Role of abberant proteolysis in the pathogenesis of APL

258 214 0
Role of abberant proteolysis in the pathogenesis of APL

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ROLE OF UNFOLDED PROTEIN RESPONSE (UPR) AND AUTOPHAGY IN THE REGULATION OF GROWTH AND APOPTOSIS OF APL CELLS NG PING PING ANGELA NATIONAL UNIVERSITY OF SINGAPORE 2009 ROLE OF UNFOLDED PROTEIN RESPONSE (UPR) AND AUTOPHAGY IN THE REGULATION OF GROWTH AND APOPTOSIS OF APL CELLS NG PING PING ANGELA (M.Sc., NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 i ACKNOWLEDGEMENTS I would like to take this opportunity to express my deepest gratitude to my supervisor, Dr Matiullah Khan, for his guidance, encouragement, and ingenuity throughout the course of this work and for providing me the opportunity to independent research work. He has been the most understanding and patient mentor one could ever ask for. I would also like to extend my gratitude to Prof Yoshiaki Ito for giving me the opportunity to work in the Oncology Research Institute (ORI); without his support, the completion of this thesis would not have been possible. I am also grateful to A/Prof CS Chen for being on my thesis advisory committee, providing me with much invaluable advice. I am also indebted to Ms Selena Gan for her encouragement and help rendered for my application of the A-Star Graduate Scholarship. My appreciation goes to all at the Electron Microscopy Unit (Yong Loo Lin School of Medicine, National University of Singapore): Prof Mary Ng, Micky, Suat Hoon, Lucas and Deborah, who have been exceptionally helpful and generous in sharing their knowledge and experiences. My sincere appreciation also goes to present and ex-members of ORI: Tada san, Tomoko, Tun Kiat, Fen Yi, Peiyi, Baidah, Tiling and Diyanah, for their wonderful friendship and continuous support. It has also been a great pleasure working with my lab-mates: Jek, Hannah, Li Feng, Leo, Azhar, Dawn, Norlizan and Wai Kay. I am grateful and fortunate to have had their assistance and company during the long hours of doing experiments. Special thanks go to my family members for their continuous encouragement and support. I am most grateful to my parents and sisters, Cecily and Pauline, for their care, concern and support. Most importantly, the love, belief and motivation that I have received from my husband, Shao Siong and my daughter, Rhea, during ii this journey are very much appreciated. Their understanding and care allowed me to remain focused on my work. Shao Siong’s encouragement and companionship never cease to cheer me up when things are not working well. Finally, I am grateful for the Graduate Research Scholarship provided by the A-Star Graduate Academy (AGA). I would like to thank the institution for giving me this opportunity to pursue graduate study, because without this chance, none of all these would have been realised. Ng Ping Ping Angela Jan 2009 iii TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS iii SUMMARY ix LIST OF PUBLICATIONS xi LIST OF TABLES xii LIST OF FIGURES xiii LIST OF ABBREVATIONS xix INTRODUCTION 1.1 Leukemia 1.2 Acute promyelocytic leukemia (APL) 1.2.1 PML-RARα 1.2.2 N-CoR 1.2.3 Current knowledge of PML-RAR/N-CoR and its perceived mechanism in APL 13 1.2.4 Currently available therapeutics for APL 14 1.2.5 Rationale for novel therapeutics for APL 17 ER stress and unfolded protein response 19 1.3.1 Protein folding in the cell 19 1.3.2 The unfolded protein response 21 1.3.3 UPR-induced apoptosis 24 Autophagy 27 1.4.1 Macroautophagy 27 1.4.2 Chaperone mediated autophagy 33 Our hypothesis and objectives 34 1.3 1.4 1.5 iv 1.5.1 Our hypothesis about leukemogenesis in APL by PML-RARα 34 1.5.2 Objectives of the project 35 MATERIALS AND METHODS 37 2.1 Materials 38 2.1.1 Bacterial strains 38 2.1.2 Cell lines 38 2.1.3 Plasmids 39 2.1.4 Reagents, media and buffers 42 2.2 2.1.4.1 Media and reagents for bacterial culture 42 2.1.4.2 Media and reagents for mammalian cell culture 43 2.1.4.3 General buffers preparation 45 Methods 51 2.2.1 Plasmid isolation 51 2.2.2 Maintenance of mammalian cells 52 2.2.3 Cell proliferation assay 52 2.2.4 Trypan blue cell viability test 52 2.2.5 Giemsa-Wright staining 53 2.2.6 Transfection of 293T cells 53 2.2.7 Immunostaining and fluorescence microscopy 54 2.2.8 Protein extraction from mammalian cells using SDS sample buffer 55 2.2.9 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 55 2.2.10 Western blotting 56 2.2.11 Stripping and reprobing of membranes 56 v 2.2.12 Protein estimation using Bio-Rad Assay 57 2.2.13 Cell cycle analysis 57 2.2.14 Differentiation assay through flow cytometry 58 2.2.15 Detection of apoptosis through flow cytometry 58 2.2.16 Neutralisation of ER stress through the proteolytic cleavage of N-CoR protein 59 2.2.16.1 Solubility assay for transfected N-CoR in 293T cells 59 2.2.16.2 Solubility assay for endogenous N-CoR in leukemic cells 60 2.2.16.3 In vitro cleavage assay 60 2.2.16.4 Protease inhibitors assay 61 2.2.16.5 Protease purification 61 2.2.16.6 O-sialoglycoprotein endopeptidase digestion assay 62 2.2.16.7 62 AEBSF inhibition assay 2.2.16.8 Immunostaining of leukemic cells with N-CoR antibody 62 2.2.16.9 Immunostaining of transfected 293T cells with N-CoR and GRP78 antibodies 63 2.2.16.10 Knock-down of OSGEP in NB4 cells 63 2.2.17 ER stress and N-CoR loss support cellular growth through autophagy 64 2.2.17.1 Treatment of leukemic cells with Bafilomycin-A1 64 2.2.17.2 Glucose starvation of leukemic cells 65 2.2.17.3 Measurement of internal glucose 65 2.2.17.4 Measurement of internal ATP 65 2.2.17.5 Immunostaining of leukemic cells with Lamp-2 and LC3 antibodies 66 2.2.17.6 Staining of NB4 and HL60 cells with acridine orange 66 vi 2.2.17.7 Induction of ER stress in NB4 cells using known ER stressors 67 2.2.17.8 Western analysis of crude lysates of leukemic cells 67 2.2.17.9 Sample preparation for electron microscopy 67 2.2.17.10 Immuno-gold staining for electron microscopy 69 2.2.17.11 Silencing of N-CoR in NB4 cells 70 2.2.18 Therapeutic targeting of cytoprotective UPR and autophagy with AEBSF 71 2.2.18.1 Treatment of leukemic cells with AEBSF 71 2.2.18.2 Stabilisation of endogenous N-CoR in AEBSF-treated NB4 cells 72 2.2.18.3 Preparation of cytosolic fractions from AEBSF-treated NB4 cells 72 2.2.18.4 Western analysis of crude lysates of AEBSF-treated NB4 cells 73 2.2.19 Therapeutic targeting of cytoprotective UPR and autophagy with curcumin 73 2.2.19.1 Treatment of leukemic cells with curcumin 73 2.2.19.2 Solubility assay for transfected N-CoR in 293T cells after curcumin treatment 73 2.2.19.3 Solubility assay for endogenous N-CoR in NB4 cells after curcumin treatment with DNase treatment 74 2.2.19.4 Analysis of phosphorylated N-CoR after curcumin treatment 74 2.2.19.5 Fluorometric caspase activity test 76 2.2.19.6 Analysis of proteosomal inhibition using the Proteasome Sensor vector 77 2.2.19.7 Fluorometric proteasomal activity assay 77 2.2.19.8 Analysis of ER expansion after curcumin treatment 77 2.2.19.9 Analysis of induction of UPR pathways 78 2.2.19.10 Western Analysis of curcumin-treated cells 79 vii 2.2.19.11 In vitro cleavage assay with crude lysates from curcumin-treated cells 79 RESULTS AND DISCUSSION 80 3.1 Results 81 3.1.1 ER stress is neutralized through the proteolytic cleavage of N-CoR protein 81 3.1.1.1 Misfolded N-CoR is cleaved in APL cells 81 3.1.1.2 N-CoR cleavage is inhibited by protease inhibitors or EDTA 88 3.1.1.3 N-CoR is cleaved by a glycoprotein endopeptidase 88 3.1.2 ER stress and N-CoR loss support cellular growth through autophagy 99 3.1.2.1 Autophagy is activated in APL cells 99 3.1.2.2 Autophagy supports cellular growth in APL 101 3.1.2.3 N-CoR is degraded through cytoprotective autophagy 120 3.1.2.4 Inhibition of autophagy sensitizes APL cells to UPR-induced apoptosis 127 3.1.3 AEBSF therapeutically targets cytoprotective UPR and autophagy 131 3.1.3.1 AEBSF promotes growth arrest of APL cells 131 3.1.3.2 AEBSF sensitises APL to UPR-induced apoptosis 137 3.1.3.3 AESBF inhibits early autophagy in NB4 cells 149 3.1.4 Curcumin therapeutically targets cytoprotective UPR and autophagy 153 3.1.4.1 Curcumin promotes growth arrest, differentiation and cell-cycle arrest of APL cells 153 3.1.4.2 Curcumin induces apoptosis of APL cells 162 3.1.4.3 Curcumin stabilises N-CoR by indirectly inactivating N-CoR cleaving protease(s) 169 viii 3.2 3.1.4.4 Proteasome inhibition by curcumin results in accumulation of N-CoR 175 3.1.4.5 Curcumin sensitises APL cells to UPRinduced apoptosis 181 3.1.4.6 Curcumin inhibits cytoprotective autophagy in APL 187 Discussion 194 3.2.1 ER stress is neutralised through cleavage of misfolded N-CoR protein 194 3.2.2 ER stress and N-CoR loss support cellular growth through autophagy 199 3.2.3 AEBSF therapeutically targets cytoprotective UPR and autophagy 204 3.2.4 Curcumin therapeutic targets cytoprotective UPR and autophagy 207 CONCLUSIONS 214 REFERENCES 219 220 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Chen Z, Brand N, Chen A, et al. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993 Mar;12(3):1161-7. Redner R, Rush E, Faas S, Rudert W, Corey S. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996 Feb;87(3):882-6. Wells R, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet. 1997 Sep;17(1):109-13. Arnould C, Philippe C, Bourdon V, Gr goire M, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999 Sep;8(9):1741-9. Melnick A, Licht J. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 1999 May;93(10):3167-215. Young B. Molecular cytogenetics of leukemia. In: Henderson E, Lister T, Greaves M, editors. Leukemia. Philadelphia London New York St. Louis Sydney Toronto: Saunders; 2002. p. 739. Pandolfi P, Alcalay M, Fagioli M, et al. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 1992 Apr;11(4):1397-407. Jurcic J, Nimer S, Scheinberg D, DeBlasio T, Warrell RJ, Miller WJ. Prognostic significance of minimal residual disease detection and PML/RAR-alpha isoform type: long-term follow-up in acute promyelocytic leukemia. Blood. 2001 Nov;98(9):2651-6. Gallagher R, Willman C, Slack J, et al. Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood. 1997 Aug;90(4):1656-63. Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol. 1999 Sep;106(3):591-613. Warrell RJ, de Thé H, Wang Z, Degos L. Acute promyelocytic leukemia. N Engl J Med. 1993 Jul;329(3):177-89. Lo Coco F, Diverio D, Falini B, Biondi A, Nervi C, Pelicci P. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood. 1999 Jul;94(1):12-22. He L, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci U S A. 1997 May;94(10):5302-7. Grisolano J, Wesselschmidt R, Pelicci P, Ley T. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood. 1997 Jan;89(2):376-87. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J. 1993 Aug;12(8):3171-82. 221 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. Lo-Coco F, Ammatuna E. The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2006:156-61, 514. Kamashev D, Vitoux D, De Thé H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med. 2004 Apr;199(8):1163-74. Hörlein A, Näär A, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct;377(6548):397-404. Chen J, Evans R. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct;377(6548):454-7. Wen Y, Perissi V, Staszewski L, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A. 2000 Jun;97(13):7202-7. Li J, Lin Q, Wang W, Wade P, Wong J. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev. 2002 Mar;16(6):687-92. Pazin M, Kadonaga J. What's up and down with histone deacetylation and transcription? Cell. 1997 May;89(3):325-8. Jepsen K, Hermanson O, Onami T, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000 Sep;102(6):753-63. Yoon H, Chan D, Huang Z, et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 2003 Mar;22(6):1336-46. Zhang J, Kalkum M, Chait B, Roeder R. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002 Mar;9(3):611-23. Yoon H, Choi Y, Cole P, Wong J. Reading and function of a histone code involved in targeting corepressor complexes for repression. Mol Cell Biol. 2005 Jan;25(1):324-35. Perissi V, Aggarwal A, Glass C, Rose D, Rosenfeld M. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell. 2004 Feb;116(4):511-26. Alland L, Muhle R, Hou HJ, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997 May;387(6628):49-55. Heinzel T, Lavinsky R, Mullen T, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997 May;387(6628):43-8. Laherty C, Billin A, Lavinsky R, et al. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell. 1998 Jul;2(1):33-42. Busch K, Martin B, Baniahmad A, Martial J, Renkawitz R, Muller M. Silencing subdomains of v-ErbA interact cooperatively with corepressors: involvement of helices 5/6. Mol Endocrinol. 2000 Feb;14(2):201-11. Yin L, Lazar M. The orphan nuclear receptor Rev-erbalpha recruits the NCoR/histone deacetylase corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol. 2005 Jun;19(6):1452-9. 222 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. Dowell P, Ishmael J, Avram D, Peterson V, Nevrivy D, Leid M. Identification of nuclear receptor corepressor as a peroxisome proliferatoractivated receptor alpha interacting protein. J Biol Chem. 1999 May;274(22):15901-7. Jepsen K, Rosenfeld M. Biological roles and mechanistic actions of corepressor complexes. J Cell Sci. 2002 Feb;115(Pt 4):689-98. Karagianni P, Wong J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene. 2007 Aug;26(37):5439-49. Hermanson O, Jepsen K, Rosenfeld M. N-CoR controls differentiation of neural stem cells into astrocytes. Nature. 2002 Oct;419(6910):934-9. Zhang D, Cho E, Wong J. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis. Cell Res. 2007 Sep;17(9):80414. Xu L, Lavinsky R, Dasen J, et al. Signal-specific co-activator domain requirements for Pit-1 activation. Nature. 1998 Sep;395(6699):301-6. Bailey P, Downes M, Lau P, et al. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol. 1999 Jul;13(7):1155-68. Parekh S, Polo J, Shaknovich R, et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood. 2007 Sep;110(6):2067-74. Jones A. The localization and interactions of huntingtin. Philos Trans R Soc Lond B Biol Sci. 1999 Jun;354(1386):1021-7. Park D, Li J, Okamoto H, et al. N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle. 2007 Feb;6(4):467-70. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci P, Lazar M. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998 Dec;18(12):7185-91. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998 Feb;391(6669):815-8. Lin R, Nagy L, Inoue S, Shao W, Miller WJ, Evans R. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998 Feb;391(6669):811-4. Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PMLand PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood. 1998 Apr;91(8):2634-42. Racanicchi S, Maccherani C, Liberatore C, et al. Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO J. 2005 Mar;24(6):1232-42. Atsumi A, Tomita A, Kiyoi H, Naoe T. Histone deacetylase (HDAC3) is recruited to target promoters by PML-RARalpha as a component of the NCoR co-repressor complex to repress transcription in vivo. Biochem Biophys Res Commun. 2006 Jul;345(4):1471-80. Villa R, Morey L, Raker V, et al. The methyl-CpG binding protein MBD1 is required for PML-RARalpha function. Proc Natl Acad Sci U S A. 2006 Jan;103(5):1400-5. 223 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. Kantarjian H, Keating M, Walters R, et al. Acute promyelocytic leukemia. M.D. Anderson Hospital experience. Am J Med. 1986 May;80(5):789-97. Cunningham I, Gee T, Reich L, Kempin S, Naval A, Clarkson B. Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood. 1989 Apr;73(5):1116-22. Sanz M, Jarque I, Martín G, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer. 1988 Jan;61(1):7-13. Stone R, Maguire M, Goldberg M, Antin J, Rosenthal D, Mayer R. Complete remission in acute promyelocytic leukemia despite persistence of abnormal bone marrow promyelocytes during induction therapy: experience in 34 patients. Blood. 1988 Mar;71(3):690-6. Laurent G, Jaffrézou J. Signaling pathways activated by daunorubicin. Blood. 2001 Aug;98(4):913-24. Jing Y, Waxman S. The design of selective and non-selective combination therapy for acute promyelocytic leukemia. Curr Top Microbiol Immunol. 2007;313:245-69. Tallman M. Therapy of acute myeloid leukemia. Cancer Control.8(1):62-78. Huang M, Ye Y, Chen S, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988 Aug;72(2):567-72. Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy: the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 Jul;110(1):59-66. Castaigne S, Chomienne C, Daniel M, et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood. 1990 Nov;76(9):1704-9. Degos L, Chomienne C, Daniel M, et al. Treatment of first relapse in acute promyelocytic leukaemia with all-trans retinoic acid. Lancet. 1990 Dec;336(8728):1440-1. Chen Z, Xue Y, Zhang R, et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood. 1991 Sep;78(6):1413-9. Warrell RJ, Frankel S, Miller WJ, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med. 1991 May;324(20):1385-93. Sanz M, Lo Coco F, Martín G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood. 2000 Aug;96(4):1247-53. Fenaux P, Le Deley M, Castaigne S, et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood. 1993 Dec;82(11):3241-9. Fenaux P, Chevret S, Guerci A, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. European APL group. Leukemia. 2000 Aug;14(8):1371-7. Nervi C, Ferrara F, Fanelli M, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein. Blood. 1998 Oct;92(7):2244-51. 224 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. Zhu J, Lallemand-Breitenbach V, de Thé H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene. 2001 Oct;20(49):7257-65. Kambhampati S, Verma A, Li Y, Parmar S, Sassano A, Platanias L. Signalling pathways activated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Leuk Lymphoma. 2004 Nov;45(11):2175-85. Weis K, Rambaud S, Lavau C, et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell. 1994 Jan;76(2):345-56. Chen G, Shen Z, Wu F, et al. Pharmacokinetics and efficacy of low-dose alltrans retinoic acid in the treatment of acute promyelocytic leukemia. Leukemia. 1996 May;10(5):825-8. Soignet S, Frankel S, Douer D, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol. 2001 Sep;19(18):3852-60. Niu C, Yan H, Yu T, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood. 1999 Nov;94(10):3315-24. Shen Z, Shi Z, Fang J, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2004 Apr;101(15):532835. Chen G, Shi X, Tang W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dosedependent dual effects on APL cells. Blood. 1997 May;89(9):3345-53. Bernardini S, Nuccetelli M, Noguera N, et al. Role of GSTP1-1 in mediating the effect of As2O3 in the Acute Promyelocytic Leukemia cell line NB4. Ann Hematol. 2006 Oct;85(10):681-7. Li J, Chen P, Sinogeeva N, et al. Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem. 2002 Dec;277(51):49504-10. Ninomiya M, Kajiguchi T, Yamamoto K, Kinoshita T, Emi N, Naoe T. Increased oxidative DNA products in patients with acute promyelocytic leukemia during arsenic therapy. Haematologica. 2006 Nov;91(11):1571-2. Chou W, Chen H, Yu S, Cheng L, Yang P, Dang C. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul;106(1):304-10. Mathieu J, Besançon F. Arsenic trioxide represses NF-kappaB activation and increases apoptosis in ATRA-treated APL cells. Ann N Y Acad Sci. 2006 Dec;1090:203-8. Ozpolat B, Akar U, Zorrilla-Calancha I, Vivas-Mejia P, Acevedo-Alvarez M, Lopez-Berestein G. Death-associated protein (DAP5/p97/NAT1) contributes to retinoic acid-induced granulocytic differentiation and arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Apoptosis. 2008 Jul;13(7):915-28. Zhu J, Koken M, Quignon F, et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1997 Apr;94(8):3978-83. 225 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. Lallemand-Breitenbach V, Jeanne M, Benhenda S, et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitinmediated pathway. Nat Cell Biol. 2008 May;10(5):547-55. Wang Z, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008 Mar;111(5):2505-15. Zheng P, Wang K, Zhang Q, et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May;102(21):7653-8. De Botton S, Dombret H, Sanz M, et al. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1998 Oct;92(8):2712-8. Tallman M, Andersen J, Schiffer C, et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood. 2000 Jan;95(1):90-5. Frankel S, Eardley A, Heller G, et al. All-trans retinoic acid for acute promyelocytic leukemia. Results of the New York Study. Ann Intern Med. 1994 Feb;120(4):278-86. Adamson P, Bailey J, Pluda J, et al. Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol. 1995 May;13(5):1238-41. Muindi J, Frankel S, Miller WJ, et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid "resistance" in patients with acute promyelocytic leukemia. Blood. 1992 Jan;79(2):299-303. Delva L, Cornic M, Balitrand N, et al. Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood. 1993 Oct;82(7):2175-81. Ding W, Li Y, Nobile L, et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood. 1998 Aug;92(4):1172-83. Zhou D, Kim S, Ding W, Schultz C, Warrell RJ, Gallagher R. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood. 2002 Feb;99(4):1356-63. Camacho L, Soignet S, Chanel S, et al. Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J Clin Oncol. 2000 Jul;18(13):2620-5. Unnikrishnan D, Dutcher J, Varshneya N, et al. Torsades de pointes in patients with leukemia treated with arsenic trioxide. Blood. 2001 Mar;97(5):1514-6. Gaut J, Hendershot L. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol. 1993 Aug;5(4):589-95. Schröder M, Kaufman R. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-89. 226 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. Wu J, Kaufman R. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 2006 Mar;13(3):374-84. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91. Argon Y, Simen B. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol. 1999 Oct;10(5):495-505. Gillece P, Luz J, Lennarz W, de La Cruz F, Römisch K. Export of a cysteinefree misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol. 1999 Dec;147(7):1443-56. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec;286(5446):1882-8. Brodsky J, Werner E, Dubas M, Goeckeler J, Kruse K, McCracken A. The requirement for molecular chaperones during endoplasmic reticulumassociated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem. 1999 Feb;274(6):3453-60. Feldman D, Frydman J. Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol. 2000 Feb;10(1):26-33. Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. EMBO J. 2008 Jan;27(2):328-35. Young J, Agashe V, Siegers K, Hartl F. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004 Oct;5(10):781-91. Schröder M, Schäfer R, Friedl P. Induction of protein aggregation in an early secretory compartment by elevation of expression level. Biotechnol Bioeng. 2002 Apr;78(2):131-40. Kozutsumi Y, Segal M, Normington K, Gething M, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar;332(6163):462-4. Kaufman R, Wasley L, Dorner A. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J Biol Chem. 1988 May;263(13):6352-62. Harding H, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999 Jan;397(6716):271-4. Xue X, Piao JH, Nakajima A, et al. Tumour necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem. 2005 Oct 7;280(40):33917-25. Dorner A, Wasley L, Kaufman R. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem. 1989 Dec;264(34):20602-7. Hong M, Luo S, Baumeister P, et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem. 2004 Mar;279(12):11354-63. Bertolotti A, Zhang Y, Hendershot L, Harding H, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000 Jun;2(6):326-32. Liu C, Xu Z, Kaufman R. Structure and intermolecular interactions of the luminal dimerization domain of human IRE1alpha. J Biol Chem. 2003 May;278(20):17680-7. 227 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. Szegezdi E, Logue S, Gorman A, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006 Sep;7(9):880-5. Nishitoh H, Saitoh M, Mochida Y, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell. 1998 Sep;2(3):389-95. Bassik M, Scorrano L, Oakes S, Pozzan T, Korsmeyer S. Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J. 2004 Mar;23(5):1207-16. Lei K, Davis R. JNK phosphorylation of Bim-related members of the BCL2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A. 2003 Mar;100(5):2432-7. McCullough K, Martindale J, Klotz L, Aw T, Holbrook N. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating BCL2 and perturbing the cellular redox state. Mol Cell Biol. 2001 Feb;21(4):124959. Adler H, Chinery R, Wu D, et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol. 1999 Oct;19(10):7050-60. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 2005 Mar;24(6):1243-55. Rutkowski D, Kaufman R. A trip to the ER: coping with stress. Trends Cell Biol. 2004 Jan;14(1):20-8. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000 Aug;150(4):887-94. Rao R, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem. 2002 Jun;277(24):21836-42. Kunz J, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. J Biol Chem. 2004 Mar;279(11):9987-96. Deretic V. Autophagosome and phagosome. Methods Mol Biol. 2008;445:110. Mizushima N, Levine B, Cuervo A, Klionsky D. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb;451(7182):1069-75. Eskelinen E. Fine structure of the autophagosome. Methods Mol Biol. 2008;445:11-28. Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene. 1997 Jun;192(2):245-50. Cao Y, Klionsky D. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007 Oct;17(10):839-49. Klionsky D, Cuervo A, Seglen P. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206. Liang X, Kleeman L, Jiang H, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 1998 Nov;72(11):8586-96. Petiot A, Ogier-Denis E, Blommaart E, Meijer A, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 2000 Jan;275(2):992-8. 228 152. Yan Y, Backer J. Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans. 2007 Apr;35(Pt 2):239-41. 153. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001 Apr;2(4):330-5. 154. Yorimitsu T, Klionsky D. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005 Nov;12 Suppl 2:1542-52. 155. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tormediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000 Sep;150(6):1507-13. 156. Funakoshi T, Matsuura A, Noda T, Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene. 1997 Jun;192(2):207-13. 157. Klionsky D. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005 Jan;118(Pt 1):7-18. 158. Klionsky D, Meijer A, Codogno P. Autophagy and p70S6 kinase. Autophagy. 2005 Apr;1(1):59-60; discussion -1. 159. Oberstein A, Jeffrey P, Shi Y. Crystal structure of the Bcl-XL-Beclin peptide complex: Beclin is a novel BH3-only protein. J Biol Chem. 2007 Apr;282(17):13123-32. 160. Nobukuni T, Kozma S, Thomas G. hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol. 2007 Apr;19(2):135-41. 161. Tasdemir E, Galluzzi L, Maiuri M, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008;445:29-76. 162. Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006 Dec;26(24):9220-31. 163. Ding W, Ni H, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007 Feb;282(7):4702-10. 164. Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007 Feb;14(2):230-9. 165. Dice J. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990 Aug;15(8):305-9. 166. Dice J. Chaperone-mediated autophagy. Autophagy. 2007;3(4):295-9. 167. Suh W, Lu C, Gross C. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem. 1999 Oct;274(43):30534-9. 168. Richter K, Buchner J. hsp90: twist and fold. Cell. 2006 Oct;127(2):251-3. 169. Cuervo A, Dice J. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996 Jul;273(5274):501-3. 170. Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem. 2000 Sep;275(35):27447-56. 171. Agarraberes F, Terlecky S, Dice J. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997 May;137(4):825-34. 229 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. Majeski A, Dice J. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol. 2004 Dec;36(12):2435-44. Cuervo A, Stefanis L, Fredenburg R, Lansbury P, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004 Aug;305(5688):1292-5. Saftig P, Eskelinen E. Live longer with LAMP-2. Nat Med. 2008 Sep;14(9):909-10. Khan M, Nomura T, Kim H, et al. Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell. 2001 Jun;7(6):1233-43. Khan M, Nomura T, Kim H, et al. PML-RARalpha alleviates the transcriptional repression mediated by tumour suppressor Rb. J Biol Chem. 2001 Nov;276(47):43491-4. Khan MM, Nomura T, Chiba T, et al. The fusion oncoprotein PMLRARalpha induces endoplasmic reticulum (ER)-associated degradation of NCoR and ER stress. J Biol Chem. 2004 Mar 19;279(12):11814-24. Ng A, Nin D, Fong J, Venkataraman D, Chen C, Khan M. Therapeutic targeting of nuclear receptor corepressor misfolding in acute promyelocytic leukemia cells with genistein. Mol Cancer Ther. 2007 Aug;6(8):2240-8. Ferrucci P, Grignani F, Pearson M, Fagioli M, Nicoletti I, Pelicci P. Cell death induction by the acute promyelocytic leukemia-specific PML/RARalpha fusion protein. Proc Natl Acad Sci U S A. 1997 Sep;94(20):10901-6. Westervelt P, Lane A, Pollock J, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood. 2003 Sep;102(5):1857-65. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 1991 Mar;77(5):1080-6. Duprez E, Ruchaud S, Houge G, et al. A retinoid acid 'resistant' t(15;17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia. 1992 Dec;6(12):1281-7. Ruchaud S, Duprez E, Gendron M, et al. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc Natl Acad Sci U S A. 1994 Aug;91(18):8428-32. Kizaki M, Matsushita H, Takayama N, et al. Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features. Blood. 1996 Sep;88(5):1824-33. Elliott PJ, Soucy, T.A., Pien, C.S., Adams, J. & Lightcap, E.S. Assays for proteasome inhibition. Methods in Molecular Medicine. 2003;85:163-72. Momoi T. Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med. 2006 Feb;6(1):111-8. Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med. 2006 Feb;6(1):87-97. Lane AA, Ley TJ. Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell. 2003 Oct 31;115(3):305-18. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem. 2006 Oct 6;281(40):30299-304. 230 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. Yorimitsu T, Klionsky DJ. Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy. 2007 Mar-Apr;3(2):160-2. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004 Apr;11(4):448-57. Mizushima N, Klionsky D. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19-40. Marciniak S, Yun C, Oyadomari S, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004 Dec;18(24):3066-77. Amaravadi R, Yu D, Lum J, et al. Autophagy inhibition enhances therapyinduced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007 Feb;117(2):326-36. Abedin M, Wang D, McDonnell M, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2007 Mar;14(3):500-10. Hafner-Bratkovic I, Gaspersic J, Smid L, Bresjanac M, Jerala R. Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein - a new mechanism for the inhibition of PrP(Sc) accumulation. J Neurochem. 2008 Mar;104(6):1553-64. Egan M, Pearson M, Weiner S, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science. 2004 Apr;304(5670):600-2. Yang F, Lim G, Begum A, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005 Feb;280(7):5892-901. Khajavi M, Inoue K, Wiszniewski W, Ohyama T, Snipes G, Lupski J. Curcumin treatment abrogates endoplasmic reticulum retention and aggregation-induced apoptosis associated with neuropathy-causing myelin protein zero-truncating mutants. Am J Hum Genet. 2005 Nov;77(5):841-50. Ali R, Rattan S. Curcumin's biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann N Y Acad Sci. 2006 May;1067:394-9. Dikshit P, Goswami A, Mishra A, Chatterjee M, Jana N. Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function. Neurotox Res. 2006 Jan;9(1):29-37. Si X, Wang Y, Wong J, Zhang J, McManus B, Luo H. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol. 2007 Apr;81(7):3142-50. Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 2000 Nov;383(1):1-16. Abdullah K, Udoh E, Shewen P, Mellors A. A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Infect Immun. 1992 Jan;60(1):56-62. Otulakowski G, Shewen P, Udoh A, Mellors A, Wilkie B. Proteolysis of sialoglycoprotein by Pasteurella haemolytica cytotoxic culture supernatant. Infect Immun. 1983 Oct;42(1):64-70. Shenkman M, Tolchinsky S, Lederkremer G. ER stress induces alternative nonproteasomal degradation of ER proteins but not of cytosolic ones. Cell Stress Chaperones. 2007;12(4):373-83. 231 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. Selkoe D, . Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004 Apr;140(8):627-38. Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007 May-Jun;3(3):181-206. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000 Nov 1;19(21):5720-8. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy.3(6):542-5. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005 Jul;1(2):84-91. Schworer C, Shiffer K, Mortimore G. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981 Jul;256(14):7652-8. Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001 Jan;61(2):439-44. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 2003 May;63(9):2103-8. Seglen P. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:73764. Cuervo A, Dice J. Unique properties of LAMP-2a compared to other LAMP2 isoforms. J Cell Sci. 2000 Dec;113 Pt 24:4441-50. Dunn WJ. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923-33. Dunn WJ. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935-45. Kadowaki M, Karim M, Carpi A, Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med.27(5-6):426-43. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008 Jan;132(1):27-42. Boya P, González-Polo R, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005 Feb;25(3):1025-40. Kamimoto T, Shoji S, Hidvegi T, et al. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem. 2006 Feb;281(7):4467-76. Travers K, Patil C, Wodicka L, Lockhart D, Weissman J, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000 Apr;101(3):249-58. Weihua Z, Tsan R, Huang W, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008 May;13(5):38593. Ravikumar B, Duden R, Rubinsztein D. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002 May;11(9):1107-17. 232 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008 Jul;28(27):6926-37. Ding W, Yin X. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy. 2008 Feb;4(2):141-50. Fujita E, Kouroku Y, Isoai A, et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet. 2007 Mar;16(6):618-29. de Bruin E, Meersma D, de Wilde J, et al. A serine protease is involved in the initiation of DNA damage-induced apoptosis. Cell Death Differ. 2003 Oct;10(10):1204-12. Mizuta T, Shimizu S, Matsuoka Y, Nakagawa T, Tsujimoto Y. A Bax/Bakindependent mechanism of cytochrome c release. J Biol Chem. 2007 Jun;282(22):16623-30. Park H, Song M, Lee J, et al. Apoptosis of human neutrophils induced by protein phosphatase 1/2A inhibition is caspase-independent and serine protease-dependent. J Cell Physiol. 2007 Aug;212(2):450-62. Egger L, Schneider J, Rhême C, Tapernoux M, Häcki J, Borner C. Serine proteases mediate apoptosis-like cell death and phagocytosis under caspaseinhibiting conditions. Cell Death Differ. 2003 Oct;10(10):1188-203. Egger L, Madden D, Rhême C, Rao R, Bredesen D. Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death Differ. 2007 Jun;14(6):1172-80. McCormack T, Cruikshank A, Grenier L, et al. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry. 1998 May;37(21):7792-800. Okada T, Haze K, Nadanaka S, et al. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem. 2003 Aug;278(33):31024-32. Bestilny L, Riabowol K. A role for serine proteases in mediating phorbol ester-induced differentiation of HL-60 cells. Exp Cell Res. 2000 Apr;256(1):264-71. Gills J, Lopiccolo J, Tsurutani J, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res. 2007 Sep;13(17):5183-94. Ashburn T, Thor K. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004 Aug;3(8):673-83. Wijayanti N, Kietzmann T, Immenschuh S. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. J Biol Chem. 2005 Jun;280(23):21820-9. Kuester D, Lippert H, Roessner A, Krueger S. The cathepsin family and their role in colorectal cancer. Pathol Res Pract. 2008;204(7):491-500. 233 241. Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull (Tokyo). 1985 Apr;33(4):1725-8. 242. Sidhu G, Singh A, Thaloor D, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167-77. 243. Mohan R, Sivak J, Ashton P, et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000 Apr;275(14):10405-12. 244. Thaloor D, Singh A, Sidhu G, Prasad P, Kleinman H, Maheshwari R. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin. Cell Growth Differ. 1998 Apr;9(4):305-12. 245. Aggarwal B, Kumar A, Bharti A. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res.23(1A):363-98. 246. Shishodia S, Sethi G, Aggarwal B. Curcumin: getting back to the roots. Ann N Y Acad Sci. 2005 Nov;1056:206-17. 247. Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005 Sep;41(13):1955-68. 248. Reuter S, Eifes S, Dicato M, Aggarwal B, Diederich M. Modulation of antiapoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol. 2008 Dec;76(11):1340-51. 249. Duvoix A, Morceau F, Schnekenburger M, et al. Curcumin-induced cell death in two leukemia cell lines: K562 and Jurkat. Ann N Y Acad Sci. 2003 Dec;1010:389-92. 250. Chakraborty S, Ghosh U, Bhattacharyya N, Bhattacharya R, Roy M. Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res. 2006 Apr;596(1-2):81-90. 251. Pae H, Jeong S, Jeong G, et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem Biophys Res Commun. 2007 Feb;353(4):1040-5. 252. Tan T, Tsai H, Lu H, et al. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res. 2006;26(6B):4361-71. 253. Zheng M, Ekmekcioglu S, Walch E, Tang C, Grimm E. Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res. 2004 Jun;14(3):165-71. 254. Park C, Kim G, Kim G, Choi B, Park Y, Choi Y. Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells. Oncol Rep. 2006 May;15(5):1225-31. 255. Lin S, Huang H, Yang J, et al. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett. 2008 Aug. 256. Liu E, Wu J, Cao W, et al. Curcumin induces G2/M cell cycle arrest in a p53dependent manner and upregulates ING4 expression in human glioma. J Neurooncol. 2007 Dec;85(3):263-70. 257. Han S, Keum Y, Seo H, Surh Y. Curcumin suppresses activation of NFkappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol. 2002 May;35(3):337-42. 234 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. Jana N, Dikshit P, Goswami A, Nukina N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004 Mar;279(12):11680-5. Milacic V, Banerjee S, Landis-Piwowar K, Sarkar F, Majumdar A, Dou Q. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 2008 Sep;68(18):7283-92. Hetz C, Bernasconi P, Fisher J, et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science. 2006 Apr;312(5773):572-6. Lee A, Chu G, Iwakoshi N, Glimcher L. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 2005 Dec;24(24):4368-80. Shaffer A, Shapiro-Shelef M, Iwakoshi N, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004 Jul;21(1):8193. Kaufman R. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999 May;13(10):1211-33. Ye Y, Shibata Y, Yun C, Ron D, Rapoport T. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature. 2004 Jun;429(6994):841-7. Momoi T. Caspases involved in ER stress-mediated cell death. J Chem Neuroanat. 2004 Sep;28(1-2):101-5. Dikshit P, Goswami A, Mishra A, Nukina N, Jana N. Curcumin enhances the polyglutamine-expanded truncated N-terminal huntingtin-induced cell death by promoting proteasomal malfunction. Biochem Biophys Res Commun. 2006 Apr;342(4):1323-8. Obeng E, Carlson L, Gutman D, Harrington WJ, Lee K, Boise L. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006 Jun;107(12):4907-16. Magill L, Lynas J, Morris T, Walker B, Irvine A. Proteasome proteolytic activity in hematopoietic cells from patients with chronic myeloid leukemia and multiple myeloma. Haematologica. 2004 Dec;89(12):1428-33. Gu H, Chen X, Gao G, Dong H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol Cancer Ther. 2008 Aug;7(8):2298307. Jonas B, Privalsky M. SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem. 2004 Dec;279(52):54676-86. Fernández-Majada V, Pujadas J, Vilardell F, et al. Aberrant cytoplasmic localization of N-CoR in colorectal tumours. Cell Cycle. 2007 Jul;6(14):1748-52. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal B, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signalregulated kinase signaling pathways. Mol Pharmacol. 2007 Jul;72(1):29-39. Yu S, Shen G, Khor T, Kim J, Kong A. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008 Sep;7(9):2609-20. 235 274. 275. 276. 277. Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy.3(6):635-7. Tasdemir E, Maiuri M, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008 Jun;10(6):676-87. Bence N, Sampat R, Kopito R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001 May;292(5521):1552-5. Jana N, Zemskov E, Wang Gh, Nukina N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet. 2001 May;10(10):1049-59. [...]... agents that induced growth arrest in APL cells, possibly by blocking the degradation of N-CoR protein AEBSF, a selective serine protease inhibitor, sensitises APL cells to UPR-induced apoptosis by inducing accumulation of misfolded N-CoR protein in the ER Curcumin, on the other hand, promoted both differentiation and apoptosis of APL cells, possibly by blocking proteasome-mediated and protease-induced... survival of tumour cells in diffuse large B-cell lymphomas (58) N-CoR is also implicated in neuronal diseases and cancers In Huntington’s disease, a co-localization of N-CoR and mSin3 is observed in the cytoplasm of the cortical and caudate cells, whereas in cells of healthy brains, they are found in both the cytoplasm and nucleus This suggests a role of N-CoR delocalisation in the pathogenesis of Huntington’s... protein found in 95% cases of APL (17, 18) In the remaining 5% cases of APL, fusions of RARα to other genes such as the promyelocytic leukemia zinc finger (PLZF) (19), neucleophosmin (NPM) (20), nuclear mitotic apparatus (NuMA) (21) and signal transducer and activator of transcription 5b (STAT5b) (22) Structure and effects of PML-RARα in APL will be further discussed in Section 1.2.1 and 1.2.3 The PLZFRARα... protein contains the entire N-terminal transcriptional effector region of PLZF (including the POZ/BTB domain) as well as the first two zinc fingers of the protein fused to RARα As in the case of PML-RARα, PLZF-RARα can bind as homodimers to RA response elements (RAREs) and repress transcription PLZFRARα–associated APL is relatively resistant to ATRA because PLZF-RARα binds much more strongly to the. .. HDAC complex by binding at the CoR sites on both PML and the POZ/BTB domain on PLZF (19) In the third class of fusion protein, NPM-RARα is formed as a result of chromosomal translocation between chromosome 5 and 17 It has the 5’ end of nucleophosmin joined with the 3’ end of RARα NPM-RARα acts as transcriptional activators of retinoic acid- 4 Table 1.1 Summary of some of the features of chronic leukemia... disruption of the retinoic acid signalling pathway (21) In the last class of translocation, fusion occurs between STAT5b and RARα This fusion results in delocalisation of Stat5b from the cytoplasm to the nucleus Leukemogenesis in this case is thought to be due to the dysregulation of the JAK/STAT signalling pathways (22) 1.2.1 PML-RARα PML-RAR fusion protein contains the N-terminus of PML fused to the DNA... protein is also found in autophagosomes of NB4 cells with anti-N-CoR antibody by immuno-gold staining As expected, BA-1-induced inhibition of autophagy decreases the viability of APL cells and reduces their intracellular glucose and ATP levels Moreover, APL cells continue to grow and maintain their intracellular glucose and ATP levels even under glucose-starved conditions BA-1-induced inhibition of autophagy... is a malignant disorder of the blood-forming cells of the bone marrow It is characterised by the clonal expansion of hematopoietic cells, due to genetic alterations in cells of the hematopoietic lineages It is categorised as chronic or acute and lymphoid or myeloid leukemia based on the maturity and the lineage of the main population of cancer cells present The four main types of leukemia are: acute... non -APL cells, while in APL cells, this apoptotic response is neutralised through the processing of misfolded N-CoR protein by OSGEP, a glycoprotein endopeptidase selectively activated in APL cells Down-regulation of OSGEP in NB4 cells by shRNA led to the stabilisation of full-length N-CoR and induced apoptosis of NB4 cells The obvious link of N-CoR degradation with the survival of APL cells also suggests... RXR and inactivation of these proteins, and homodimerisation of the fusion protein and binding to PML or RARα target genes (29 ) Reprinted by permission from The Publishing Division of the Massachusetts Medical Society: [New England Journal of Medicine] Copyright ©[1993]Massachusetts Medical Society All rights reserved 7 thirds of APL patients (28) The detection of specific fusion transcripts of PMLRARα . sensitises APL cells to UPR-induced apoptosis by inducing accumulation of misfolded N-CoR protein in the ER. Curcumin, on the other hand, promoted both differentiation and apoptosis of APL cells,. 3.82. Curcumin inhibits the degradation of the proteosome 179 sensor in HEK293T cells in a dose-dependent manner. Figure 3.83. Curcumin inhibits the degradation of the N-CoR-GFP in 180 HEK293T. ROLE OF UNFOLDED PROTEIN RESPONSE (UPR) AND AUTOPHAGY IN THE REGULATION OF GROWTH AND APOPTOSIS OF APL CELLS NG PING PING ANGELA NATIONAL UNIVERSITY OF SINGAPORE

Ngày đăng: 14/09/2015, 14:11

Tài liệu cùng người dùng

Tài liệu liên quan