Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 164 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
164
Dung lượng
1,75 MB
Nội dung
HYDROGEN SULFIDE: A NOVEL NEUROPROTECTIVE AGENT TO TREAT PARKINSON’S DISEASE HU LI-FANG (MD, M.Sci, Nanjing Medical University, China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENT I would like to express my deepest gratitude to my supervisor, Prof. Bian Jin-Song, for giving me the opportunity to work on this research project as a part-time postgraduate student. I would thank my supervisor for his invaluable comments, enlightening ideas and continuous encouragement. Without his great support, I would not have made great progress on my thesis. I would also thank Prof. Gavin S. Dawe for his guidance in the behaviour study. I would express my special thanks to Mr. Lu Ming for his kindly help and collaboration in the animal work. Sincere appreciation to my colleagues, Neo Kay Li, Pan Tingting, Yong Qian Chen, Wu Zhiyuan, Ester Khin Sandar Win, Tan Choon Ping, Liu Yihong, Tiong Chi Xin, Xie Li, and other friends in Prof. Bian‘s lab for their technical support and help in various aspects over the four years. I would also thank all my friends in Prof. Gavin S. Dawe‘s lab for their support on my animal work. I would also extend my deep gratitude to my husband for supporting and inspiring me to reach my full potential. i TABLE OF CONTENT PUBLICATIONS vii ABBREVIATIONS viii SUMMARY x Chapter I Introduction 1.1 General overview . 1.2 H2S 1.2.1 Chemical properties of H2S . 1.2.2 H2S toxicity . 1.2.3 H2S biosynthesis and metabolism in mammals . 1.2.4 Biological roles of H2S 10 1.2.4.1 Roles of H2S in inflammation . 10 1.2.4.2 Role of H2S in CNS and CNS diseases 14 1.2.4.3 Roles of H2S in cardiovascular system . 25 1.2.4.4 Roles of H2S in gastrointestinal tract 28 1.2.4.5 Others . 30 1.3 PD . 31 1.3.1 Epidemiology 32 1.3.2 Risk factors 32 1.3.3 Pathology and pathogenesis 33 1.3.3.1 Pathology 33 1.3.3.2 Pathogenesis . 34 1.3.4 Clinical features and diagnosis 38 1.3.5 Treatment . 38 1.3.6 Experimental models . 39 1.3.6.1 6-OHDA model 40 ii 1.3.6.2 MPTP/MPP+ model 42 1.3.6.3 Rotenone model 45 1.3.6.4 LPS model 46 1.3.6.5 Other models 49 1.4 Research rational and objectives 52 1.4.1 Rational . 52 1.4.2 Objectives 53 Chapter II Anti-inflammatory effects of H2S on LPS-stimulated microglia .55 2.1 Introduction 55 2.2 Materials and methods 56 2.2.1 Chemicals and reagents . 56 2.2.2 Cell culture 56 2.2.2.1 Microglia cell line culture 56 2.2.2.2 Primary cultured rat cortical microglia and astrocytes preparation 57 2.2.3 NO measurement . 58 2.2.4 TNF-α measurement 58 2.2.5 Reverse transcription polymerase chain reactions (RT-PCR) . 59 2.2.6 Transfection of CBS and CSE into BV2 cells . 59 2.2.7 Western blot analysis . 60 2.2.8 Statistical analysis . 61 2.3 Results 61 2.3.1 Exogenous H2S suppresses LPS-stimulated NO production in microglia . 61 2.3.2 The anti-inflammatory effect of H2S involves p38 MAPK . 63 2.3.3 H2S inhibits TNF- secretion in BV2 cells . 65 2.3.4 Endogenous H2S regulates NO production in BV2 cells . 66 2.3.5 Over-expression of H2S synthesis enzyme suppresses NO production in microglia 68 2.3.6 H2S suppresses LPS-stimulated NO generation in astrocyte . 68 iii 2.4 Discussion 69 Chapter III Anti-inflammatory effects of H2S on rotenone-stimulated microglia 73 3.1 Introduction 73 3.2 Materials and methods 74 3.2.1 Chemicals and reagents . 74 3.2.2 Cell culture 74 3.2.3 Immunocytochemistry . 74 3.2.4 Western blot assays . 75 3.2.5 Intracellular ROS assay . 75 3.2.6 Extracellular superoxide measurement 75 3.2.7 Microglia-mediated neurotoxicity assay . 76 3.2.8 NF-κB activation assay 76 3.2.9 Statistical analysis . 77 3.3 Results 77 3.3.1 NaHS inhibits rotenone-stimulated microglia activation 77 3.3.2 NaHS suppresses rotenone-induced intracellular ROS accumulation . 79 3.3.3 NaHS inhibits rotenone-induced superoxide release from microglia 80 3.3.4 NaHS attenuates microglia-mediated neurotoxicity 81 3.3.5 NaHS inhibits rotenone-induced p38 MAPK/NF-κB activation . 82 3.4 Discussion 86 Chapter IV Anti-apoptotic effect of H2S on SH-SY5Y cells .90 4.1 Introduction 90 4.2 Materials and methods 90 4.2.1 Chemicals and reagents . 90 4.2.2 Cell culture and treatment . 92 4.2.3 Total sulfide measurement 93 4.2.4 Cell viability assay 93 iv 4.2.5 Apoptosis quantification 93 4.2.6 Assessment of mitochondrial membrane potential (ΔΨm) loss 94 4.2.7 Western blot analysis . 94 4.2.8 Analysis of cytosolic cytochrome c accumulation 94 4.2.9 Caspase-9 activity assay 95 4.2.10 Statistical analysis . 95 4.3 Results 95 4.3.1 H2S suppresses rotenone-induced cytotoxicity and apoptosis . 95 4.3.2 H2S inhibits rotenone-induced ΔΨm loss and cytochrome c release . 98 4.3.3 H2S regulates Bax/ Bcl-2 proteins in SH-SY5Y cells . 100 4.3.4 H2S suppresses caspase-9/3 activation and PARP cleavage 101 4.3.5 mitoKATP channels contributes to the protective effects of H2S 103 4.3.6 Rotenone induces p38/JNK MAPK activation 105 4.3.7 H2S inhibits rotenone-induced p38/JNK MAPK activation 107 4.4 Discussion 108 Chapter V Therapeutic effect of H2S in rotenone-induced PD model rats 112 5.1 Introduction 112 5.2 Materials and methods 113 5.2.1 Chemicals 113 5.2.2 Animals . 113 5.2.3 Behavioural test . 113 5.2.4 H2S measurement 114 5.2.5 H2S-producing activity assay . 115 5.2.6 Immunohistochemistry staining 115 5.2.7 NO assay 116 5.2.8 TNF-α assay 116 5.2.9 Western blot analysis . 117 v 5.2.10 Statistical analysis . 117 5.3 Results 117 5.3.1 Endogenous H2S is reduced in the SN of rotenone-treated rats 117 5.3.2 NaHS alleviates rotenone-induced parkinsonian symptoms in rats 118 5.3.3 H2S attenuates rotenone-induced DA neuron loss in the SN . 121 5.3.4 NaHS inhibits microglia activation and the subsequent release of inflammatory factors in the rotenone-induced PD model rats 122 5.4 Discussion 123 Chapter VI General discussion and conclusion .127 6.1 General discussion 127 6.2 Conclusion and perspectives 134 Bibliography .137 vi PUBLICATIONS 1. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide in Parkinson‘s disease rat models. Aging Cell. 2009; 9(2):135-46. 2. Hu LF, Lu M, Wu ZY, Wong PT, Bian J. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol. 2009; 75(1):2734. 3. Hu LF, Wong PT, Moore PK, Bian JS. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem. 2007; 100(4):1121-8. 4. Hu LF, Pan TT, Neo KL, Yong QC, Bian JS. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch. 2008 Mar; 455(6):971-8. 5. Hu LF, Wong PT, Bian J. Hydrogen sulphide: neurophysiology and neuropathology. Review. Antioxid Redox Signal. 2010 Sep 2. 6. Hu LF, Wong PT, Bian J. Hydrogen sulfide attenuates rotenone-induced neuroinflammatory responses through down-regulation of NADPH oxidase/ROS signaling pathways in microglia (in preparation) 7. Tay AS, Hu LF, Lu M, Wong PT, Bian JS. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein90 pathway. Neuroscience. 2010 Feb 8. 8. Lu M, Choo CH, Hu LF, Tan BH, Hu G, Bian JS. Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neurosci Res. 2010; 66(1):92-8. 9. Lu M, Hu LF, Hu G, Bian JS. Hydrogen sulfide protects astrocytes against H(2)O(2)induced neural injury via enhancing glutamate uptake. Free Radic Biol Med. 2008; 45(12):1705-13. 10. Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PT, Bian JS. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia. 2006; 54(2):116-24. vii ABBREVIATIONS AC adenylyl cyclase AD Alzheimer‘s disease AIF apoptosis-inducing factor AOAA amino-oxyacetic acid AP1 activator protein Apaf-1 apoptotic protease activating factor-1 BCA β-cyanol-l-alanine CAT cysteine aminotransferase CBS cystathionine-β-synthase CNS central nervous system CSE cystathionine-γ-lyase CO carbon monoxide COX-2 cyclooxygenase-2 DA dopamine ERK extracellular signal-regulated kinase GSH glutathione GABA γ-aminobutyric acid HA hydroxylamine H2S hydrogen sulfide HD Huntington‘s disease IL-1β interleukin 1β iNOS inducible nitric oxide synthase JAK Janus kinase JNK c-Jun N-terminal kinase KATP ATP-sensitive potassium channel LPS lipopolysaccharide LTP long-term potentiation MAO monoamine oxidase viii MAPK mitogen-activated protein kinase 3-MST 3-mercaptopyruvate sulfurtransferase mitoKATP mitochondrial KATP channel MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydroperidine NaHS sodium hydrogen sulfide NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells NMDA N-methyl-D-aspartic acid NO nitric oxide Nrf-2 Nuclear factor-like NSAIDs non-steroidal anti-inflammatory drugs 6-OHDA 6-hydroxydopamine PAG DL-propargylglycine PARP poly (ADP-ribose) polymerase PD Parkinson‘s disease PFA paraformaldehyde PGE2 prostaglandin E2 PI3K phosphoinositide 3-kinase PKA protein kinase A PKC protein kinase C PLC phospholipase C PLP pyridoxal-5‘-phosphate PPAR-γ peroxisome proliferator-activated receptor-γ ROS reactive oxygen species SAM S-adenosyl-L-methionine SN substantia nigra SNpc substantia nigra pars compacta STAT signal transducers and activators of transcription TH tyrosine hydroxylase TNF-α tumor necrosis factor-α VMAT vesicular monoamine transporter ix Bibliography 1. Abe, K., and H. Kimura. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066-71. 2. Ali, M. Y., M. Whiteman, C. M. Low, and P. K. Moore. 2007. Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J Endocrinol 195:105-12. 3. Allen, J. M., A. J. Cross, J. C. Yeats, M. A. Ghatei, G. P. McGregor, S. P. Close, S. Pay, A. S. Marriott, M. B. Tyers, T. J. Crow, and et al. 1986. Neuropeptides and dopamine in the marmoset. Effect of treatment with 1-methyl-4-phenyl-1, 2, 3, tetrahydropyridine (MPTP): an animal model for Parkinson's disease? Brain 109 ( Pt 1):143-57. 4. Andrich, J., C. Saft, A. Arz, B. Schneider, M. W. Agelink, P. H. Kraus, W. Kuhn, and T. Muller. 2004. Hyperhomocysteinaemia in treated patients with Huntington's disease homocysteine in HD. Mov Disord 19:226-8. 5. Ang, S. F., S. M. Moochhala, and M. Bhatia. Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 38:619-28. 6. Armentero, M. T., G. Levandis, G. Nappi, E. Bazzini, and F. Blandini. 2006. Peripheral inflammation and neuroprotection: systemic pretreatment with complete Freund's adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson's disease. Neurobiol Dis 24:492-505. 7. Ascherio, A., H. Chen, M. A. Schwarzschild, S. M. Zhang, G. A. Colditz, and F. E. Speizer. 2003. Caffeine, postmenopausal estrogen, and risk of Parkinson's disease. Neurology 60:790-5. 8. Attene-Ramos, M. S., E. D. Wagner, M. J. Plewa, and H. R. Gaskins. 2006. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4:9-14. 9. Awata, S., K. Nakayama, I. Suzuki, K. Sugahara, and H. Kodama. 1995. Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem Mol Biol Int 35:1331-8. 10. Bartels, A. L., and K. L. Leenders. 2007. Neuroinflammation in the pathophysiology of Parkinson's disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22:1852-6. 11. Benavides, G. A., G. L. Squadrito, R. W. Mills, H. D. Patel, T. S. Isbell, R. P. Patel, V. M. Darley-Usmar, J. E. Doeller, and D. W. Kraus. 2007. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977-82. 12. Betarbet, R., T. B. Sherer, and J. T. Greenamyre. 2002. Animal models of Parkinson's disease. Bioessays 24:308-18. 13. Betarbet, R., T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301-6. 14. Bhatia, M., J. Sidhapuriwala, S. M. Moochhala, and P. K. Moore. 2005. Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145:141-4. 15. Bhatia, M., F. L. Wong, D. Fu, H. Y. Lau, S. M. Moochhala, and P. K. Moore. 2005. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. Faseb J 19:623-5. 137 16. Bian, J. S., Q. C. Yong, T. T. Pan, Z. N. Feng, M. Y. Ali, S. Zhou, and P. K. Moore. 2006. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670-8. 17. Bjorklund, A., and S. B. Dunnett. 2007. Fifty years of dopamine research. Trends Neurosci 30:185-7. 18. Blandini, F., G. Levandis, E. Bazzini, G. Nappi, and M. T. Armentero. 2007. Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 25:397-405. 19. Blasi, E., R. Barluzzi, V. Bocchini, R. Mazzolla, and F. Bistoni. 1990. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229-37. 20. Block, M. L., and J. S. Hong. 2007. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127-32. 21. Block, M. L., and J. S. Hong. 2005. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:7798. 22. Boka, G., P. Anglade, D. Wallach, F. Javoy-Agid, Y. Agid, and E. C. Hirsch. 1994. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci Lett 172:151-4. 23. Boutell, J. M., J. D. Wood, P. S. Harper, and A. L. Jones. 1998. Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7:371-8. 24. Brittain, T., Y. Yosaatmadja, and K. Henty. 2008. The interaction of human neuroglobin with hydrogen sulphide. IUBMB Life 60:135-8. 25. Brown, T. P., P. C. Rumsby, A. C. Capleton, L. Rushton, and L. S. Levy. 2006. Pesticides and Parkinson's disease--is there a link? Environ Health Perspect 114:156-64. 26. Busija, D. W., Z. Lacza, N. Rajapakse, K. Shimizu, B. Kis, F. Bari, F. Domoki, and T. Horiguchi. 2004. Targeting mitochondrial ATP-sensitive potassium channels--a novel approach to neuroprotection. Brain Res Brain Res Rev 46:282-94. 27. Calvert, J. W., S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil, and D. J. Lefer. 2009. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365-74. 28. Castano, A., A. J. Herrera, J. Cano, and A. Machado. 2002. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81:150-7. 29. Castano, A., A. J. Herrera, J. Cano, and A. Machado. 1998. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584-92. 30. Chauhan, N. B. 2006. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer's transgenic model Tg2576. J Ethnopharmacol 108:385-94. 31. Chen, H., S. M. Zhang, M. A. Hernan, M. A. Schwarzschild, W. C. Willett, G. A. Colditz, F. E. Speizer, and A. Ascherio. 2003. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059-64. 32. Chen, S. L., C. T. Yang, Z. L. Yang, R. X. Guo, J. L. Meng, Y. Cui, A. P. Lan, P. X. Chen, and J. Q. Feng. 2009. Hydrogen Sulfide Protects H9c2 Cells Against Chemical Hypoxia-Induced Cell Injuries. Clin Exp Pharmacol Physiol. 138 33. Chen, X., K. H. Jhee, and W. D. Kruger. 2004. Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279:52082-6. 34. Cheung, N. S., Z. F. Peng, M. J. Chen, P. K. Moore, and M. Whiteman. 2007. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53:505-14. 35. Chiku, T., D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, and R. Banerjee. 2009. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601-12. 36. Chunyu, Z., D. Junbao, B. Dingfang, Y. Hui, T. Xiuying, and T. Chaoshu. 2003. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun 302:810-6. 37. Cicchetti, F., A. L. Brownell, K. Williams, Y. I. Chen, E. Livni, and O. Isacson. 2002. Neuroinflammation of the nigrostriatal pathway during progressive 6OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991-8. 38. Clarke, R., A. D. Smith, K. A. Jobst, H. Refsum, L. Sutton, and P. M. Ueland. 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55:1449-55. 39. Collin, M., F. B. Anuar, O. Murch, M. Bhatia, P. K. Moore, and C. Thiemermann. 2005. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498-505. 40. Craft, J. M., D. M. Watterson, and L. J. Van Eldik. 2005. Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets 9:887-900. 41. d'Emmanuele di Villa Bianca, R., R. Sorrentino, P. Maffia, V. Mirone, C. Imbimbo, F. Fusco, R. De Palma, L. J. Ignarro, and G. Cirino. 2009. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci U S A 106:4513-8. 42. Dawe, G. S., S. P. Han, J. S. Bian, and P. K. Moore. 2008. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152:169-77. 43. De Sarno, P., S. A. Shestopal, T. D. King, A. Zmijewska, L. Song, and R. S. Jope. 2003. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 278:11086-93. 44. Depino, A. M., C. Earl, E. Kaczmarczyk, C. Ferrari, H. Besedovsky, A. del Rey, F. J. Pitossi, and W. H. Oertel. 2003. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. Eur J Neurosci 18:2731-42. 45. Deplancke, B., and H. R. Gaskins. 2003. Hydrogen sulfide induces serumindependent cell cycle entry in nontransformed rat intestinal epithelial cells. Faseb J 17:1310-2. 46. Deumens, R., A. Blokland, and J. Prickaerts. 2002. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-17. 47. Distrutti, E., L. Sediari, A. Mencarelli, B. Renga, S. Orlandi, E. Antonelli, F. Roviezzo, A. Morelli, G. Cirino, J. L. Wallace, and S. Fiorucci. 2006. Evidence that 139 hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 316:325-35. 48. Diwakar, L., and V. Ravindranath. 2007. Inhibition of cystathionine-gammalyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50:418-26. 49. Du, Y., Z. Ma, S. Lin, R. C. Dodel, F. Gao, K. R. Bales, L. C. Triarhou, E. Chernet, K. W. Perry, D. L. Nelson, S. Luecke, L. A. Phebus, F. P. Bymaster, and S. M. Paul. 2001. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A 98:14669-74. 50. Eghbal, M. A., P. S. Pennefather, and P. J. O'Brien. 2004. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 203:69-76. 51. Enokido, Y., E. Suzuki, K. Iwasawa, K. Namekata, H. Okazawa, and H. Kimura. 2005. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. Faseb J 19:1854-6. 52. Faull, R. L., and R. Laverty. 1969. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol 23:332-40. 53. Feng, X., Y. Chen, J. Zhao, C. Tang, Z. Jiang, and B. Geng. 2009. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun 380:153-9. 54. Ferdinandy, P., H. Danial, I. Ambrus, R. A. Rothery, and R. Schulz. 2000. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241-7. 55. Fleming, S. M., C. Zhu, P. O. Fernagut, A. Mehta, C. D. DiCarlo, R. L. Seaman, and M. F. Chesselet. 2004. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418-29. 56. Foltynie, T., S. Sawcer, C. Brayne, and R. A. Barker. 2002. The genetic basis of Parkinson's disease. J Neurol Neurosurg Psychiatry 73:363-70. 57. Furne, J., A. Saeed, and M. D. Levitt. 2008. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479-85. 58. Gad, M. Z., and M. Khattab. 2000. Modulation of nitric oxide synthesis in inflammation. Relationship to oxygen-derived free radicals and prostaglandin synthesis. Arzneimittelforschung 50:449-55. 59. Gao, H. M., J. S. Hong, W. Zhang, and B. Liu. 2002. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782-90. 60. Gao, H. M., J. S. Hong, W. Zhang, and B. Liu. 2003. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J Neurosci 23:1228-36. 61. Gao, H. M., J. Jiang, B. Wilson, W. Zhang, J. S. Hong, and B. Liu. 2002. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 81:1285-97. 62. Gao, H. M., B. Liu, and J. S. Hong. 2003. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:61817. 140 63. Geng, B., J. Yang, Y. Qi, J. Zhao, Y. Pang, J. Du, and C. Tang. 2004. H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362-8. 64. Gilboa-Garber, N. 1971. Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures. Anal Biochem 43:129-33. 65. Glinka, Y. Y., and M. B. Youdim. 1995. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 292:329-32. 66. Gomez-Lazaro, M., M. F. Galindo, R. M. Melero-Fernandez de Mera, F. J. Fernandez-Gomez, C. G. Concannon, M. F. Segura, J. X. Comella, J. H. Prehn, and J. Jordan. 2007. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol Pharmacol 71:736-43. 67. Gong, Q. H., Q. Wang, L. L. Pan, X. H. Liu, H. Huang, and Y. Z. Zhu. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A proinflammatory pathway in rats. Pharmacol Biochem Behav 96:52-8. 68. Gong, Q. H., Q. Wang, L. L. Pan, X. H. Liu, H. Huang, and Y. Z. Zhu. 2010. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A proinflammatory pathway in rats. Pharmacol Biochem Behav 96:52-8. 69. Greenamyre, J. T., G. MacKenzie, T. I. Peng, and S. E. Stephans. 1999. Mitochondrial dysfunction in Parkinson's disease. Biochem Soc Symp 66:85-97. 70. Grimbergen, Y. A., J. W. Langston, R. A. Roos, and B. R. Bloem. 2009. Postural instability in Parkinson's disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother 9:279-90. 71. Gubellini, P., P. Salin, L. Kerkerian-Le Goff, and C. Baunez. 2009. Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 89:79-123. 72. Guillot, T. S., K. R. Shepherd, J. R. Richardson, M. Z. Wang, Y. Li, P. C. Emson, and G. W. Miller. 2008. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106:220517. 73. Gupta, V. B., S. S. Indi, and K. S. Rao. 2009. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer's disease. Phytother Res 23:111-5. 74. Haehner, A., T. Hummel, and H. Reichmann. 2009. Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev Neurother 9:1773-9. 75. Han, Y., J. Qin, X. Chang, Z. Yang, and J. Du. 2006. Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell Mol Neurobiol 26:101-7. 76. Han, Y., J. Qin, X. Chang, Z. Yang, X. Tang, and J. Du. 2005. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem Biophys Res Commun 327:431-6. 77. Hayden, L. J., K. J. Franklin, S. H. Roth, and G. J. Moore. 1989. Inhibition of oxytocin-induced but not angiotensin-induced rat uterine contractions following exposure to sodium sulfide. Life Sci 45:2557-60. 78. He, X. J., H. Yamauchi, K. Uetsuka, and H. Nakayama. 2008. Neurotoxicity of MPTP to migrating neuroblasts: studies in acute and subacute mouse models of Parkinson's disease. Neurotoxicology 29:413-20. 141 79. He, Y., S. Appel, and W. Le. 2001. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187-93. 80. Herrera, A. J., A. Castano, J. L. Venero, J. Cano, and A. Machado. 2000. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7:429-47. 81. Hirsch, E., A. M. Graybiel, and Y. A. Agid. 1988. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345-8. 82. Hosoki, R., N. Matsuki, and H. Kimura. 1997. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527-31. 83. Hu, J. H., and X. Z. Zhu. 2007. Rotenone-induced neurotoxicity of THP-1 cells requires production of reactive oxygen species and activation of phosphatidylinositol 3kinase. Brain Res 1153:12-9. 84. Hu, L. F., M. Lu, C. X. Tiong, G. S. Dawe, G. Hu, and J. S. Bian. 2010. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 9:135-146. 85. Hu, L. F., T. T. Pan, K. L. Neo, Q. C. Yong, and J. S. Bian. 2008. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch 455:971-8. 86. Hu, L. F., S. Wang, X. R. Shi, H. H. Yao, Y. H. Sun, J. H. Ding, S. Y. Liu, and G. Hu. 2005. ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level. J Neurochem 94:1570-9. 87. Hu, L. F., P. T. Wong, P. K. Moore, and J. S. Bian. 2007. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogenactivated protein kinase in microglia. J Neurochem 100:1121-8. 88. Hu, Y., X. Chen, T. T. Pan, K. L. Neo, S. W. Lee, E. S. Khin, P. K. Moore, and J. S. Bian. 2008. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch 455:607-16. 89. Hui, Y., J. Du, C. Tang, G. Bin, and H. Jiang. 2003. Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats. J Infect 47:155-60. 90. Ishigami, M., K. Hiraki, K. Umemura, Y. Ogasawara, K. Ishii, and H. Kimura. 2009. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205-14. 91. Jung, K. K., H. S. Lee, J. Y. Cho, W. C. Shin, M. H. Rhee, T. G. Kim, J. H. Kang, S. H. Kim, S. Hong, and S. Y. Kang. 2006. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci 79:2022-31. 92. Kabil, O., and R. Banerjee. 2010. The redox biochemistry of hydrogen sulfide. J Biol Chem. 93. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for antiinflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253-62. 94. Kamoun, P. 2001. Mental retardation in Down syndrome: a hydrogen sulfide hpothesis. Med Hypotheses 57:389-92. 142 95. Kamoun, P., M. C. Belardinelli, A. Chabli, K. Lallouchi, and B. ChadefauxVekemans. 2003. Endogenous hydrogen sulfide overproduction in Down syndrome. Am J Med Genet A 116A:310-1. 96. Kim, H. J., H. J. Park, H. K. Park, and J. H. Chung. 2009. Tranexamic acid protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Toxicology 262:171-4. 97. Kim, W. G., R. P. Mohney, B. Wilson, G. H. Jeohn, B. Liu, and J. S. Hong. 2000. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309-16. 98. Kim, Y. S., and T. H. Joh. 2006. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med 38:333-47. 99. Kimura, H. 2002. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13-9. 100. Kimura, H. 2000. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129-33. 101. Kimura, H., Y. Nagai, K. Umemura, and Y. Kimura. 2005. Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795-803. 102. Kimura, Y., R. Dargusch, D. Schubert, and H. Kimura. 2006. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8:66170. 103. Kimura, Y., Y. Goto, and H. Kimura. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:113. 104. Kimura, Y., and H. Kimura. 2004. Hydrogen sulfide protects neurons from oxidative stress. Faseb J 18:1165-7. 105. Kiss, L., E. A. Deitch, and C. Szabo. 2008. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83:589-94. 106. Kita, T., G. C. Wagner, and T. Nakashima. 2003. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 92:178-95. 107. Kluger, B. M., O. Klepitskaya, and M. S. Okun. 2009. Surgical treatment of movement disorders. Neurol Clin 27:633-77, v. 108. Knott, C., G. Stern, and G. P. Wilkin. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16:724-39. 109. Kombian, S. B., R. J. Reiffenstein, and W. F. Colmers. 1993. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J Neurophysiol 70:81-96. 110. Kopin, I. J., and S. P. Markey. 1988. MPTP toxicity: implications for research in Parkinson's disease. Annu Rev Neurosci 11:81-96. 111. Koprich, J. B., C. Reske-Nielsen, P. Mithal, and O. Isacson. 2008. Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J Neuroinflammation 5:8. 112. Lee, M., C. Schwab, S. Yu, E. McGeer, and P. L. McGeer. 2009. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol Aging 30:1523-34. 143 113. Lee, M., A. Sparatore, P. Del Soldato, E. McGeer, and P. L. McGeer. 2010. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 58:103-13. 114. Lee, S. W., Y. Cheng, P. K. Moore, and J. S. Bian. 2007. Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142-7. 115. Lee, S. W., Y. S. Hu, L. F. Hu, Q. Lu, G. S. Dawe, P. K. Moore, P. T. Wong, and J. S. Bian. 2006. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116-24. 116. Lee, Y. B., J. W. Schrader, and S. U. Kim. 2000. p38 map kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12:874-80. 117. Lehnardt, S., L. Massillon, P. Follett, F. E. Jensen, R. Ratan, P. A. Rosenberg, J. J. Volpe, and T. Vartanian. 2003. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514-9. 118. Lemasters, J. J., T. Qian, L. He, J. S. Kim, S. P. Elmore, W. E. Cascio, and D. A. Brenner. 2002. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4:769-81. 119. Li, L., M. Bhatia, and P. K. Moore. 2006. Hydrogen sulphide - a novel mediator of inflammation? Curr Opin Pharmacol 6:125-9. 120. Li, L., M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F. B. Anuar, M. Whiteman, M. Salto-Tellez, and P. K. Moore. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. Faseb J 19:1196-8. 121. Li, L., M. Salto-Tellez, C. H. Tan, M. Whiteman, and P. K. Moore. 2009. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103-13. 122. Lim, J. J., Y. H. Liu, E. S. Khin, and J. S. Bian. 2008. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295:C1261-70. 123. Ling, Z., D. A. Gayle, S. Y. Ma, J. W. Lipton, C. W. Tong, J. S. Hong, and P. M. Carvey. 2002. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 17:116-24. 124. Liu, B., H. M. Gao, J. Y. Wang, G. H. Jeohn, C. L. Cooper, and J. S. Hong. 2002. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318-31. 125. Liu, B., J. W. Jiang, B. C. Wilson, L. Du, S. N. Yang, J. Y. Wang, G. C. Wu, X. D. Cao, and J. S. Hong. 2000. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 295:125-32. 126. Liu, Y., D. Peter, A. Roghani, S. Schuldiner, G. G. Prive, D. Eisenberg, N. Brecha, and R. H. Edwards. 1992. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539-51. 127. Lu, M., C. H. Choo, L. F. Hu, B. H. Tan, G. Hu, and J. S. Bian. 2010. Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neurosci Res 66:92-8. 144 128. Lu, M., L. F. Hu, G. Hu, and J. S. Bian. 2008. Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45:1705-13. 129. Luchtman, D. W., D. Shao, and C. Song. 2009. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiol Behav 98:130-8. 130. Maries, E., B. Dass, T. J. Collier, J. H. Kordower, and K. Steece-Collier. 2003. The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 4:727-38. 131. Masliah, E., E. Rockenstein, I. Veinbergs, M. Mallory, M. Hashimoto, A. Takeda, Y. Sagara, A. Sisk, and L. Mucke. 2000. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265-9. 132. McCoy, M. K., T. N. Martinez, K. A. Ruhn, D. E. Szymkowski, C. G. Smith, B. R. Botterman, K. E. Tansey, and M. G. Tansey. 2006. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci 26:9365-75. 133. McGeer, P. L., S. Itagaki, B. E. Boyes, and E. G. McGeer. 1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38:1285-91. 134. Miles, E. W., and J. P. Kraus. 2004. Cystathionine beta-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 279:29871-4. 135. Mogi, M., M. Harada, H. Narabayashi, H. Inagaki, M. Minami, and T. Nagatsu. 1996. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factoralpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett 211:13-6. 136. Mogi, M., M. Harada, P. Riederer, H. Narabayashi, K. Fujita, and T. Nagatsu. 1994. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208-10. 137. Mogi, M., T. Kondo, Y. Mizuno, and T. Nagatsu. 2007. p53 protein, interferongamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94-7. 138. Mogi, M., A. Togari, T. Kondo, Y. Mizuno, O. Komure, S. Kuno, H. Ichinose, and T. Nagatsu. 2000. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107:335-41. 139. Mok, Y. Y., M. S. Atan, C. Yoke Ping, W. Zhong Jing, M. Bhatia, S. Moochhala, and P. K. Moore. 2004. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 143:881-9. 140. Moore, A. H., and M. K. O'Banion. 2002. Neuroinflammation and antiinflammatory therapy for Alzheimer's disease. Adv Drug Deliv Rev 54:1627-56. 141. Morale, M. C., P. A. Serra, F. L'Episcopo, C. Tirolo, S. Caniglia, N. Testa, F. Gennuso, G. Giaquinta, G. Rocchitta, M. S. Desole, E. Miele, and B. Marchetti. 2006. Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869-78. 145 142. Morrison, L. D., D. D. Smith, and S. J. Kish. 1996. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease. J Neurochem 67:1328-31. 143. Mosley, R. L., E. J. Benner, I. Kadiu, M. Thomas, M. D. Boska, K. Hasan, C. Laurie, and H. E. Gendelman. 2006. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. Clin Neurosci Res 6:261-281. 144. Myers, R. R., W. M. Campana, and V. I. Shubayev. 2006. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 11:8-20. 145. Nagai, Y., M. Tsugane, J. Oka, and H. Kimura. 2004. Hydrogen sulfide induces calcium waves in astrocytes. Faseb J 18:557-9. 146. Nagasawa, K., T. Tarui, S. Yoshida, F. Sekiguchi, M. Matsunami, A. Ohi, K. Fukami, S. Ichida, H. Nishikawa, and A. Kawabata. 2009. Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J Neurochem 108:676-84. 147. Navarro, A., and A. Boveris. 2009. Brain mitochondrial dysfunction and oxidative damage in Parkinson's disease. J Bioenerg Biomembr. 148. Newhouse, K., S. L. Hsuan, S. H. Chang, B. Cai, Y. Wang, and Z. Xia. 2004. Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137-46. 149. Nicklas, W. J., I. Vyas, and R. E. Heikkila. 1985. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503-8. 150. Oesterhelweg, L., and K. Puschel. 2008. "Death may come on like a stroke of lightening": phenomenological and morphological aspects of fatalities caused by manure gas. Int J Legal Med 122:101-7. 151. Oh, G. S., H. O. Pae, B. S. Lee, B. N. Kim, J. M. Kim, H. R. Kim, S. B. Jeon, W. K. Jeon, H. J. Chae, and H. T. Chung. 2006. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106-19. 152. Pan, T. T., Y. Q. Chen, and J. S. Bian. 2009. All in the timing: a comparison between the cardioprotection induced by H2S preconditioning and post-infarction treatment. Eur J Pharmacol 616:160-5. 153. Pan, T. T., Z. N. Feng, S. W. Lee, P. K. Moore, and J. S. Bian. 2006. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40:119-30. 154. Pan, T. T., K. L. Neo, L. F. Hu, Q. C. Yong, and J. S. Bian. 2008. H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294:C169-77. 155. Papapetropoulos, A., A. Pyriochou, Z. Altaany, G. Yang, A. Marazioti, Z. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon, R. Wang, and C. Szabo. 2009. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A. 156. Parker, W. D., Jr., S. J. Boyson, and J. K. Parks. 1989. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 26:719-23. 157. Patel, P., M. Vatish, J. Heptinstall, R. Wang, and R. J. Carson. 2009. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10. 158. Perry, V. H., C. Cunningham, and C. Holmes. 2007. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161-7. 146 159. Petroske, E., G. E. Meredith, S. Callen, S. Totterdell, and Y. S. Lau. 2001. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589-601. 160. Qin, L., X. Wu, M. L. Block, Y. Liu, G. R. Breese, J. S. Hong, D. J. Knapp, and F. T. Crews. 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453-62. 161. Qu, K., C. P. Chen, B. Halliwell, P. K. Moore, and P. T. Wong. 2006. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37:889-93. 162. Ratnam, S., K. N. Maclean, R. L. Jacobs, M. E. Brosnan, J. P. Kraus, and J. T. Brosnan. 2002. Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277:42912-8. 163. Reiffenstein, R. J., W. C. Hulbert, and S. H. Roth. 1992. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109-34. 164. Riachi, N. J., R. A. Behmand, and S. I. Harik. 1991. Correlation of MPTP neurotoxicity in vivo with oxidation of MPTP by the brain and blood-brain barrier in vitro in five rat strains. Brain Res 555:19-24. 165. Rinaldi, L., G. Gobbi, M. Pambianco, C. Micheloni, P. Mirandola, and M. Vitale. 2006. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. Lab Invest 86:391-7. 166. Robert, K., F. Vialard, E. Thiery, K. Toyama, P. M. Sinet, N. Janel, and J. London. 2003. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 51:363-71. 167. Sanchez-Reus, M. I., Peinado, II, M. F. Molina-Jimenez, and J. Benedi. 2005. Fraxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Neurosci Res 53:48-56. 168. Sauer, H., and W. H. Oertel. 1994. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401-15. 169. Schmidt, N., and B. Ferger. 2001. Neurochemical findings in the MPTP model of Parkinson's disease. J Neural Transm 108:1263-82. 170. Schober, A. 2004. Classic toxin-induced animal models of Parkinson's disease: 6OHDA and MPTP. Cell Tissue Res 318:215-24. 171. Schreier, S. M., M. K. Muellner, H. Steinkellner, M. Hermann, H. Esterbauer, M. Exner, B. M. Gmeiner, S. Kapiotis, and H. Laggner. 2010. Hydrogen Sulfide Scavenges the Cytotoxic Lipid Oxidation Product 4-HNE. Neurotox Res 17:249-56 172. Shen, S., S. Yu, J. Binek, M. Chalimoniuk, X. Zhang, S. C. Lo, M. Hannink, J. Wu, K. Fritsche, R. Donato, and G. Y. Sun. 2005. Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int 47:298-307. 173. Sherer, T. B., R. Betarbet, J. H. Kim, and J. T. Greenamyre. 2003. Selective microglial activation in the rat rotenone model of Parkinson's disease. Neurosci Lett 341:87-90. 174. Sherer, T. B., R. Betarbet, C. M. Testa, B. B. Seo, J. R. Richardson, J. H. Kim, G. W. Miller, T. Yagi, A. Matsuno-Yagi, and J. T. Greenamyre. 2003. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23:10756-64. 175. Sherer, T. B., J. H. Kim, R. Betarbet, and J. T. Greenamyre. 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9-16. 147 176. Shibuya, N., Y. Mikami, Y. Kimura, N. Nagahara, and H. Kimura. 2009. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623-6. 177. Shibuya, N., M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, and H. Kimura. 2009. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703-14. 178. Shoffner, J. M., R. L. Watts, J. L. Juncos, A. Torroni, and D. C. Wallace. 1991. Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol 30:332-9. 179. Sidhapuriwala, J., L. Li, A. Sparatore, M. Bhatia, and P. K. Moore. 2007. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenaninduced hindpaw oedema formation in the rat. Eur J Pharmacol 569:149-54. 180. Sidhu, R., M. Singh, G. Samir, and R. J. Carson. 2001. L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol Toxicol 88:198-203. 181. Simon, K. C., H. Chen, X. Gao, M. A. Schwarzschild, and A. Ascherio. 2009. Reproductive factors, exogenous estrogen use, and risk of Parkinson's disease. Mov Disord 24:1359-65. 182. Singh, S., D. Padovani, R. A. Leslie, T. Chiku, and R. Banerjee. 2009. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457-66. 183. Skaper, S. D. 2007. The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci 1122:23-34. 184. Srivastava, S. K., and E. Beutler. 1973. A new fluorometric method for the determination of pyridoxal 5'-phosphate. Biochim Biophys Acta 304:765-73. 185. Su, X., K. A. Maguire-Zeiss, R. Giuliano, L. Prifti, K. Venkatesh, and H. J. Federoff. 2008. Synuclein activates microglia in a model of Parkinson's disease. Neurobiol Aging 29:1690-701. 186. Tai, K. K., Z. A. McCrossan, and G. W. Abbott. 2003. Activation of mitochondrial ATP-sensitive potassium channels increases cell viability against rotenoneinduced cell death. J Neurochem 84:1193-200. 187. Tamizhselvi, R., P. K. Moore, and M. Bhatia. 2007. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 11:315-26. 188. Tang, X. Q., C. T. Yang, J. Chen, W. L. Yin, S. W. Tian, B. Hu, J. Q. Feng, and Y. J. Li. 2008. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180-6. 189. Tangerman, A. 2009. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 877:3366-77. 190. Taoka, S., and R. Banerjee. 2001. Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245-51. 191. Taoka, S., M. West, and R. Banerjee. 1999. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry 38:2738-44. 192. Teague, B., S. Asiedu, and P. K. Moore. 2002. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139-45. 148 193. Teismann, P., and J. B. Schulz. 2004. Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149-61. 194. Tilleux, S., and E. Hermans. 2007. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059-70. 195. Tomas-Camardiel, M., I. Rite, A. J. Herrera, R. M. de Pablos, J. Cano, A. Machado, and J. L. Venero. 2004. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 16:190-201. 196. Trevisani, M., R. Patacchini, P. Nicoletti, R. Gatti, D. Gazzieri, N. Lissi, G. Zagli, C. Creminon, P. Geppetti, and S. Harrison. 2005. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br J Pharmacol 145:1123-31. 197. Truong, D. H., M. A. Eghbal, W. Hindmarsh, S. H. Roth, and P. J. O'Brien. 2006. Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38:733-44. 198. Tsugane, M., Y. Nagai, Y. Kimura, J. Oka, and H. Kimura. 2007. Differentiated astrocytes acquire sensitivity to hydrogen sulfide that is diminished by the transformation into reactive astrocytes. Antioxid Redox Signal 9:257-69. 199. Umemura, K., and H. Kimura. 2007. Hydrogen sulfide enhances reducing activity in neurons: neurotrophic role of H2S in the brain? Antioxid Redox Signal 9:2035-41. 200. Ungerstedt, U. 1968. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107-10. 201. Vitvitsky, V., M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee. 2006. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785-93. 202. Wallace, J. L. 2010. Physiological and Pathophysiological Roles of Hydrogen Sulfide in the Gastrointestinal Tract. Antioxid Redox Signal. 203. Wallace, J. L., M. Dicay, W. McKnight, and G. R. Martin. 2007. Hydrogen sulfide enhances ulcer healing in rats. Faseb J 21:4070-6. 204. Wallace, J. L., L. Vong, W. McKnight, M. Dicay, and G. R. Martin. 2009. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137:569-78, 578 e1. 205. Wang, R. 2009. Hydrogen sulfide: a new EDRF. Kidney Int 76:700-4. 206. Wang, R. 2002. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 16:1792-8. 207. Warenycia, M. W., L. R. Goodwin, C. G. Benishin, R. J. Reiffenstein, D. M. Francom, J. D. Taylor, and F. P. Dieken. 1989. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 38:973-81. 208. Warenycia, M. W., K. A. Smith, C. S. Blashko, S. B. Kombian, and R. J. Reiffenstein. 1989. Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: increases in brain catecholamine and 5-hydroxytryptamine levels. Arch Toxicol 63:131-6. 209. Watabe, M., and T. Nakaki. 2008. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol 74:933-40. 210. Watters, J. J., J. A. Sommer, Z. A. Pfeiffer, U. Prabhu, A. N. Guerra, and P. J. Bertics. 2002. A differential role for the mitogen-activated protein kinases in 149 lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production. J Biol Chem 277:9077-87. 211. Whiteman, M., J. S. Armstrong, S. H. Chu, S. Jia-Ling, B. S. Wong, N. S. Cheung, B. Halliwell, and P. K. Moore. 2004. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90:765-8. 212. Whiteman, M., N. S. Cheung, Y. Z. Zhu, S. H. Chu, J. L. Siau, B. S. Wong, J. S. Armstrong, and P. K. Moore. 2005. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794-8. 213. Whiteman, M., L. Li, P. Rose, C. H. Tan, D. Parkinson, and P. Moore. 2010. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 214. Whitfield, N. L., E. L. Kreimier, F. C. Verdial, N. Skovgaard, and K. R. Olson. 2008. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294:R1930-7. 215. Wijeyekoon, R., and R. A. Barker. 2009. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta 1792:688-702. 216. Wojtera, M., B. Sikorska, T. Sobow, and P. P. Liberski. 2005. Microglial cells in neurodegenerative disorders. Folia Neuropathol 43:311-21. 217. Wong, P. T., K. Qu, G. N. Chimon, A. B. Seah, H. M. Chang, M. C. Wong, Y. K. Ng, H. Rumpel, B. Halliwell, and C. P. Chen. 2006. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol 65:109-15. 218. Wu, D. C., P. Teismann, K. Tieu, M. Vila, V. Jackson-Lewis, H. Ischiropoulos, and S. Przedborski. 2003. NADPH oxidase mediates oxidative stress in the 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci U S A 100:6145-50. 219. Wu, L., F. Shen, L. Lin, X. Zhang, I. C. Bruce, and Q. Xia. 2006. The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. Neurosci Lett 402:184-9. 220. Wu, L., W. Yang, X. Jia, G. Yang, D. Duridanova, K. Cao, and R. Wang. 2009. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest 89:59-67. 221. Xing, B., M. Liu, and G. Bing. 2007. Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol 192:89-98. 222. Xu, K., Y. Xu, D. Brown-Jermyn, J. F. Chen, A. Ascherio, D. E. Dluzen, and M. A. Schwarzschild. 2006. Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci 26:535-41. 223. Yan, H., J. B. Du, and C. S. Tang. 2004. [Changes and significance of hydrogen sulfide/cystathionine gamma-lyase system in hypertension: an experimental study with rats]. Zhonghua Yi Xue Za Zhi 84:1114-7. 224. Yang, G., L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, and R. Wang. 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587-90. 150 225. Yang, G., W. Yang, L. Wu, and R. Wang. 2007. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282:16567-76. 226. Yang, W., G. Yang, X. Jia, L. Wu, and R. Wang. 2005. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol 569:519-31. 227. Yong, Q. C., C. H. Choo, B. H. Tan, C. M. Low, and J. S. Bian. 2010. Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem Int 56:508-15. 228. Yong, Q. C., S. W. Lee, C. S. Foo, K. L. Neo, X. Chen, and J. S. Bian. 2008. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295:H1330-H1340. 229. Yong, Q. C., T. T. Pan, L. F. Hu, and J. S. Bian. 2008. Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44:701-10. 230. Yusuf, M., B. T. Kwong Huat, A. Hsu, M. Whiteman, M. Bhatia, and P. K. Moore. 2005. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 333:1146-52. 231. Zanardo, R. C., V. Brancaleone, E. Distrutti, S. Fiorucci, G. Cirino, and J. L. Wallace. 2006. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. Faseb J 20:2118-20. 232. Zecca, L., H. Wilms, S. Geick, J. H. Claasen, L. O. Brandenburg, C. Holzknecht, M. L. Panizza, F. A. Zucca, G. Deuschl, J. Sievers, and R. Lucius. 2008. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson's disease. Acta Neuropathol 116:47-55. 233. Zhang, H., A. Hegde, S. W. Ng, S. Adhikari, S. M. Moochhala, and M. Bhatia. 2007. Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. J Immunol 179:4153-60. 234. Zhang, H., L. Zhi, S. Moochhala, P. K. Moore, and M. Bhatia. 2007. Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and punctureinduced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292:L960-71. 235. Zhang, H., L. Zhi, S. M. Moochhala, P. K. Moore, and M. Bhatia. 2007. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol 82:894-905. 236. Zhang, H., L. Zhi, P. K. Moore, and M. Bhatia. 2006. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol 290:L1193-201. 237. Zhang, J., D. M. Stanton, X. V. Nguyen, M. Liu, Z. Zhang, D. Gash, and G. Bing. 2005. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 135:829-38. 238. Zhang, L. M., C. X. Jiang, and D. W. Liu. 2009. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34:1984-92. 239. Zhang, S., F. Zhou, J. H. Ding, X. Q. Zhou, X. L. Sun, and G. Hu. 2007. ATPsensitive potassium channel opener iptakalim protects against MPP-induced astrocytic apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. J Neurochem 103:569-79. 240. Zhang, W., T. Wang, Z. Pei, D. S. Miller, X. Wu, M. L. Block, B. Wilson, W. Zhang, Y. Zhou, J. S. Hong, and J. Zhang. 2005. Aggregated alpha-synuclein activates 151 microglia: a process leading to disease progression in Parkinson's disease. Faseb J 19:533-42. 241. Zhao, W., and R. Wang. 2002. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474-80. 242. Zhao, W., J. Zhang, Y. Lu, and R. Wang. 2001. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. Embo J 20:6008-16. 243. Zhou, F., J. Y. Wu, X. L. Sun, H. H. Yao, J. H. Ding, and G. Hu. 2007. Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation. Neuropsychopharmacology 32:257080. 244. Zoccolella, S., P. Lamberti, E. Armenise, M. de Mari, S. V. Lamberti, R. Mastronardi, A. Fraddosio, G. Iliceto, and P. Livrea. 2005. Plasma homocysteine levels in Parkinson's disease: role of antiparkinsonian medications. Parkinsonism Relat Disord 11:131-3. 152 [...]... in regulation of brain functions PD, characterized by the progressive loss of DA neurons in midbrain, is the second most common neurodegenerative disorder among old population In this thesis, the therapeutic effect of H2S on neurodegeneration and the underlying mechanisms were investigated in both in vitro and in vivo studies Neuroinflammation is one of the main pathological causes/features of PD In. .. for maintaining GSH homeostasis in brain, which in turn preserves mitochondrial 7 function (48) CSE is the rate-limiting enzyme in the transsulfuration pathway for the sulfur transfer methionine to Cys, which is a limiting reagent in the synthesis of GSH Moreover, CSE mRNA is localized in brain and found to be predominantly present in neurons by in situ hybridization The CSE activity in mouse brain was... Collectively, these in vivo and in vitro findings consistently indicate the proinflammatory effects of H2S in acute pancreatitis Carregeenan-induced hindpaw edema The possible role of H2S in another inflammatory situation, carrageenan-induced hindpaw oedema was also investigated (14) An increase of H2S synthesis enzyme activity and MPO activity was observed in inflamed hindpaw Pretreatment with PAG dose-dependently... neuroinflammation remains unknown Given that H2S regulates inflammatory processes in various diseases and that H2S exists in brain at relatively high levels, it is hypothesized that H2S may regulate 1 neuroinflammatory process, and thus the pathogenesis of PD Therefore, this thesis was designed to investigate the potential role of H2S in neuroinflammation and DA neuronal injury The therapeutic effect of. .. detected in different brain regions (9, 201) CBS is a cytoplasm PLP-dependent enzyme Human CBS has a complex structure and regulatory mechanisms (134) It contains the N-terminal heme-binding domain, the catalytic domain, and the C-terminal regulatory domain Two other gaseous transmitters, CO and NO, can bind to the heme-binding domain and result in the inhibition of CBS activity (190, 191) Moreover, the. .. suppressed the up-regulation of SP and its receptor neurokinin-1 (NK-1R) as well as the gene expression of preprotachykinin-A, a precursor of SP, in the caerulein-induced acini Furthermore, NaHS resulted in a significant increase of SP and its receptors These data suggest that H2S also exerts a proinflammatory action in acute pancreatitis, possibly mediated by SP-NK-1R related pathway Collectively, these in. .. of the hepatic activity However, in human brain the activity was 100 times more than that in mouse brain Furthermore, an intact transsulfuration pathway in the brain mediated by both CBS and CSE links to GSH homeostasis, which greatly contributes to the redoxbuffering capacity in brain (201) Nevertheless, the general consensus is that CSE is the primarily physiological source of H2S generation in the. .. exploring H2S biology in the CNS Parkinson‘s disease (PD) is a movement disorder characterized by the progressive loss of dopamine (DA) neurons in the substantia nigra (SN) Its etiology remains elusive and the mechanisms for initiating and aggravating neuronal death are yet to be defined, despite years of intensive research An inflammatory process in CNS, often defined as neuroinflammation, is recently... Recently, there is an explosion of papers describing its functions in various systems and conditions 1.2.4.1 Roles of H2S in inflammation To date, both pro- and anti-inflammatory effects of H2S in vitro and in vivo have been reported H2S is herein positioned as a novel regulator of inflammation Pro-inflammation Most evidence indicating a pro-inflammatory effect of H2S comes from various animal models of inflammatory... (5) These two studies consistently demonstrate a regulatory role of H2S in neurogenic inflammation Anti-inflammation A great body of evidence from both in vivo and in vitro studies mentioned above strongly supports the pro-inflammatory actions of H2S However, lots of studies also note an antiinflammatory role of H2S H2S is demonstrated to alleviate the inflammatory hallmarks including swelling and pain . It contains the N-terminal heme-binding domain, the catalytic domain, and the C-terminal regulatory domain. Two other gaseous transmitters, CO and NO, can bind to the heme-binding domain and. neuroinflammatory process, and thus the pathogenesis of PD. Therefore, this thesis was designed to investigate the potential role of H 2 S in neuroinflammation and DA neuronal injury. The therapeutic. and the underlying mechanisms were investigated in both in vitro and in vivo studies. Neuroinflammation is one of the main pathological causes/features of PD. In this thesis, the effect of