Báo cáo " A numerical model for the simulation of wave dynamics in the surf zone and near coastal structures " pot

11 460 0
Báo cáo " A numerical model for the simulation of wave dynamics in the surf zone and near coastal structures " pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

VNUJournalofScience,EarthSciences23(2007)160‐169 160 Anumericalmodelforthesimulationofwavedynamics inthesurfzoneandnearcoastalstructures VuThanhCa* Center for Marine and Ocean-Atmosphere Interaction Research, Vietnam Institute of Meteorology, Hydrology and Environment Received07March2007 Abstract.Thispaperdescribesanumericalmodelforthesimulationofnearshorewavedynamics andbottomtopographychange.Inthispart,thenearshorewavedynamicsissimulatedbysolving the depth integrated Boussinesq approximation equations for nearshore wave transformation togetherwithcontinuityequation witha Crank‐Nicholsonscheme.Thewaverunuponbeachesis simulatedbyascheme,similartothe VolumeOfFluid(VOF)technique.Thewaveenergylossdue to wave breaking and shear generated turbulence is simulated by a ε − k  model, in which the turbulence kinetic energy (TKE) generation is assumed as the sum of those respectively due to wavebreakingandhorizontalandverticalshear. Theverificationofthenumericalmodelagainstdataobtainedfromvariousindoorexperiments reveals that the model is capable of simulating the wave dynamics, turbulence and bottom topography change under wave actions. The simulation of turbulence in the surf zone and near coastalstructuresenable the model realisticallysimulatesthe contribution ofsuspendedsediment transportintothebedtopographychange. Keywords:Wavedynamics;Waverunup;Waveenergy;Surfzone;Boussinessqmodel. 1.Introduction 1  Extensive researches on the wave dynamics, sediment transport and bottom topography change in the nearshore area, especiallyinthesurfzone[1‐5,7,9,12,14‐17] have elucidated various aspects of coastal processes, such as the dynamics of wave breaking, characteristics of turbulence in the surf zone, structure of  the undertow, the developmentofbottomboundarylayerunder breakingwaves,therateofbedloadtransport, uptakeofbedmaterialforsuspension,settling rateofsuspendedsedim entetc. _______ *Tel.:84‐913212455. E‐mail:vuca@vkttv.edu.vn Nadaoka [9] found by indoor experimentsthatduringwavebreaking,large vortices were formed and rapidly extended both vertically and horizontally. Ting and Kirby [15‐17] by conducting experiments withdifferentwaveconditionsfoundthatthe advective and diffusive transports of TKE play a major role in the distribution of turbulence,  especially under plunging breaker. They also found that under spilling breakers (the breaking of relatively steep wavesonagentleslope),thetimevariationof TKE was relatively small, and th e time average transport of TKE was directed offshore. Under plunging breakers (the breaking of less steep waves on a gentle slope), there was a large time variation of VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 160 TKE, and its time averaged transport is directedon‐shore. For situations with negligible alongshore sediment tr ansp ort, the status of a be ach  depends on the cross‐shore transport of sediment,whichis closelyrelatedwithwave conditions. If the shoreward transport of sediment by incoming waves exceeds the offshore transport of  sediment by ret r eating  waves and the undertow,  there will be a net onshore transport of sediment, resulting in beach accretion. Otherwise, the beach is in equilibriumstateoreroded. During a storm, turbulence generated by the breaking of a relatively short wind wave has not been significantly dissipated when a newwavearrivesandbreaks.Thus,the time variation of TKE is relatively small, and the combination of wave‐induced flow and undertowmaytransportTKEandsuspended sediment offshore. This results in the offshore‐directed transport of sand during storm and the associated beach erosion. On the other hand, post  storms, turbulence generated by the breaking of a long period‐ small amplitude swell has significantly dissipated when the wave retreats. Thus, thereisalargetimevariationofTKE,andthe peaks in turbulence intensity and suspended sediment concentration coincide with incoming waves. Accordingly, onshore transportofTKEandsuspended sedimentby incoming waves exceeds the offshore transport by retreating waves and the undertow. This results in a net onshore transport of suspended sediments and helps explaining the onshore‐directed transport of sediment during calm weather and the consequentpoststormbeachrecovery. Schaffer [14] and Madsen [7] developed models for  the simulation of the nearshore wave dynamics based on Boussinesq approximation equations. The wave energy loss due  to breaking is  simulated by employing a surface roller model. Due to the instability of the numerical code resulting from the tr eat m ent  of the surface roller wave energy loss, Schaffer [14] had to use a smoothingtechniquetostabilizethesolution. Rakha et al [12,13] presented a quasi‐2D and a quasi‐3D phase resolving hydrodynamic and sediment transport models. In these mo dels, the horizontal transport of TKE, and the associated transport of suspended sediment are neglected.However,asdiscussedpreviously, results of  Nadaoka et al [9] and Ting and Kirby[16]show thatthehorizontaltransport ofTKEinthesurfzoneisveryimportantand should not be neglected. Thus, without accounting for this, it is not easy to simulate the beach erosion during storm and the consequentrecoveryafterthe storm. NadaokaandOno[10]presentedadepth‐ integrated k‐model where the TKE production rate was evaluated with a Rankineeddy model. In this model, the TKE dissipation rate and the eddy viscosity was evaluated by employing an empirical length scale. The model had not been verified againstexperimentaldata. Also,waverunup onbeach,whichismainlyresponsibleforthe erosion of foreshore during storms, is not simulatedinthismodel. Regarding all the above mentioned facts, the purpose of this study is to develop a numerical model that can simulate the nearshore wave dynamics, including wave breaking and wave runup, the generation, transportanddissipationofTKE. 2. Governing equations of the numerical modelfornearshorewavedynamics In this study, the near‐shore wave VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 161 dynamics are simulated by solution of two‐ dimensional depth integ rated Boussinesq approx im at ion  equations, including bottom friction and wave energy loss due to wave breaking and shear. The main equations of thenumericalmodelarewrittenas: 0= ∂ ∂ + ∂ ∂ + ∂ ∂ ty q x q y x η    (1) 0 2 6 2 3 2 3 2 3 2 33 2 =+− ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂∂∂ ∂ + ∂∂ ∂ − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂∂∂ ∂ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂∂ ∂ + ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ x c bx y x y x yx xx Qq d f M tyx q tx q h h q tyxh q tx h x gd d qq yd q xt q η (2) 0 2 6 2 3 2 3 2 3 2 33 2 =+− ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂∂∂ ∂ + ∂∂ ∂ − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂∂∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂∂ ∂ + ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ y c by x y x y yyxy Qq d f M tyx q ty q h h q tyxh q ty h y gd d q yd qq xt q η (3) where x q  and y q  are respectively the depth integrated flow discharges in x and y directions; η  is the water surface elevation; d  isthe instantaneous water depth; h  is the still water depth; c f  is the bed friction coefficient; Q  is the total discharge, defined as 22 yx qqQ += ; and bx M  and by M  represent the wave energy loss due to breaking, evaluated by introducing an eddy viscosity andexpressedas: () () () () ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ = y dq df yx dq df x M y dq df yx dq df x M y tD y tDby x tD x tDbx // // νν νν (4) InEq.(4), t ν istheeddyviscosity;and D f  is an empirical coefficient, determined based onthecalibrationofthenumericalmodel. When waves are breaking on beach, a part of the lost wave energy is transformed into turbulence energy. At the beginning of the wave breaking process, the turbulence is confinedintoa small portion ofthebreaking wave crest, the surface roller; after that, turbulence eddies rapidly expand in vertical and horizontal dire ctions [9, 15‐17]. The turbulence under wave breaking is very complexandfullythree‐dimensional.Thus,a 3Dmodelisrequiredforapropersimulation of turbulence processes here. However, such a model would require  an excessive computational time and  at the  moment is not suitable for a practical application. On the otherhand, based on resultsof Nadaokaetal [9],TingandKirby[15‐17],itcanbeestimated that in the surf  zone, the  ti me scale  for turbulence energy transport in the vertical direction is much shorter than that in the horizontaldirections.Thus,thesimulationof the transport of TKE in the horizontal direction is more important than that in the vertical direction. Therefore, in the present study, the TKE is  assumed un ifor mly distributedinthewholewaterdepth,andthe depth ‐integrated equations for the production, transport and dissipation of the TKEanditsdissipationrateread: () () , // ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ + −= ∂ ∂ + ∂ ∂ + ∂ ∂ y dk d yx dk d x P y vk x uk t k t t t t r σ ν σ ν ε  (5) () () () ε εε σ ν ε σ ν εεε εε ε ε 21 / / CPC ky d d y x d d xy v x u t r t t −+ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂  (6) where k  and ε  are respectively the depth integrated TKE and its dissipation rate; u  and v  are respectively phase‐depth averagedflowvelocitiesinxandydirections; t σ , ε σ , ε 1 C , ε 2 C  are closure coefficients. In VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 162 Eq.(6), r P is theTKE productionrate,which is assumed as a summation of the TKE production due to bottom friction rb P , horizontal sh ear rs P  and wave breaking rw P  as: rwrsrbr PPPP ++=   (7) Withknownvaluesof k and ε ,theeddy viscosityisevaluatedas: () εν ε dkC t / 2 = ,   (8) where )09.0( = ε C isconstant. The scheme for the simulation of wave runup and rundown on the beach is explained in the next section. By employing this scheme, the present model can simulate the wave setup, set down on the beach, and theerosionofforeshoreduringstormevents. 3. Boundary and initial conditions and numericalscheme 3.1.Boundaryandinitialconditions It is possible to use a weekly wave reflected boundary condition such as the Summerfeld radiation condition at the offshore boundary to let reflected waves freelygoingout ofthecomputationalregion. However, this linear wave theory based boundary condition, when applied in combination with a  nonlinear wave model, does not ensure mass conservation and may lead to an accumulation or lost of water insidethecomputationalregion.Thus,inthis study,watersurfaceelevationunderwavesis givenattheoffshoreboundary. Wave‐absorbing zones are introduced at the lateral boundaries to minimize wave reflection. The bed friction coefficient c f  in these zones is assumed constant within first five meshes from the lateral boundaries, and then increases linearly with the distances fromthe boundaries towardsthe ends ofthe waveabsorbingzones.Finally,attheendsof the wave absorbing zones, the Summerfeld radiation condition for long waves are introduced to letremaining waves going out of the computational region. A free slip boundary condition is applied at surfaces of thecoastalstructures. Zero gradients of k  and ε  are assumed at the offshore, lateral boundaries and at surfacesofcoastalstructures. A scheme similar to that of Hibberd and Peregrine [5] is used to compute the wave runuponthebeach.Asketchoftheschemeis shown in Fig. 1. In this scheme, when the shore is approached, all the dispersion terms in Eqs. (2) and (3) are turned off. Additionally, a cell side wetted function, defined as the wetted portion over the total length of a cell side, and a cell wetted area function, defined as the wetted portion over the total cell area are introduced to  account for the fact that water flows only in wetted parts of the cells on the instantaneous shoreline. Then, the continuity equation (Eq. 1) and momentum equations (Eqs. 2 and 3) can be derived by a method  similar to  Vu et al[19]andbecome:  0= ∂ ∂ + ∂ ∂ + ∂ ∂ t S y qf x qf yxxy η  (9)  () () ,0 / 1 / 1 11 2 2 =+ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ − ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ − ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ x cx t x t yx xx Qq d f y dq Sd yS x dq Sd xSx gd d qSq ySd Sq xSt q ν ν η   (10) VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 163 () () 0 / 1 / 1 11 2 2 =+ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ − ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ ∂ ∂ − ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ y c y t y t yxyy Qq d f y dq Sd yS x dq Sd xSy gd d Sq ySd qSq xSt q ν ν η  (11) where x f and y f arerespectivelythecellside wetted functions corresponding to x  and y  directions, and S  is the cell area wetted function.  Fig.1.Thecoordinatesystemandmethodforthe evaluationofawettinganddryingboundary. The procedure for determining the cell side wetted function  and the  cell area wetted function in  the numerical scheme will be discussedinthenextsection. A still water is assumed at the beginning of the computation. With this, all variables aresetequaltozeroinitially. 3.2.Numericalscheme Equations (1‐3) and (5‐6) are integrated numerically on a spatially staggered grid system, where components of the flow discharge are evaluated at surfaces, and bed elevation, k  and ε  are evaluated at the centersof control volumes. The sketchof the coordinates and computational mesh is showninFig.1.Asitwillbediscussedlater, in the present scheme, the water level inside acell is evaluatedatthecenterofthewetted area inside the cell. A second order accurate Crank‐Nicholsonschemeisemployedforthe time discretization for all equations, and a central differencing scheme is employed for spatial discretization of Eqs. (1) to (3). The spatial disretization for advection terms of Eqs. (5) and (6), governing the transport, diffusion, generation and dissipation of k  and ε , follows the third order accurate QUICK scheme, and that for the diffusion terms follows the central differencing scheme. As the discretization scheme is implicit, an iterative scheme similar to the SIMPLE scheme of Patankar [11] is employed. At the beginning of a new time step, the computation of the flow  discharges requires the still unknown water level and eddy viscosity. Thus, at first, the water level ateachnewtimestepisassumedequaltothe valueattheprevioustimestep.Then,Eqs.(2) and (3) are solved to get the flow discharges in x and y directions, respectively. The new values of the flow discharges are substituted into the continuity equation to compute the new water le vel. Also, with the new water level, the thickness of the surface roller is evaluated. Then, Eqs. (5) and (6) are integratedtoget k and ε ,andconsequently the new coefficient of eddy viscosity. All newly obtained water level, flow discharges and coefficient of eddy viscosity are  substituted back into Eqs. (2) and (3) to compute the new components of the flow discharge. The procedure is repeated until convergedsolutionsarereached. The wetted periphery inside  a computational mesh at the intersection betweenthewatersurfaceandthebeach,the cell side wetted function and the cell area wetted function at each time step are VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 164 evaluated explicitly based on the water level, bed elevation and the  bed slope in two directions.Theprocedureforthisisshownin Fig.1.Thebedelevationsatcellcorners(such aspointsA,B,CandDinFig.1)areevaluated as the average value of the  bed elevation at four adjacent points. For example, the bed elevationatpointCinthisfigureisevaluated as: 4 ,11,11,, jijijiji c bbbb b ++++ +++ = ,(12) where b c  is the bed elevation at point C, and b i,j , b i,j+1 , b i+1,j+1  and b i+1,j  are respectively the bed elevations at the center of cells (i,j), (i,j+1), (i+1,j+1)and(i+1,j). The water level at a cell side is averaged from the water levels at two adjacent cells. For example, the water level on the side BC ofcell i,jinFig.1isevaluatedas: 2 1,, + + = jiji bc ηη η ,   (13) where bc η , ji, η  and 1, +ji η  are respectively water levels at the cell side BC, and in the cells(i,j)and(i,j+1). If one of adjacent cells to a cell side is completely dry (with the value of the area wetted function equal to zero), the average water level at the cell side is assumed equal tothewaterlevelatthewettedcell.Basedon the bed elevation at its two ends and the average water level on a cell side, the intersected point between the water surface and the cell side, and the wetted portion of the side are determined. When  the average waterlevelonthecellsideishigherthanthe bed elevation at its two ends, the side is consideredtotally submerged intothe water, and the corresponding value of the cell side wettedfunctionis1.Forothercases,valueof the cell side wetted function equals to the ratioofthe lengthofthewettedportion over the total length of the cell side. After getting allthewettedpointsonfoursidesofthecell, the wetted periphery and the wetted area inside a cell are determined by connecting two adjacent wetted points with a straight  line. This wetted periphery is shown by the dottedlineinFig.1.Thewettedareaincelli,j in this figure is the portion of the cell from the dotted line to offshore. The wetted periphery and area inside the cell are kept constantforatimestep. 4.Modelverification 4.1. Wave transformation and characteristics of turbulence due to wave breaking on a natural beach To verify the accuracy of the numerical model on the simulation of the wave transformation on a natural beach, existing experimental data on the wave dynamics in the nearshore area obtained  by Ting and Kirby [15 ‐17] are used. The experiments were carried out in a two‐dimensional wave flumeof40mlong,0.6mwideand1.0mdeep. A plywood false bottom was installed in the flume to create a uniform slope of 1 on 35. Regular waves with heights and periods equalto12.7cm,2s and8.7cm,5sareusedas incoming waves respectively for spilling breakerandplungingbreakerexperiments. Fig. 2 shows the sketch of the Ting and Kirby [15‐17] experiments.  Computation was carried out with the same conditions of the experiments. The critical water surface slope for a broken wave to be  recovered φ0 is set equalto6 0 ,accordingtoMadsenetal[7]. VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 165 Wave generator 0.4m 35 1 0.38m  Fig.2.ExperimentsbyTingandKirby[15‐17]. As cited by various authors [2, 4], when waves are breaking, a major part of the lost wave energy is dissipated directly in the shearlayerbeneaththesurfaceroller,andonly aminorpartofitistransformedintoturbulent energy. Thus, a turbulence model may underestimate the wave energy  lost due to breaking. To account for this, an empirical coefficient D f  was introduced in Eq. 4. Calibrationswere carriedouttofindthebest valueofthiscoefficient.Vuetal[18]founda constant value of 1.5 for this coefficient for theirone‐dimensionalmodel.However,their computational results show that the coefficient does not provide adequate wave energy dissipation, and the computed wave heights after breaking is significantly larger thantheobservedones. As mentioned previously, wave breaking happens with a sudden loss of wave energy. This in a numerical model can be simulated by a sudden increase in the  “energy dissipation coefficient” D f . As the breaking waveprogresses onshore, the growth of TKE mayaccompanyanincreaseinthecoefficient. On the other hand, turbulence length scale, and the corresponding turbulence intensity decrease with water depth, leading to a decrease in the coefficient. Thus, in this study, the coefficient is assumed suddenly increases  at the breaking point, then gradually increases towards the shore, and thendecreaseswiththe decreaseinthewater depthinthefollowingform: 2 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − += mb m mb b D h h h xx baf ,  (14) where a and b are constants, to be determined from calibration; x and x b  are respectively the coordinates in the on‐ offshore direction at the point under considerationandthebreakingpoint; m h and mb h arethecorrespondingmeanwaterdepths attherespectivepoints. Fig.3showsthecomparisonbetweenon‐ offshoredistributionsoftimeaveragedmean water surface  elevation, minimum water surface elevation, maximum water surface elevation, and wave height for the spilling breaker, computed by the model (with D f  evaluated following Eq. (14), 05.0=a  and 1 = b ), and observed by Ting and Kirby [15, 16]. -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Horizontal Distance (m) Height (m) Bed Comp. Etaav Comp. Etamax Comp. Etamin Comp. Waveh Obs. Wavh Obs. Etaav Obs. Etamax Obs. Etamin Fig.3.Comparisonbetweenobservedandcomputed timeaveragedwaveheight,highest,lowestand meanwatersurfaceelevationforspillingbreaker. ExperimentaldatafromTingandKirby[15,16]. ItcanbeseeninFig.3thatthemodelcan accurately predict the wave breaking point and provides adequate wave energy dissipation after breaking. The maximum, minimumandmeanwaterlevelsatallpoints in the computational region are also predicted by the model with good accuracy. The general satisfactory  agreement between computed and observed data shown in the VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 166 figure suggests that the model can simulate nearshore wave processes, such as wave energy loss due to breaking, wave setup, setdownetc.withacceptableaccuracy. Figures (4) to (7) respectively show the time variation of ensemble averaged (phase‐ averaged) non‐dimensional water surface elevation, depth‐averaged horizontal flow velocity,TKE,andadvectivetransportrateof TKE, computed by the model and observed by Ting and Kirby [15, 16] at () 642.7/ =− mbb hxx .Thetimetinthefiguresis non‐dimensionalized by wave period T. For convenient, the same coordinate system in Ting and Kirby [15‐17] is employed in this study. The computed time variation of ensemble‐averaged water surface elevation fluctuation, non‐dimensionalized by local mean water depth h m  (equal the sumof local still water depth and mean water surface fluctuation η ), shown in Fig. 4 agrees very well with observed data. The agreement between computed and observed time variation of phase and depth‐averaged horizontal flow velocity, non‐ dimensionalized by the local long‐wave celerity c (defined as () Hhgc m += , with H as the deepwater wave height) also agrees satisfactorily with observed data. The agreement between computed and observed phase and depth‐averaged non‐dimensional TKE and its advective transport is less satisfactory than that of the water level or flow velocity. It must be noted that the computation of  TKE employs a depth‐ integrated ε −k model,whichinvolvesmany approximation assumptions and may not accurately predict the TKE production, transport and dissipation under a complex situation such as wave breaking. Among all, theweakestpointofthis model might be the depth‐integrated approximation. It is commonly known that just after wave breaking, turbulence is concentrated only inside the surface roller, and flow in the region below remains irrotational. Thus, a depth‐integrated model for the generation, transport and dissipation of TKE cannot be considered as a good approximation for this situation. However, despite of all inadequate assumptions and approximations,  order of TKEpredictedbythe model,showninFig.6, agreeswellwiththeobservedone.Regarding difficultiesinpredictingtheTKEunderwave breaking with a numerical model, it can be saidthatthenumericalmodelcanpredictthe TKE and its advective transport with satisfactoryaccuracy. -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 00.20.40.60.81 t/T ( ζ -< ζ >)/ h Fig.4.Computedandobservedphase‐averaged watersurfaceelevationat(x‐x b)/hb=7.462.Spilling breaker.  -0.2 -0.1 0 0.1 0.2 0.3 0.4 00.20.40.60.81 t/T <u>/c VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 167 Fig.5.Computedandobservedphase‐depth averagedhorizontalflowvelocity at(x-x b )/h b =7.462.Spillingbreaker. The agreement between computed and observedadvectivetransportsofTKE,shown inFig.7,isbetterthanthatfortheTKEitself. Results of Ting and Kirby [15, 16] show that there is a tendency of offshore (negative) transport of TKE. The computational results by the present model also reveals the  same tendency; ho wever, as shown in Fig. 8, the residual advective offshore transport of TKE evaluated by the numerical model is significantlysmallerthantheobservedone. From the general agreement between computed and observed values of various wave characteristics, it can be remarked that the numerical model can simulate wave transformation in the nearshore region with anacceptableaccuracy. 0 0.001 0.002 0.003 0.004 0.005 0.006 00.20.40.60.811.2 t/T k /c 2 Fig.6.Computedandobservedphase‐depth averagedrelativeturbulentintensity at(x-x b )/h b =7.462.Spillingbreaker.  -1 -0.5 0 0.5 1 1.5 2 00.20.40.60.81 t/T <u>k/c 3 (X10 - 3 ) Fig.7.Computedandobservedphase‐depth averagedrelativeadvectivetransportrateofTKE inthehorizontaldirectionat(x-x b )/h b =7.462. Spillingbreaker. 4.2.Waverunuponbeach To verify the  accuracy of the simulation bythepresent numerical modelonthewave runup on beach, experimental data of Mase andKobayashi[8]areused.Thesketchofthe experiment is shownin Fig. 10. As shown in the figure, the experiments were carried out in a wave flume  with the length of 27 m, depth of 0.75 m and width of 0.50 m. An irregular wave generator is installed at one end of the wave flume. At the other end is a model beach with a foreshore slope of 1/20. The water depth in front of the slope is set constantandequalto0.47m.Thewaverunup on the beach is recor ded by a wave meter. Wave groups used in the experiments are expressedas: () [] () [] ()() ,2cos2cos 12cos 2 1 12cos 2 1 max ftft ftft ππδ δπδπ η η = −++= (15) where max η  is the amplitude of the incoming waves, f  is the wave frequency, and ∆  is the variation in the relative wave frequency. During the experiments, max η was taken as 5 cm. VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168 168 -0.05 -0.025 0 0.025 0.05 0 5 10 15 20 25 Time (sec) Water Surface Elevation (m) Fig.8.Computedandobservedwaverunupheight. T=2.5s,∆=0.1. Fig. 8 shows an example of comparison between observed and computed wave runup for different wave periods. It can be seen in the figures that the computed wave runup heights agree very satisfactorily with theobservedvalues. The computational results (not shown) also reveal that short period waves are dissipated much  more rapidly on the beach compared with long period waves.  The very satisfactory agreement between computed and observed wave runup heights reveals that the numerical model can accurately simulatewaverunuponbeaches. The model is also verified for its applicability of computing waves near coastalstructures. 5.Conclusions A numerical model has been developed for the simulation of the wave dynamics in the near shore area and in the vicinity of coastal structures. It has been found that the numerical model can satisfactorily simulate the wave transformation, including wave breaking, wave runup on the beach, and turbulence generated by  wave breaking and shear. As the model is a depth‐integrated, two‐dimensionalinthehorizontaldirections, the computational time is relatively short. Thus, the application of the model for simulation of wave transformation in the field, especially in the vicinity coastal structures and inside harbours is very promising. References [1] D. Cox, N. Kobayashi, Kinematic undertow model with logarithmic boundary layer, Journal ofWaterway, Port, Coastal,andOceanEngineering 123/6(1997)354. [2] W.R.Dally,C.A.Brown ,Amodelinginve stig ati on  of the breaking wave roller with application to cross‐shore currents, Journal of Geophysical Research100(1995)24873. [3] A.G. Davies,J.S.Ribberink,A. Temperville,J.A. Zyserman, Comparisons between sediment transport models and observations  made in wave and current flows above plane beds, CoastalEngineering31(1997)163. [4] R. Deigaard, Mathematical modelling of waves inthesurfzone,Prog.ReportISVA69(1989)47. [5] S. Hibberd, H.D. Peregrine, Surf and runup on beach:Auniformbore,JournalofFluidMechanics 95(1979)323. [6] C.W. Hirt, Nichols,Volumeof fluidmethodfor the dynamics of free boundaries, Journal of ComputationalPhysics39(1981)201. [7] P.A. Madsen, O.R. Sorensen, H.A. Schaffer, Surf zone dynamics simulated by a Boussinesq typemodel.Part1:Modeldescriptionandcross‐ shore motion of regular waves, Coastal Engineering33(1997)255. [8] H. Mase, N. Kobayashi, Low frequency swash oscillation, Journal of Japan Society of Civil EngineersII‐22/461(1993)49. [9] K. Nadaoka, M.  Hino, Y. Koyano, Structure of the turbulent flow field under breaking waves in the surf zone, Journal of Fluid Mechanics 204 (1989)359. [...]... resolving cross shore sediment transport model for beach  profile  evolution,  Coastal Engineering  31 (1997) 231.  [13] K .A.   Rakha,  A quasi‐3D  phase‐resolving  hydrodynamic  and sediment  transport  model,   Coastal Engineering 34 (1998) 277.  [14] H .A.   Schaffer,  P .A.   Madsen,  R.  Deigaard,  A Boussinesq  model for waves  breaking  in shallow water, Coastal Engineering 20 (1993) 185.  [15] F.C.K. Ting, J.T. Kirby, Observation of undertow ... F.C.K. Ting, J.T. Kirby, Observation of undertow      [16] [17] [18] [19] 169 and turbulence  in laboratory  surf zone,   Coastal Engineering 24 (1994) 51.  F.C.K.  Ting,  J.T.  Kirby,  Dynamics of surf zone turbulence in a strong plunging breaker, Coastal Engineering 24 (1995) 177.  F.C.K.  Ting,  J.T.  Kirby,  Dynamics of surf zone turbulence  in a spilling  breaker,  Coastal Engineering 27 (1996) 131.  Vu  Thanh ... Coastal Engineering 27 (1996) 131.  Vu  Thanh  Ca,  K.  Tanimoto,  Y.  Yamamoto,  Numerical simulation of wave breaking by a k‐ε  model,   Proceedings  of Coastal Engineering,  JSCE  47 (2000) 176.  Vu  Thanh  Ca,  Y.  Ashie,  T.  Asaeda,  A k‐ ε turbulence  closure  model for the atmospheric  boundary  layer  including  urban  canopy,  Boundary‐Layer Meteorology 102 (2002) 459.  ...Vu Thanh Ca / VNU Journal of Science, Earth Sciences 23 (2007) 159‐168  [10] K.  Nadaoka,  O.  Ono,  Time‐Dependent  Depth‐ Integrated  Turbulence  Closure  Modeling  of Breaking  Waves,  Coastal Engineering  ACSE  (1998) 86.  [11] S.V. Patankar, Numerical Heat  Transfer  and Fluid  Flow, Hemisphere Publ. Co., London, 1980.  [12] K .A.   Rakha,  R.  Deigaard,  I.  Broker,  A phase  resolving cross shore sediment transport model . VNUJournal of Science,EarthSciences23(2007)160‐169 160 A numerical model for the simulation of wave dynamics  in the surf zone and near coastal structures VuThanhCa* Center for Marine and. computing waves near coastal structures.  5.Conclusions A numerical model has been developed for the simulation of the wave dynamics in the near shore area and in the vicinity. of the numerical model on the simulation of the wave transformation on a natural beach, existing experimental data on the wave dynamics in the nearshore area obtained 

Ngày đăng: 28/03/2014, 15:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan