1. Trang chủ
  2. » Giáo Dục - Đào Tạo

The role of b cells in the pathogenesis of atherosclerosis

89 446 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 89
Dung lượng 5,89 MB

Nội dung

3.9 Evaluation of humoral responses being associated with hypercholesterolemic setting in the apoE-/- mice In many studies, the deletion/defective of certain genes led to autoimmune disorder. For example, SLE mice models such as in MRL/lpr mice where CD95 is defective due to lpr mutation (Shlomchik et al., 1987) lead to high autoantibodies production and in Roquinsan/san mice where the excessive accumulation of follicular T helper cells in the GCs lead to autoantibodies production (Linterman et al., 2009). Therefore, elevated titer of oxLDL-specific IgM antibodies could be a spontaneous consequence of lack of APOE. Therefore, it is imperative to investigate whether the elevated IgM antibodies response is directly associated with the progression of the disease and not due to the APOE deficiency. In order to investigate this hypothesis, we impeded the progression of the disease by using a blood cholesterol-lowering drug, ezetimibe. The drug targets the molecule Niemann-Pick C1 Like (NPC1L1) and, inhibits the uptake and absorption of dietary cholesterol in the intestine to be excreted out (Garcia-Calvo et al., 2005). Thus, the administration of ezetimibe to apoE-/mice led to amelioration of the disease (Nakagami et al., 2009). Therefore, in our disease regression model, 12 weeks old apoE-/- mice, which already exhibit certain extent of the disease, were administered with ezetimibe via oral gavage daily as therapeutic intervention for 12 weeks before analysis.   142   3.9.1 Evaluation of total IgM and oxLDL-specific IgM autoantibodies in apoE-/- mice after ezetimibe treatment Plasma of the treated mice was examined after ezetimibe treatment. Non-treated apoE-/- and non-treated WT mice were administered with corn oil, the vehicle for ezetimibe. Our ELISA data had shown that with ezetimibe treatment, the amount of total IgM antibodies in the apoE-/- mice had decreased to the level of WT control mice compared to non-treated apoE-/mice (Figure 32A). When oxLDL-specific IgM was examined in the plasma, ezetimibe treated apoE-/- mice had lower titer compared to non-treated apoE-/mice and the titer was similar to that of control groups: non-treated WT and WT mice (Figure 32B). The amount of total IgM and oxLDL-specific IgM autoantibodies in the non-treated WT was similar to that of WT control mice, suggesting the vehicle does not alter the level of total IgM (Figure 32A & 32B). Therefore, the vehicle alone was no longer administered in non-treated mice and only groups of mice were used for our subsequent disease regression experiments; non-treated apoE-/-, treated apoE-/- and WT. Thus, our data on the plasma suggests that the elevated total IgM and oxLDL-specific IgM autoantibodies in apoE-/- mice was associated with hypercholesterolemia.   143   Figure 32. Total IgM and oxLDL-specific IgM autoantibodies were associated with hypercholesterolemia. (A) Quantification of total IgM in plasma determined by ELISA (mean ± SEM; n=8-10). Data were pooled from two independent experiments. (B) Plasma IgM titres against oxLDL determined by ELISA (n=5-7). * P < 0.05; ** P < 0.01; *** P < 0.001   144   3.9.2 Evaluation of splenic extrafollicular responses in apoE-/- mice after ezetimibe treatment Having established that the total IgM and oxLDL-specific IgM autoantibodies in the plasma of apoE-/- mice had decreased after ezetimibe treatment, we next examined if this was due to reduced extent of extrafollicular responses in the spleen of the treated mice. Indeed, our immunofluorescence staining of the spleen to reveal extrafollicular responses showed that there were a reduced number of extrafollicular response sites being identified compared to the non-treated apoE-/- mice (Figure 33A). When quantification of the extent of extrafollicular responses was performed, we observed statistical significant decrease of the extrafollicular responses in the treated apoE-/- mice, similar to that of the WT control mice (Figure 33B). Therefore, robust extrafollicular responses in the spleen was a consequence of hypercholesterolemia to produce elevated amount of total IgM and oxLDL-specific IgM autoantibodies in the plasma of apoE-/- mice.   145   Figure 33. Splenic extrafollicular responses were associated with hypercholesterolemia. (A) Representative images of area analyzed for extrafollicular sites identified (white circles) in which CD138+ plasmablasts (red) colocalized with CD11c+ DCs (blue) at bridging channel of B220+ follicles (green) between non-treated apoE-/- (n=4), treated apoE-/- (n=6) and WT (n=6). Scale bar denotes 500 µm; 100X magnification. (B) Quantification of extrafollicular responses sites in spleen after ezetimibe treatment (n=4-6). Data were pooled from three independent experiments. *** P < 0.001   146   3.9.3 Evaluation of IgM+ antibody secreting cells in the spleen of apoE-/mice after ezetimibe treatment Our earlier studies established that there was an increased frequency of total IgM and oxLDL-specific IgM ASCs present in the spleen of apoE-/- mice (Figure 19A & 19B, left). Together with the observations that in the spleen of apoE-/- mice treated with ezetimibe had decreased extent of extrafollicular responses, prompted us to investigate if the frequency of IgM+ ASCs would be affected. Our ELISpot analysis on the frequency of total IgM ASCs in the spleen of treated apoE-/- mice displayed similar frequency to that of nontreated apoE-/- mice but a non-statistical significant increase in frequency when compared to WT control mice (Figure 34A). In addition, when we examined for oxLDL-specific IgM+ ASCs, the frequency of treated apoE-/was similar to that of non-treated apoE-/- and still maintained its statistical significant increase compared to WT control mice (Figure 34B). While the frequency of total IgM and oxLDL-specific IgM ASCs remained essentially unchanged between non-treated and treated apoE-/- mice, we investigated if the amount of IgM antibodies secreted was affected to account for the decreased in total IgM and oxLDL-specific IgM antibodies in circulation. ELISA analysis of in vitro culture supernatant of splenocytes from treated apoE-/- revealed a non-statistical decrease but almost two-fold lower production of total IgM antibodies compared to non-treated apoE-/- mice (Figure 34C). ELISA analysis on the oxLDL-specific IgM autoantibodies production from the in vitro culture supernatant of treated apoE-/- mice   147   revealed a statistical significant decrease in titer compared non-treated apoE-/mice. Therefore, our data on IgM+ ASCs indicates that while the frequency of total IgM and oxLDL-specific IgM ASCs remained unchanged after ezetimibe treatment, the IgM antibodies production from ASCs from treated apoE-/- mice was decreased. This further suggests that IgM antibodies production per cell basis was lower in the treated apoE-/- mice. However, the spots identified to denote frequency of ASCs in ELISpot analysis not necessarily equate one spot is equivalent to one cell. In other words, cells that are capable of proliferation to form many cells could still form a single spot analogous to a bacteria colony forming assay experiment. Together with earlier findings that splenic extrafollicular responses, where plasmablasts proliferate and differentiate into plasma cells, were lower in treated apoE-/mice compared to non-treated apoE-/- mice, we reasoned that the lower IgM antibodies production from the culture supernatant of splenocytes from treated apoE-/- mice was due to a lack of proliferation of these IgM+ ASCs. Indeed, in our EdU-pulsed chase experiment, we observed a lower percentage and number of B220-CD138+EdU+IgM+ plasma cells in the spleen of treated apoE/- mice, supporting our hypothesis that proliferating IgM+ ASCs provided massive amount of total IgM and oxLDL-specific IgM autoantibodies in apoE/-   mice (Figure 34E & 34F). 148   Figure 34. Elevated total IgM and anti-oxLDL IgM autoantibodies were mostly contributed by proliferating IgM+ ASCs. (A-B) Frequency of splenic (A) total IgM and (B) anti-oxLDL specific IgM per million cells in non-treated apoE-/- (n=15), treated apoE-/- (n=17) and WT mice (n=19) determined by ELISpot. Data were pooled from five independent experiments. (C-D) Quantification of (C) total IgM and (D) anti-oxLDL IgM in culture supernatant of splenocytes from non-treated apoE-/- (n=7), treated apoE-/- (n=8) and WT mice (n=10) determined by ELISA. (E-F) Comparative flow cytometry analysis on (E) percentage and (F) number of B220CD138+EdU+IgM+ plasma cells in spleen of non-treated apoE-/- (n=3), treated apoE-/- (n=3) and WT mice (n=3). * P < 0.05   149   3.9.4 Evaluation of GC in the lymph node compartment of apoE-/- mice From our observations, we noted LN hypertrophy in the LN compartment in apoE-/- mice (Figure 14). This was associated with increased GC reactions as the dominant antibody-producing pathway in these LNs (Figure 16C, 16D, 17C & 17D). As we had established that the robust extrafollicular responses to generate proliferating IgM+ plasmablasts in the spleen of apoE-/- mice were associated with hypercholesterolemia (Figure 33 & 34), we next examined if hypertrophy and GC reactions in the LN compartments were also associated with hypercholesterolemia. After ezetimibe treatment, the cellularity for treated apoE-/- mice decreased significantly in the axillary and brachial LN compared to nontreated apoE-/- mice (Figure 35A). Similar decrease cellularity, but not statistically significant, was also observed in the iliac LNs of ezetimibe treated apoE-/- mice when compared to non-treated apoE-/- mice (Figure 35B). Therefore, our disease regression model indicated LN hypertrophy was associated with hypercholesterolemia. Next, we investigated if ezetimibe treatment had an effect on the expansion of GC B cells in the LN compartment by flow cytometry. Our results demonstrated that there were no differences in the relative percentage of GC B cells between axillary and brachial, and iliac LNs in treated apoE-/and non-treated apoE-/- (Figure 36A & 36B, left). However, statistical significant decrease in relative number of GC B cells were noted in treated apoE-/- mice, similar to WT mice when compared to non-treated apoE-/- mice (Figure 36A, right). Similar observations of decreased relative number of GC   150   B cells were also observed in the iliac LNs, albeit non-statistically significant (Figure 36B, right). Lastly, we examined the effect of ezetimibe on the GC reactions in the LNs of apoE-/- mice by immunofluorescence staining. Our data showed that GC reactions could still be observed in the LNs of treated apoE-/- mice but they were noticeably smaller (Figure 37, inset) when compared to non-treated apoE-/- mice (Figure 37).   151   Reif,  K.,  Ekland,  E.H.,  Ohl,  L.,  Nakano,  H.,  Lipp,  M.,  Forster,  R.,  and  Cyster,   J.G.   (2002).   Balanced   responsiveness   to   chemoattractants   from   adjacent   zones  determines  B-­‐cell  position.  Nature  416,  94-­‐99.   Reimold,   A.M.,   Iwakoshi,   N.N.,   Manis,   J.,   Vallabhajosyula,   P.,   Szomolanyi-­‐ Tsuda,   E.,   Gravallese,   E.M.,   Friend,   D.,   Grusby,   M.J.,   Alt,   F.,   and   Glimcher,   L.H.   (2001).   Plasma   cell   differentiation   requires   the   transcription   factor   XBP-­‐1.  Nature  412,  300-­‐307.   Reinhardt,  R.L.,  Liang,  H.E.,  and  Locksley,  R.M.  (2009).  Cytokine-­‐secreting   follicular  T  cells  shape  the  antibody  repertoire.  Nat  Immunol  10,  385-­‐393.   Rodriguez   Gomez,   M.,   Talke,   Y.,   Goebel,   N.,   Hermann,   F.,   Reich,   B.,   and   Mack,  M.  (2010).  Basophils  support  the  survival  of  plasma  cells  in  mice.  J   Immunol  185,  7180-­‐7185.   Rozanski,   C.H.,   Arens,   R.,   Carlson,   L.M.,   Nair,   J.,   Boise,   L.H.,   Chanan-­‐Khan,   A.A.,   Schoenberger,   S.P.,   and   Lee,   K.P.   (2011).   Sustained   antibody   responses   depend   on   CD28   function   in   bone   marrow-­‐resident   plasma   cells.  J  Exp  Med  208,  1435-­‐1446.   Russell,   D.W.   (2003).   The   enzymes,   regulation,   and   genetics   of   bile   acid   synthesis.  Annu  Rev  Biochem  72,  137-­‐174.   Sage,   A.P.,   Tsiantoulas,   D.,   Baker,   L.,   Harrison,   J.,   Masters,   L.,   Murphy,   D.,   Loinard,   C.,   Binder,   C.J.,   and   Mallat,   Z.   (2012).   BAFF   receptor   deficiency   reduces   the   development   of   atherosclerosis   in   mice-­‐-­‐brief   report.   Arterioscler  Thromb  Vasc  Biol  32,  1573-­‐1576.   Sasaki,   Y.,   Casola,   S.,   Kutok,   J.L.,   Rajewsky,   K.,   and   Schmidt-­‐Supprian,   M.   (2004).   TNF   family   member   B   cell-­‐activating   factor   (BAFF)   receptor-­‐   215   dependent   and   -­‐independent   roles   for   BAFF   in   B   cell   physiology.   J   Immunol  173,  2245-­‐2252.   Schaefer,  E.J.,  Gregg,  R.E.,  Ghiselli,  G.,  Forte,  T.M.,  Ordovas,  J.M.,  Zech,  L.A.,   and   Brewer,   H.B.,   Jr.   (1986).   Familial   apolipoprotein   E   deficiency.   J   Clin   Invest  78,  1206-­‐1219.   Schneider,   P.,   Takatsuka,   H.,   Wilson,   A.,   Mackay,   F.,   Tardivel,   A.,   Lens,   S.,   Cachero,  T.G.,  Finke,  D.,  Beermann,  F.,  and  Tschopp,  J.  (2001).  Maturation   of  marginal  zone  and  follicular  B  cells  requires  B  cell  activating  factor  of   the  tumor  necrosis  factor  family  and  is  independent  of  B  cell  maturation   antigen.  J  Exp  Med  194,  1691-­‐1697.   Schwab,   S.R.,   and   Cyster,   J.G.   (2007).   Finding   a   way   out:   lymphocyte   egress  from  lymphoid  organs.  Nat  Immunol  8,  1295-­‐1301.   Schwab,   S.R.,   Pereira,   J.P.,   Matloubian,   M.,   Xu,   Y.,   Huang,   Y.,   and   Cyster,   J.G.   (2005).   Lymphocyte   sequestration   through   S1P   lyase   inhibition   and   disruption  of  S1P  gradients.  Science  309,  1735-­‐1739.   Schwickert,   T.A.,   Alabyev,   B.,   Manser,   T.,   and   Nussenzweig,   M.C.   (2009).   Germinal   center   reutilization   by   newly   activated   B   cells.   J   Exp   Med  206,   2907-­‐2914.   Schwickert,  T.A.,  Lindquist,  R.L.,  Shakhar,  G.,  Livshits,  G.,  Skokos,  D.,  Kosco-­‐ Vilbois,  M.H.,  Dustin,  M.L.,  and  Nussenzweig,  M.C.  (2007).  In  vivo  imaging   of  germinal  centres  reveals  a  dynamic  open  structure.  Nature  446,  83-­‐87.   Schwickert,  T.A.,  Victora,  G.D.,  Fooksman,  D.R.,  Kamphorst,  A.O.,  Mugnier,   M.R.,   Gitlin,   A.D.,   Dustin,   M.L.,   and   Nussenzweig,   M.C.   (2011).   A   dynamic   T   cell-­‐limited   checkpoint   regulates   affinity-­‐dependent   B   cell   entry   into   the   germinal  center.  J  Exp  Med  208,  1243-­‐1252.     216   Shaffer,  A.L.,  Lin,  K.I.,  Kuo,  T.C.,  Yu,  X.,  Hurt,  E.M.,  Rosenwald,  A.,  Giltnane,   J.M.,   Yang,   L.,   Zhao,   H.,   Calame,   K.,   and   Staudt,   L.M.   (2002).   Blimp-­‐1   orchestrates  plasma  cell  differentiation  by  extinguishing  the  mature  B  cell   gene  expression  program.  Immunity  17,  51-­‐62.   Shaffer,  A.L.,  Shapiro-­‐Shelef,  M.,  Iwakoshi,  N.N.,  Lee,  A.H.,  Qian,  S.B.,  Zhao,   H.,   Yu,   X.,   Yang,   L.,   Tan,   B.K.,   Rosenwald,   A.,   et   al.   (2004).   XBP1,   downstream   of   Blimp-­‐1,   expands   the   secretory   apparatus   and   other   organelles,  and  increases  protein  synthesis  in  plasma  cell  differentiation.   Immunity  21,  81-­‐93.   Shaffer,  A.L.,  Yu,  X.,  He,  Y.,  Boldrick,  J.,  Chan,  E.P.,  and  Staudt,  L.M.  (2000).   BCL-­‐6   represses   genes   that   function   in   lymphocyte   differentiation,   inflammation,  and  cell  cycle  control.  Immunity  13,  199-­‐212.   Shapiro-­‐Shelef,   M.,   and   Calame,   K.   (2005).   Regulation   of   plasma-­‐cell   development.  Nat  Rev  Immunol  5,  230-­‐242.   Shapiro-­‐Shelef,   M.,   Lin,   K.I.,   McHeyzer-­‐Williams,   L.J.,   Liao,   J.,   McHeyzer-­‐ Williams,   M.G.,   and   Calame,   K.   (2003).   Blimp-­‐1   is   required   for   the   formation   of   immunoglobulin   secreting   plasma   cells   and   pre-­‐plasma   memory  B  cells.  Immunity  19,  607-­‐620.   Shaw,   P.X.,   Horkko,   S.,   Chang,   M.K.,   Curtiss,   L.K.,   Palinski,   W.,   Silverman,   G.J.,   and   Witztum,   J.L.   (2000).   Natural   antibodies   with   the   T15   idiotype   may  act  in  atherosclerosis,  apoptotic  clearance,  and  protective  immunity.   J  Clin  Invest  105,  1731-­‐1740.   Shih,   P.T.,   Elices,   M.J.,   Fang,   Z.T.,   Ugarova,   T.P.,   Strahl,   D.,   Territo,   M.C.,   Frank,   J.S.,   Kovach,   N.L.,  Cabanas,   C.,   Berliner,   J.A.,   and   Vora,   D.K.   (1999).   Minimally   modified   low-­‐density   lipoprotein   induces   monocyte   adhesion     217   to   endothelial   connecting   segment-­‐1   by   activating   beta1   integrin.   J   Clin   Invest  103,  613-­‐625.   Shih,  T.A.,  Meffre,  E.,  Roederer,  M.,  and  Nussenzweig,  M.C.  (2002).  Role  of   BCR   affinity   in   T   cell   dependent   antibody   responses   in   vivo.   Nat   Immunol   3,  570-­‐575.   Shlomchik,   M.J.,   Marshak-­‐Rothstein,   A.,   Wolfowicz,   C.B.,   Rothstein,   T.L.,   and   Weigert,   M.G.   (1987).   The   role   of   clonal   selection   and   somatic   mutation  in  autoimmunity.  Nature  328,  805-­‐811.   Shokat,  K.M.,  and  Goodnow,  C.C.  (1995).  Antigen-­‐induced  B-­‐cell  death  and   elimination  during  germinal-­‐centre  immune  responses.  Nature  375,  334-­‐ 338.   Silaste,  M.L.,   Rantala,  M.,  Alfthan,   G.,  Aro,   A.,   Witztum,   J.L.,   Kesaniemi,   Y.A.,   and   Horkko,   S.   (2004).   Changes   in   dietary   fat   intake   alter   plasma   levels   of   oxidized  low-­‐density  lipoprotein  and  lipoprotein(a).  Arterioscler  Thromb   Vasc  Biol  24,  498-­‐503.   Slifka,   M.K.,   Antia,   R.,   Whitmire,   J.K.,   and   Ahmed,   R.   (1998).   Humoral   immunity  due  to  long-­‐lived  plasma  cells.  Immunity  8,  363-­‐372.   Smith,   J.D.,   Trogan,   E.,   Ginsberg,   M.,   Grigaux,   C.,   Tian,   J.,   and   Miyata,   M.   (1995).   Decreased   atherosclerosis   in   mice   deficient   in   both   macrophage   colony-­‐stimulating  factor  (op)  and  apolipoprotein  E.  Proc  Natl  Acad  Sci  U   S  A  92,  8264-­‐8268.   Smith,   K.G.,   Hewitson,   T.D.,   Nossal,   G.J.,   and   Tarlinton,   D.M.   (1996).   The   phenotype  and  fate  of  the  antibody-­‐forming  cells  of  the  splenic  foci.  Eur  J   Immunol  26,  444-­‐448.     218   Smith,  K.G.,  Light,  A.,  Nossal,  G.J.,  and  Tarlinton,  D.M.  (1997).  The  extent  of   affinity   maturation   differs   between   the   memory   and   antibody-­‐forming   cell   compartments   in   the   primary   immune   response.   EMBO   J   16,   2996-­‐ 3006.   Snapper,   C.M.,   Shen,   Y.,   Khan,   A.Q.,   Colino,   J.,   Zelazowski,   P.,   Mond,   J.J.,   Gause,   W.C.,   and   Wu,   Z.Q.   (2001).   Distinct   types   of   T-­‐cell   help   for   the   induction   of   a   humoral   immune   response   to   Streptococcus   pneumoniae.   Trends  Immunol  22,  308-­‐311.   Stewart,   C.R.,   Stuart,   L.M.,   Wilkinson,   K.,   van   Gils,   J.M.,   Deng,   J.,   Halle,   A.,   Rayner,  K.J.,  Boyer,  L.,  Zhong,  R.,  Frazier,  W.A.,  et  al.  (2010).  CD36  ligands   promote   sterile   inflammation   through   assembly   of   a   Toll-­‐like   receptor     and  6  heterodimer.  Nat  Immunol  11,  155-­‐161.   Su,   J.,   Georgiades,   A.,   Wu,   R.,   Thulin,   T.,   de   Faire,   U.,   and   Frostegard,   J.   (2006).   Antibodies   of   IgM   subclass   to   phosphorylcholine   and   oxidized   LDL   are   protective   factors   for   atherosclerosis   in   patients   with   hypertension.  Atherosclerosis  188,  160-­‐166.   Swanson,  C.L.,  Wilson,  T.J.,  Strauch,  P.,  Colonna,  M.,  Pelanda,  R.,  and  Torres,   R.M.   (2010).   Type   I   IFN   enhances   follicular   B   cell   contribution   to   the   T   cell-­‐independent  antibody  response.  J  Exp  Med  207,  1485-­‐1500.   Sweet,   R.A.,   Christensen,   S.R.,   Harris,   M.L.,   Shupe,   J.,   Sutherland,   J.L.,   and   Shlomchik,  M.J.  (2010).  A  new  site-­‐directed  transgenic  rheumatoid  factor   mouse   model   demonstrates   extrafollicular   class   switch   and   plasmablast   formation.  Autoimmunity  43,  607-­‐618.     219   Sze,   D.M.,   Toellner,   K.M.,   Garcia   de   Vinuesa,   C.,   Taylor,   D.R.,   and   MacLennan,   I.C.   (2000).   Intrinsic   constraint   on   plasmablast   growth   and   extrinsic  limits  of  plasma  cell  survival.  J  Exp  Med  192,  813-­‐821.   Tabas,  I.  (2010).  Macrophage  death  and  defective  inflammation  resolution   in  atherosclerosis.  Nat  Rev  Immunol  10,  36-­‐46.   Tabas,   I.,   Williams,   K.J.,   and   Boren,   J.   (2007).   Subendothelial   lipoprotein   retention   as   the   initiating   process   in   atherosclerosis:   update   and   therapeutic  implications.  Circulation  116,  1832-­‐1844.   Tangye,   S.G.   (2011).   Staying   alive:   regulation   of   plasma   cell   survival.   Trends  Immunol  32,  595-­‐602.   Thompson,  J.S.,  Schneider,  P.,  Kalled,  S.L.,  Wang,  L.,  Lefevre,  E.A.,  Cachero,   T.G.,  MacKay,  F.,  Bixler,  S.A.,  Zafari,  M.,  Liu,  Z.Y.,  et  al.  (2000).  BAFF  binds   to   the   tumor   necrosis   factor   receptor-­‐like   molecule   B   cell   maturation   antigen   and   is   important   for   maintaining   the   peripheral   B   cell   population.   J  Exp  Med  192,  129-­‐135.   Toellner,   K.M.,   Gulbranson-­‐Judge,   A.,   Taylor,   D.R.,   Sze,   D.M.,   and   MacLennan,  I.C.  (1996).  Immunoglobulin  switch  transcript  production  in   vivo   related   to   the   site   and   time   of   antigen-­‐specific   B   cell   activation.   J   Exp   Med  183,  2303-­‐2312.   Tokoyoda,  K.,  Egawa,  T.,  Sugiyama,  T.,  Choi,  B.I.,  and  Nagasawa,  T.  (2004).   Cellular   niches   controlling   B   lymphocyte   behavior   within   bone   marrow   during  development.  Immunity  20,  707-­‐718.   Toyama,   H.,   Okada,   S.,   Hatano,   M.,   Takahashi,   Y.,   Takeda,   N.,   Ichii,   H.,   Takemori,  T.,  Kuroda,  Y.,  and  Tokuhisa,  T.  (2002).  Memory  B  cells  without     220   somatic   hypermutation   are   generated   from   Bcl6-­‐deficient   B   cells.   Immunity  17,  329-­‐339.   Tsimikas,   S.,   Aikawa,   M.,   Miller,   F.J.,   Jr.,   Miller,   E.R.,   Torzewski,   M.,   Lentz,   S.R.,   Bergmark,   C.,   Heistad,   D.D.,   Libby,   P.,   and   Witztum,   J.L.   (2007a).   Increased  plasma  oxidized  phospholipid:apolipoprotein  B-­‐100  ratio  with   concomitant   depletion   of   oxidized   phospholipids   from   atherosclerotic   lesions   after   dietary   lipid-­‐lowering:   a   potential   biomarker   of   early   atherosclerosis  regression.  Arterioscler  Thromb  Vasc  Biol  27,  175-­‐181.   Tsimikas,   S.,   Brilakis,   E.S.,   Lennon,   R.J.,   Miller,   E.R.,   Witztum,   J.L.,   McConnell,   J.P.,   Kornman,   K.S.,   and   Berger,   P.B.   (2007b).   Relationship   of   IgG   and   IgM   autoantibodies   to   oxidized   low   density   lipoprotein   with   coronary   artery   disease   and   cardiovascular   events.   J   Lipid   Res   48,   425-­‐ 433.   Tsimikas,  S.,  Witztum,  J.L.,  Miller,  E.R.,  Sasiela,  W.J.,  Szarek,  M.,  Olsson,  A.G.,   and   Schwartz,   G.G.   (2004).   High-­‐dose   atorvastatin   reduces   total   plasma   levels   of   oxidized   phospholipids   and   immune   complexes   present   on   apolipoprotein   B-­‐100   in   patients   with   acute   coronary   syndromes   in   the   MIRACL  trial.  Circulation  110,  1406-­‐1412.   Tung,   J.W.,   Mrazek,   M.D.,   Yang,   Y.,   and   Herzenberg,   L.A.   (2006).   Phenotypically  distinct  B  cell  development  pathways  map  to  the  three  B   cell  lineages  in  the  mouse.  Proc  Natl  Acad  Sci  U  S  A  103,  6293-­‐6298.   Tunyaplin,   C.,   Shaffer,   A.L.,   Angelin-­‐Duclos,   C.D.,   Yu,   X.,   Staudt,   L.M.,   and   Calame,   K.L.   (2004).   Direct   repression   of   prdm1   by   Bcl-­‐6   inhibits   plasmacytic  differentiation.  J  Immunol  173,  1158-­‐1165.     221   Turner,  C.A.,  Jr.,  Mack,  D.H.,  and  Davis,  M.M.  (1994).  Blimp-­‐1,  a  novel  zinc   finger-­‐containing  protein  that  can  drive  the  maturation  of  B  lymphocytes   into  immunoglobulin-­‐secreting  cells.  Cell  77,  297-­‐306.   Vallerskog,   T.,   Gunnarsson,   I.,   Widhe,   M.,   Risselada,   A.,   Klareskog,   L.,   van   Vollenhoven,   R.,   Malmstrom,   V.,   and   Trollmo,   C.   (2007).   Treatment   with   rituximab   affects   both   the   cellular   and   the   humoral   arm   of   the   immune   system  in  patients  with  SLE.  Clin  Immunol  122,  62-­‐74.   van   der   Kolk,   L.E.,   Baars,   J.W.,   Prins,   M.H.,   and   van   Oers,   M.H.   (2002).   Rituximab   treatment   results   in   impaired   secondary   humoral   immune   responsiveness.  Blood  100,  2257-­‐2259.   van  Leeuwen,  M.,  Damoiseaux,  J.,  Duijvestijn,  A.,  and  Tervaert,  J.W.  (2009).   The  therapeutic  potential  of  targeting  B  cells  and  anti-­‐oxLDL  antibodies  in   atherosclerosis.  Autoimmun  Rev  9,  53-­‐57.   Veniant,  M.M.,  Zlot,  C.H.,  Walzem,  R.L.,  Pierotti,  V.,  Driscoll,  R.,  Dichek,  D.,   Herz,  J.,  and  Young,  S.G.  (1998).  Lipoprotein  clearance  mechanisms  in  LDL   receptor-­‐deficient   "Apo-­‐B48-­‐only"   and   "Apo-­‐B100-­‐only"   mice.   J   Clin   Invest  102,  1559-­‐1568.   Victora,   G.D.,   Schwickert,   T.A.,   Fooksman,   D.R.,   Kamphorst,   A.O.,   Meyer-­‐ Hermann,  M.,  Dustin,  M.L.,  and  Nussenzweig,  M.C.  (2010).  Germinal  center   dynamics   revealed   by   multiphoton   microscopy   with   a   photoactivatable   fluorescent  reporter.  Cell  143,  592-­‐605.   Vieira,   P.,   and   Rajewsky,   K.   (1988).   The   half-­‐lives   of   serum   immunoglobulins  in  adult  mice.  Eur  J  Immunol  18,  313-­‐316.   Vinuesa,   C.G.,   and   Chang,   P.P.   (2013).   Innate   B   cell   helpers   reveal   novel   types  of  antibody  responses.  Nat  Immunol  14,  119-­‐126.     222   Vinuesa,   C.G.,   Sanz,   I.,   and   Cook,   M.C.   (2009).   Dysregulation   of   germinal   centres  in  autoimmune  disease.  Nat  Rev  Immunol  9,  845-­‐857.   Walton,   L.J.,   Powell,   J.T.,   and   Parums,   D.V.   (1997).   Unrestricted   usage   of   immunoglobulin   heavy   chain   genes   in   B   cells   infiltrating   the   wall   of   atherosclerotic  abdominal  aortic  aneurysms.  Atherosclerosis  135,  65-­‐71.   Wardemann,  H.,  Boehm,  T.,  Dear,  N.,  and  Carsetti,  R.  (2002).  B-­‐1a  B  cells   that   link   the   innate   and   adaptive   immune   responses   are   lacking   in   the   absence  of  the  spleen.  J  Exp  Med  195,  771-­‐780.   Watanabe,  M.,  Sangawa,  A.,  Sasaki,  Y.,  Yamashita,  M.,  Tanaka-­‐Shintani,  M.,   Shintaku,   M.,   and   Ishikawa,   Y.   (2007).   Distribution   of   inflammatory   cells   in  adventitia  changed  with  advancing  atherosclerosis  of  human  coronary   artery.  J  Atheroscler  Thromb  14,  325-­‐331.   Weber,   C.,   Zernecke,   A.,   and   Libby,   P.   (2008).   The   multifaceted   contributions  of  leukocyte  subsets  to  atherosclerosis:  lessons  from  mouse   models.  Nat  Rev  Immunol  8,  802-­‐815.   Wehrli,   N.,   Legler,   D.F.,   Finke,   D.,   Toellner,   K.M.,   Loetscher,   P.,   Baggiolini,   M.,  MacLennan,  I.C.,  and  Acha-­‐Orbea,  H.  (2001).  Changing  responsiveness   to  chemokines  allows  medullary  plasmablasts  to  leave  lymph  nodes.  Eur  J   Immunol  31,  609-­‐616.   Wiklund,   O.,   Witztum,   J.L.,   Carew,   T.E.,   Pittman,   R.C.,   Elam,   R.L.,   and   Steinberg,   D.   (1987).   Turnover   and   tissue   sites   of   degradation   of   glucosylated  low  density  lipoprotein  in  normal  and  immunized  rabbits.  J   Lipid  Res  28,  1098-­‐1109.     223   William,   J.,   Euler,   C.,   Christensen,   S.,   and   Shlomchik,   M.J.   (2002).   Evolution   of  autoantibody  responses  via  somatic  hypermutation  outside  of  germinal   centers.  Science  297,  2066-­‐2070.   Willnow,   T.E.,   Nykjaer,   A.,   and   Herz,   J.   (1999).   Lipoprotein   receptors:   new   roles  for  ancient  proteins.  Nat  Cell  Biol  1,  E157-­‐162.   Winter,   O.,   Moser,   K.,   Mohr,   E.,   Zotos,   D.,   Kaminski,   H.,   Szyska,   M.,   Roth,   K.,   Wong,   D.M.,   Dame,   C.,   Tarlinton,   D.M.,   et   al.   (2010).   Megakaryocytes   constitute   a   functional   component   of   a   plasma   cell   niche   in   the   bone   marrow.  Blood  116,  1867-­‐1875.   Won,  W.J.,  Bachmann,  M.F.,  and  Kearney,  J.F.  (2008).  CD36  is  differentially   expressed   on   B   cell   subsets   during   development   and   in   responses   to   antigen.  J  Immunol  180,  230-­‐237.   Xiang,   Z.,   Cutler,   A.J.,   Brownlie,   R.J.,   Fairfax,   K.,   Lawlor,   K.E.,   Severinson,   E.,   Walker,   E.U.,   Manz,   R.A.,   Tarlinton,   D.M.,   and   Smith,   K.G.   (2007).   FcgammaRIIb   controls   bone   marrow   plasma   cell   persistence   and   apoptosis.  Nat  Immunol  8,  419-­‐429.   Yang,  Y.,  Tung,  J.W.,  Ghosn,  E.E.,  and  Herzenberg,  L.A.  (2007).  Division  and   differentiation  of  natural  antibody-­‐producing  cells  in  mouse  spleen.  Proc   Natl  Acad  Sci  U  S  A  104,  4542-­‐4546.   Ye,  B.H.,  Cattoretti,  G.,  Shen,  Q.,  Zhang,  J.,  Hawe,  N.,  de  Waard,  R.,  Leung,  C.,   Nouri-­‐Shirazi,  M.,  Orazi,  A.,  Chaganti,  R.S.,  et  al.  (1997).  The  BCL-­‐6  proto-­‐ oncogene  controls  germinal-­‐centre  formation  and  Th2-­‐type  inflammation.   Nat  Genet  16,  161-­‐170.   Yi,   T.,   Wang,   X.,   Kelly,   L.M.,   An,   J.,   Xu,   Y.,   Sailer,   A.W.,   Gustafsson,   J.A.,   Russell,   D.W.,   and   Cyster,   J.G.   (2012).   Oxysterol   gradient   generation   by     224   lymphoid  stromal  cells  guides  activated  B  cell  movement  during  humoral   responses.  Immunity  37,  535-­‐548.   Yoshida,   T.,   Mei,   H.,   Dorner,   T.,   Hiepe,   F.,   Radbruch,   A.,   Fillatreau,   S.,   and   Hoyer,   B.F.   (2010).   Memory   B   and   memory   plasma   cells.   Immunol   Rev   237,  117-­‐139.   Yu,   D.,   Rao,   S.,   Tsai,   L.M.,   Lee,   S.K.,   He,   Y.,   Sutcliffe,   E.L.,   Srivastava,   M.,   Linterman,   M.,   Zheng,   L.,   Simpson,   N.,   et   al.   (2009).   The   transcriptional   repressor   Bcl-­‐6   directs   T   follicular   helper   cell   lineage   commitment.   Immunity  31,  457-­‐468.   Yuan,  Z.,  Kishimoto,  C.,  Sano,  H.,  Shioji,  K.,  Xu,  Y.,  and  Yokode,  M.  (2003).   Immunoglobulin   treatment   suppresses   atherosclerosis   in   apolipoprotein   E-­‐deficient   mice   via   the   Fc   portion.   Am   J   Physiol   Heart   Circ   Physiol  285,   H899-­‐906.   Zammit,  D.J.,  Cauley,  L.S.,  Pham,  Q.M.,  and  Lefrancois,  L.  (2005).  Dendritic   cells  maximize  the  memory  CD8  T  cell  response  to  infection.  Immunity  22,   561-­‐570.   Zhang,   S.H.,   Reddick,   R.L.,   Piedrahita,   J.A.,   and   Maeda,   N.   (1992).   Spontaneous   hypercholesterolemia   and   arterial   lesions   in   mice   lacking   apolipoprotein  E.  Science  258,  468-­‐471.   Zhang,   Y.,   Meyer-­‐Hermann,   M.,   George,   L.A.,   Figge,   M.T.,   Khan,   M.,   Goodall,   M.,   Young,   S.P.,   Reynolds,   A.,   Falciani,   F.,   Waisman,   A.,   et   al.   (2013).   Germinal  center  B  cells  govern  their  own  fate  via  antibody  feedback.  J  Exp   Med  210,  457-­‐464.   Zhou,   X.,   Caligiuri,   G.,   Hamsten,   A.,   Lefvert,   A.K.,   and   Hansson,   G.K.   (2001).   LDL   immunization   induces   T-­‐cell-­‐dependent   antibody   formation   and     225   protection  against  atherosclerosis.  Arterioscler  Thromb  Vasc  Biol  21,  108-­‐ 114.   Zhou,   X.,   and   Hansson,   G.K.   (1999).   Detection   of   B   cells   and   proinflammatory   cytokines   in   atherosclerotic   plaques   of   hypercholesterolaemic   apolipoprotein   E   knockout   mice.   Scand   J   Immunol   50,  25-­‐30.   Zikherman,   J.,   Parameswaran,   R.,   and   Weiss,   A.   (2012).   Endogenous   antigen   tunes   the   responsiveness   of   naive   B   cells   but   not   T   cells.   Nature   489,  160-­‐164.   Zotos,   D.,   Coquet,   J.M.,   Zhang,   Y.,  Light,  A.,  D'Costa,  K.,  Kallies,  A.,  Corcoran,   L.M.,  Godfrey,  D.I.,  Toellner,  K.M.,  Smyth,  M.J.,  et  al.  (2010).  IL-­‐21  regulates   germinal   center   B   cell   differentiation   and   proliferation   through   a   B   cell-­‐ intrinsic  mechanism.  J  Exp  Med  207,  365-­‐378.   Zotos,  D.,  and  Tarlinton,  D.M.  (2012).  Determining  germinal  centre  B  cell   fate.  Trends  Immunol  33,  281-­‐288.       226   Appendix 1. Buffers and Media FACS Buffer 0.5% BSA, 2mM EDTA in PBS, pH 7.4 0.1M citric acid 9.62g in 500ml (H2O) 10X TBS 500mM Tris-HCL (78.82g), 1500mM NaCl (87.66g) in 1L (H2O), pH 7.4 PBS-tween/ TBS-tween 0.05% Tween 20 in PBS/TBS 0.9% Ammonium chloride 9g in 1L (H2O) Complete RPMI media RPMI (450ml), 10% FBS (50ml), 200mM L-glutamine (5ml), 100 units penicillin/ streptomycin (5ml)   227   Appendix 2. List of antibodies used in flow cytometry Antibodies Company Clone Purified anti-mouse CD16/32 eBioscience 93 Rat anti-mouse B220-PerCP Cy5.5 BD Pharmingen RA3-6B2 Mouse anti-mouse CD95-PE eBioscience 15A7 GL-7-biotin eBioscience GL7 Rat anti-mouse IgM-FITC eBioscience II/41 Rat anti-mouse IgG1-APC BD Pharmingen X56 Goat anti-mouse IgG2b-APC Jackson ImmunoResearch NA Goat anti-mouse IgG2c-APC Jackson ImmunoResearch NA Goat anti-mouse IgG3-APC Jackson ImmunoResearch NA Rat anti-mouse CD138-PE BD Pharmingen 281-2 Streptavidin APC Invitrogen NA Rat anti-mouse CD5-APC eBioscience 53-7.3 Rat anti-mouse CD19-PerCP Cy5.5 eBioscience 1D3 Armenia Hamster anti-mouse CD11c-biotin BD Pharmingen HL3 Mouse anti-mouse MHCII-PE eBioscience AF6-120.1 Anti-mouse BrdU BD Pharmingen NA Mouse IgG1-PE eBioscience NA Rat Ig2a-PerCP Cy5.5 eBioscience NA Rat anti-mouse IgG2a-biotin eBioscience NA Rat IgG2a-FITC AbD Serotec YTH71.3 Rat IgG2a-APC eBioscience NA eBioscience NA Rat IgG2a-PE NA – Not Applicable   228   Appendix 3. List of antibodies used in immunofluorescence Antibodies Company Clone Goat anti-PNA-biotin Vector Laboratories NA Steptavidin Cy2 Jackson ImmunoResearch NA Rat anti-mouse B220 eBioscience RA3-6B2 Donkey anti-rat Cy3 Jackson ImmunoResearch NA Rat ant-mouse IgM-FITC Southern Biotech 1B4B1 Rat anti-mouse B220-FITC eBioscience RA3-6B2 Armenian Hamster anti-mouse CD3e eBioscience 145-2C11 Goat Anti-Armenia Hamster Cy5 Jackson ImmunoResearch NA Purified Armernia Hamster anti-mouse CD11c BD Pharmingen HL3 Goat anti-Armenia Hamster Dylight 649 Jackson ImmunoResearch NA Rat anti-mouse CD138-biotin BD Pharmingen 281-2 Streptavidin Cy3 Jackson ImmunoResearch NA Rabbit anti-LYVE-1 Abcam NA Goat Anti-Armenian Hamster Dylight 549 Jackson ImmunoResearch NA Mouse anti-alpha actin-FITC SIGMA 1A4 Donkey anti-rabbit Cy2 Jackson ImmunoResearch NA Rat IgG2a-biotin BD Pharmingen G155-178 Armenia Hamster IgG Biolegend HTK888 Rat IgG2a-FITC AbD Serotec YTH71.3 Purified rat IgG2a eBioscience NA R&D Systems NA Goat IgG-biotin NA – Not Applicable   229   Appendix 4. List of primers used   Target gene Primer sequence ebi2 Forward 5’ACTGCCACAACGGAGGTC 3’ ebi2 Reverse 5’CCAAGGCCAGCAGGTTTC 3’ Ch25h Forward 5’ GCCCTGGCTGTACCGCACCTTC 3’ Ch25h Reverse 5’ TCCTCCACCGACAGCCAGATG 3’ Cyp7b1 Forward 5’ TGCGTGACGAAATTGACAGTT 3’ Cyp7b1 Reverse 5’ ATGAGTGGAGGAAAGAGGGCTACA 3’ Hsd3b7 Forward 5’ TGCGCTTTGGAGGTCGTCTATTTC 3’ Hsd3b7 Reverse 5’ GCAGTGGGTGGGCGCCTATCAGTC 3’ Hprt1 Forward 5’ GCAGTCCCAGCGTCGTG 3’ Hprt1 Reverse 5’ TAATCCAGCAGGTCAGCAAAGAAC 3’ 230   [...]... speculate that the < /b> robust extrafollicular responses observed in the < /b> spleen of < /b> apoE-/- mice may be due to the < /b> inability of < /b> B cells to fall into the < /b> state of < /b> anergy However, it remains to be determined if APOE protein is crucial in maintaining the < /b> anergy state of < /b> B cells 4.7 Role < /b> of < /b> B cell subpopulations However, it remains unclear which B cell subpopulations differentiated into IgM+ plasma cells via extrafollicular... plasmablasts in the < /b> PEC but noted an increased population of < /b> B1 a cells differentiating into IgM+ plasmablasts in the < /b> spleen of < /b> apoE-/- mice However, when we examined for B1 a differentiation into IgM+ plasma cells, there was a significant decreased population suggesting either that these newly differentiated IgM+ plasmablasts are either short-lived or they migrate out from the < /b> spleen into the < /b> bone marrow... argues against the < /b> hypothesis   176   that these cells were generated in the < /b> bone marrow Therefore, if humoral response against oxLDL does take place in the < /b> bone marrow of < /b> ezetimibe treated apoE-/- mice, frequency of < /b> oxLDL-specific IgM+ ASCs should have also increased compared to WT controls because of < /b> survival factors to maintain plasma cells in the < /b> bone marrow 4.12 Trafficking to bone marrow The < /b> increased... Differences in the < /b> kinetics on the < /b> formation of < /b> antigen specific ASCs in secondary lymphoid organs and bone marrow after immunization implied the < /b> migration of < /b> these ASCs into the < /b> bone marrow compartment Such study of < /b> the < /b> kinetics of < /b> ASC in secondary lymphoid organs and bone marrow is unfortunately challenging in a chronic inflammatory setting such as atherosclerosis Therefore, to investigate the < /b> migration of.< /b> .. 2010) Although these studies demonstrated that B2 cells are atherogenic, B2 cells comprised of < /b> marginal zone B cells and follicular B cells It remains to be demonstrated if lipid-specific antibodies, particularly PC-specific IgM antibodies, produced by marginal zone B cells could also have an overall protective effect in atherosclerosis (van Leeuwen et al., 2009) Indeed, our findings in apoE-/mice showed... which are implicated in the < /b> production of < /b> oxLDLspecific antibodies, differentiated into IgM+ plasmablasts in the < /b> spleen Our findings also demonstrated the < /b> migration of < /b> IgM+ ASCs from the < /b> spleen to the < /b> bone marrow for long-term maintenance These IgM+ ASCs in the < /b> bone   159   marrow could also be another source of < /b> contribution to total and oxLDLspecific IgM autoantibodies in circulation of < /b> apoE-/- mice Lymph... BCR affinity for the < /b> antigen and thus, it is possible that the < /b> nature of < /b> lipid antigens interaction with BCR led to the < /b> elicitation of < /b> extrafollicular responses in the < /b> spleen of < /b> apoE-/- mice The < /b> decision for B cells to undergo GC or extrafollicular responses is also dictated by the < /b> migration of < /b> activated B cells to different sites of < /b> the < /b> B cell follicles, which is mediated by chemokine receptor profiles... plasma cells to confer the < /b> protective effect against atherosclerosis 4.4 Molecular cues in extrafollicular responses Our findings beget the < /b> question why activated B cells differentiate into antibody producing cells via extrafollicular response pathway in atherosclerosis Using hen egg lysozyme (HEL) antigen of < /b> different affinities to the < /b> HEL-specific SWHEL B cells, it was demonstrated that low antigen-BCR... autoantibodies Interestingly, the < /b> frequency of < /b> total IgM and oxLDL-specific IgM ASCs did not decrease with ezetimibe treatment in the < /b> spleen of < /b> apoE-/- mice However, ezetimibe treatment in apoE-/- mice led to the < /b> decreased frequency of < /b> oxLDL-specific IgM ASCs in the < /b> bone marrow   157   Chapter 4 Discussions   158   Chapter 4 Discussion 4.1 Summary of < /b> findings Our investigations on the < /b> role < /b> of < /b> B cells in. .. exceed the < /b> HSD 3B7 -mediated degradation present in CD11chiMHCIIhi DCs under activated conditions (Yi et al., 2012) Therefore, the < /b> bioavailability of < /b> 7α, 25-OHC could be important for governing the < /b> migration of < /b> activated B cells to participate in the < /b> extrafollicular responses in apoE-/- mice 4.5 Presence of < /b> oxLDL in plasma Besides addressing the < /b> issue on why is the < /b> extrafollicular responses in the < /b> spleen of . investigations on the role of B cells in the pathogenesis of atherosclerosis have led us to a better understanding of the humoral responses taking place in apoE -/- mice in various secondary. number of GC ! 151! B cells were also observed in the iliac LNs, albeit non-statistically significant (Figure 3 6B, right). Lastly, we examined the effect of ezetimibe on the GC reactions in. 2009). Therefore, the prevailing view is that IgM antibodies are associated with protective functions in atherosclerosis. But what may be the underlying mechanisms confer by B cells? Studies in

Ngày đăng: 10/09/2015, 09:24

TỪ KHÓA LIÊN QUAN