCs would result in tolerance rather than induce an inflammatory response For example, the administration of ovalbumin (OVA) into the lung of mice had been shown to result in immunologic tolerance rather than an allergic lung response to the. .. immune system is the first component of the immune system to make contact with the allergen and hence a key determinant in the nature of the response mounted against the allergen In many cases, encounter with the allergen results in elimination of the allergen and maintenance of immune tolerance However, in allergic asthma, this may lead to the triggering of an immune response to the allergen 7    ... mediators can profoundly affect the permeability of the vascular endothelium, allowing the migration of circulating immune cells to migrate through the endothelium into the site of inflammation These mediators contribute to the symptoms of the immediate hypersensitivity reaction such as coughing, sneezing, bronchospasm and mucus secretion as well as mediate the recruitment of other immune cells to the. .. disease than in animal models The use of surrogate allergen like OVA in animal studies are likely to complicate matters as true asthma allergens are a complex mix of proteins that may induce responses not seen in the OVA model Current studies are beginning to focus on asthma allergens and their role in the induction of allergic responses and this may provide greater understanding of the role of Th2 cells... inflammatory mediators These include the cytokine TSLP TSLP receptors are found on DCs and bronchial epithelial cells and the presence of TSLP can induce DC activation and the production of IL-13 from epithelial cells TSLP also promote the development of basophils, believed to be a source of early IL-4 that enhances Th2 responses Epithelial cell cultures from asthma patients overproduce GM-CSF, another cytokine... treatment as the disease often varies from patient to patient in severity and causative agent Patients allergic to the same triggering factor 2     CHAPTER  1:  INTRODUCTION       differ in the severity of their responses and many patients were responsive to more than one triggering factor The most common form of asthma and the focus of most of the research in the field is allergic asthma Patients... process, these components can have a profound influence on the nature of the allergic immune response to allergen The airway epithelial cells represent the initial barrier encountered by infectious microbes or allergens Epithelial cells express many PRRs that could detect and respond to a variety of PAMPs and DAMPs Activation of epithelial cell PRRs results in the release of cytokines and chemokines and the. .. role for these cells in asthma pathogenesis Moreover, administration of the NKT ligand α-galactosylceramide (α-GalCer) to the airways induced the production of IL-13 and TSLP by NKT cells (87) γδ T cells can be found at the lung epithelium and the numbers were observed to be higher in asthma patients γδ T cells expressing the Vg1+ TCR were observed to produce IL-5 and IL13 and contribute to AHR Meanwhile,... expressed the Vg4+ TCR appeared to suppress AHR and allergic airway inflammation, a role linked to their secretion of IL-17A (87) 1.2.1.9 The airway epithelium For many years, the study of allergic asthma focused predominantly on the immune cells Now, recent studies have drawn attention to the structural components of the lung and have shown that, rather than being a passive bystander in the inflammatory... resistance 5     CHAPTER  1:  INTRODUCTION       This results in long-term changes to lung function that characterizes chronic asthma Figure 1.1 Overview of the immune responses involved in allergic asthma The protease activity of the allergen allows the allergen to penetrate through the epithelium Activation of PRRs on the dendritic cells lead to the maturation of the dendritic cells and antigen . AN ASTHMA ALLERGEN SPECIFIC ANIMAL MODEL FOR THE STUDY OF RESPONSES TO MITE ALLERGEN INDUCED ASTHMA KENNETH WONG HOK SUM B.Sc. (Hons), NUS A THESIS SUBMITTED FOR THE DEGREE. differ in the severity of their responses and many patients were responsive to more than one triggering factor. The most common form of asthma and the focus of most of the research in the field. asked for a better bunch of people to work with. Thank you especially to Yafang and Sophie for guiding me with the asthma studies. Thank you as well to Nayana for all the discussions and your

Ngày đăng: 15/09/2015, 21:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN