Investigations of the scavenger receptor class a and complement receptor 3 two pattern recognition receptors

272 243 0
Investigations of the scavenger receptor class a and complement receptor 3   two pattern recognition receptors

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

INVESTIGATIONS OF THE SCAVENGER RECEPTOR CLASS A AND COMPLEMENT RECEPTOR – TWO PATTERN RECOGNITION RECEPTORS BY GOH WEE KANG JASON B. Sc. (Hons), Murdoch University, Australia Msc (Med Genetics), University of Aberdeen, Scotland A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MICROBIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgements I would like to especially thank my supervisor Associate Professor Lu Jinhua for giving me the opportunity to pursue a PhD in his laboratory and for the training in the course of study. I also thank Dr Alister Dodds (University of Oxford, UK) for his help in preparing the complement C3 fragments for the solid phase binding assay. Many thanks to Dr Alex Law (University of Oxford, UK) for the complement receptor vectors and antibodies, Dr Low Boon Chuan (Dept of Biological Sciences, NUS) for the RhoGTPase vectors, and Dr Gan Yunn Hwen (Dept of Biochemistry, NUS) for the GFP bacteria. Grateful thanks to Dr Chua Kaw Yan (NUS, Singapore) and her lab members for the generous loan of the flow cytometry machine. I would like to acknowledge past and present members of this laboratory for their help and companionship during my stay in the laboratory. In particular, I would like to thank Linda Wang for her friendship and support over the past six years. My appreciation also extends to staff of the DNA Sequencing Lab, NUMI for their help. I am grateful to the National University of Singapore for awarding me a research scholarship during the duration of my study. Last, but not least, I dedicated this dissertation in memory of my late father, Jack Goh, and to my mother, Ho Yeok Kuen. I love them very much and always will. My appreciation extends to my brother Jonathan and his family for their love and support. i Table of Contents Page Acknowledgements . i Table of contents ii Summary vii List of figures x List of Tables xiii Publications . xiv Abbreviations xv Chapter Introduction Page 1.1 1.2 1.3 1.4 1.4.1 1.4.1.1 1.4.1.2 1.5 1.6 1.6.1 1.6.1.1 1.6.2 1.6.2.1 1.6.2.2 1.6.2.3 1.6.2.3.1 1.6.2.3.2. 1.6.3 1.7 1.7.1 1.7.1.1 1.7.1.1.1 1.7.1.1.2 1.7.1.1.3 1.7.1.1.4 1.7.1.1.5 1.7.1.1.6 Innate Immunity Pathogen-associated molecular patterns (PAMP) . Pattern recognition receptors (PRR) . Sensing/signaling PRRs Toll-like receptors (TLR) TLR ligands and leucine-rich repeat (LRR) domain 10 Toll/Interleukin-1 receptor (TIR) domain and TLR-mediated signaling pathways 11 Endocytic/phagocytic PRRs . 13 Complement receptors and complements . 15 Complement system 15 Complement component C3 . 20 Complement receptor (CR3, CD11b/CD18, Mac-1,M2) 24 Ligand promiscuity of CR3 26 Inserted (I) domain in ligand recognition . 28 Integrin bi-directional signaling 31 Inside-out signaling pathways of integrins . 31 Outside-in signaling pathways of integrins 33 Complement receptor (CR4, CD11c/CD18, X2) 35 Scavenger receptors 37 Scavenger receptor class A (SR-A) 41 SR-A structure 42 Cytoplasmic domain of SR-A . 45 Transmembrane domain of SR-A . 46 Spacer domain of SR-A 46 -helical coiled-coil domain of SR-A 46 Collageneous domain of SR-A . 49 Cysteine-rich domain (SRCR) of SR-A 51 ii 1.7.1.2 1.7.1.3 1.7.1.3.1 1.7.1.3.2 1.7.1.3.3 1.7.1.3.4 1.7.1.3.5 1.8 Ligand binding properties of SR-A 53 Physiological roles of SR-A . 57 Modified lipoprotein endocytosis and atherosclerosis 57 Cell-cell and cell-extracellular matrix adhesion . 59 Antimicrobial host defence . 61 Apoptotic cell clearance 63 Bone remodeling or osteogenesis regulation . 65 Aims of study 66 Chapter Materials and Methods 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.2.2.4 2.2.2.5 2.2.2.6 2.2.2.7 2.2.2.8 2.2.2.9 2.2.2.10 2.2.2.11 2.2.2.12 2.2.2.13 2.2.2.14 2.2.2.15 2.2.3 2.2.4 2.2.4.1 2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6 2.2.4.7 2.2.4.8 2.3 2.3.1 2.3.2 2.3.2.1 2.3.2.2 2.3.3 Buffers and media . 68 Molecular biology . 68 RNA manipulation 68 Isolation of total RNA . 68 Quantitation of RNA . 68 Reverse transcription 69 Gene/plasmid DNA cloning 69 DNA primer synthesis 69 Polymerase chain reaction (PCR) . 70 Ethanol precipitation of DNA . 71 Restriction endonuclease digestion . 71 DNA agarose gel electrophoresis . 70 Isolation of DNA from agarose gels . 72 Quantitation of DNA 72 DNA ligation . 73 Preparation of competent cells 73 Transformation of competent cells . 74 Methods for the identification of positive clones . 74 Rapid isolation of plasmid DNA 75 Plasmid purification for transfection 75 Site-directed mutagenesis . 76 DNA sequencing . 77 Commerical expression vectors 78 Construction of expression vectors . 79 Expression vectors of wild-type/native receptors . 79 SR-AI collageneous domain mutant receptors . 80 SR-AI cysteine-rich (SRCR) domain mutant receptors 81 SR-AI cytoplasmic domain mutant receptors . 83 Construction of soluble SR-AI (psSR-AI-MH) expression vector . 84 Construction of soluble SRCR domain (SRCR) expression vector 85 Expression vectors of CR3 mutant receptors 86 Dominant negative expression vectors . 86 Cell biology . 87 Human embryonic kidney (HEK) cell-line culture . 87 Monocyte-derived dendritic cells (DCs) in vitro culture 88 Isolation of human peripheral blood monocytes . 88 Generation of DCs from blood monocytes . 89 Microbial and molecular stimuli used in the present studies 89 iii 2.3.3.1 2.3.3.2 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11 2.4 2.4.1 2.4.2 2.4.3 2.4.3.1 2.4.3.2 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.5 Bacterial strains used as stimuli 89 Molecules/PAMPs 90 Pharmaceutical inhibitors . 91 Transient liposome-based cell transfection . 92 Dual luciferase assay 92 Treatment of transfected HEK 293T cells with various bacterial and molecular stimuli 94 Dendritic cell stimulation with various bacterial and molecular stimuli . 95 Enzyme-linked Immunosorbent Assay (ELISA) 96 Green fluorescent protein-E. coli DH5 binding assays 97 Confocal microscopy 98 Protein chemistry 99 Antibodies used in this study 99 Protein concentration determination . 100 Expression of recombinant proteins sSR-AI and sSRCR . 100 Calcium phosphate transfection 100 Purification of recombinant proteins 101 Preparation of C3 and its degradation fragments 101 Flow cytometry . 102 Cell surface biotinylation 102 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDSPAGE) . 103 Western blotting 104 Coomassie blue staining . 104 Solid Phase Protein Binding Assay 104 Statistical analysis . 105 Chapter Characterization of SR-AI as a receptor for the complement opsonin iC3b 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 Overview . 106 TLR4 but not SR-A is able to activate NF-B in response to LPS 108 E. coli DH5 induces SR-AI mediated NF-B activation . 110 LPS does not activate SR-AI-mediated NF-B signaling at high concentrations . 111 Neither smooth nor rough LPS activate SR-AI-mediated NF-B signaling 113 The SR-A ligands S. aureus and LTA does not induce SR-AImediated NF-B 114 The potential SR-A ligand B. subtilis induce SR-A mediated NF-B activation . 115 The potential SR-A ligand M. bovis fails to induce SR-AI mediated NF-B activation. . 115 DH5 induces IL-8 and MCP-1 production through SR-AI stimulation 116 The SR-A ligand fucoidan does not activate NF-B activation via SR-AI but inhibits that induced by DH5. . 117 DH5 only activates SR-AI signaling with fresh BCS 119 iv 3.12 3.13 3.14 3.14.1 3.14.2 3.14.3 3.15 3.15.1 3.15.2 3.16 3.17 3.18 3.19 DH5 activation of SR-AI requires serum opsonin activity. . 119 DH5 induces CR-3-mediated NF-B activation in presence of fresh BCS . 121 DH5 stimulation of SR-AI requires bacteria opsonization with human complement C3. 123 DH5 induces SR-AI-mediated NF-B activation in the presence of human serum . 123 SR-AI is opsonized with C3 complement in fresh human serum . 125 SR-AI is activated by DH5bound human complement C3 127 Involvement of the collageneous domain of SR-AI in the signaling response to opsonized DH5. . 129 SR-AI response to opsonized DH5 does not involve the postulated ligand binding region of receptor – the lysine cluster at the Cterminal end of the collageneous domain . 129 Other basic residues in the proximal region of the collageneous domain are also not required for SR-AI signaling induced by opsonized DH5. 131 The SRCR domain of SR-AI is required for its recognition of opsonized DH5 . 133 Purified SR-AI and SRCR bind serum-opsonized E. coli DH5 . 138 Purified SR-AI binds iC3b but not C3 or C3b 139 Conclusion 142 Chapter Characterization of the cytoplasmic domain of SR-AI in DH5a-induced intracellular signaling of receptor 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Overview . 143 The cytoplasmic tail of SR-A is not involved in DH5 induced NFB activation . 146 DH5 induced, SR-AI mediated NF-B activation is not dependent of the adaptor molecule MyD88 . 149 SR-A mediated NF-B activation following DH5 stimulation is dependent on phosphatidylinositol-3-kinase (PI3K) 150 SR-A mediated NF-B activation in response to DH5 involves the Rho GTPase Cdc42 . 152 SR-A mediated NF-B activation following DH5 stimulation is reduced by the membrane cholesterol sequestering compound methylcyclodextrin (MCDextrin) but not affected by the actin polymerization inhibitor cytochalasin D . 154 Conclusion 156 v Chapter Opsonization of bacteria with complement C3 induces Racmediated NF-B activation and inhibits dendritic cell production of interleukin-12 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 Overview . 157 Serum-opsonized E. coli DH5stimulates CR3 signaling of NF-B activation . 159 Serum-opsonized DH5 does not elicit NF-B activation through CR4. 161 The cytoplasmic tails of both subunits of CR3 are not involved in DH5 induced NF-B activation 163 CR3 is activated by opsonic C3 deposited on DH5 . 164 Rac is required for DH5-elicited CR3 signaling of NF-B activation . 168 Cytochalasin D inhibits CR3 signaling of NF-B activation and IL-8 production in CR3-239T cells . 170 Opsonic C3 is a negative regulator of DH5-induced IL-12 production. 172 IFN- abrogates C3-mediated inhibition of IL-12 production 175 Inhibition of Rac enhances DH5 induction of IL-12. . 176 Cytochalasin D inhibits rather than enhances DH5-induced IL-12 production from DCs. . 177 DTxB enhances IL-12 production by DH5C3+ 178 Rac inhibition does not enhance IL-12 induction without opsonic C3 Co-stimulation. . 179 DCs ingestion of DH5 is not significantly affected by Rac inhibition and C3 deficiency . 180 Conclusion. . 182 Chapter Discussion 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 SR-AI is a novel complement C3-binding receptor 183 The role of SR-AI as an opsonic PRR in the recognition of complement-opsonized Gram-positive and Gram-negative bacteria species . 186 The involvement of the SRCR domain of SR-AI in the recognition of C3-opsonized bacteria . 188 Elucidation of SR-A-mediated signaling pathways 191 The functional role the cytoplasmic domain of SR-A and CR3 in receptor signaling – Possible involvement of a signaling coreceptor(s) . 195 Recognized co-receptors of SR-A 196 Recognized co-receptors of CR3 198 The suppression of IL-12 by opsonic C3 receptors 200 Summary and future studies . 205 References . 207 Appendix 254 vi Summary One of the fundamental aspects of innate immunity is the ability of immune cells, particularly antigen-presenting cells (APCs) such as macrophages and dendritic cells(DCs), to detect and respond to potential microbial pathogens or even endogeneous molecules that have become altered and pose a threat to the system. These cells employ an array of pattern recognition receptors (PRRs) that can recognize these pathogens or altered endogeneous molecules either directly by binding to pathogen associated molecular patterns (PAMPs) found on the microbial cell surfaces or indirectly via opsonins such as complement components and immunoglobulins which have deposited on the surfaces of cellular or molecular targets. In this study, we focused on two major PRRs found on APCs, the opsonic complement receptor (CR3) and non-opsonic scavenger receptor class A (SR-A). We will attempt to investigate certain aspects of their ligand binding properties and delineate downstream signaling pathways upon ligand engagement. SR-A is a non-opsonic PRR important for the clearance of infectious and endogenous molecular and cellular debris. Although ligand binding properties of SR-A have been extensively studied in relation to modified low density lipoproteins (LDL), the mechanisms governing its broad ligand specificity and interaction with other ligands, particularly PAMPs, is not completely elucidated. In addition, its signaling properties remain poorly understood. In this study, we express SR-A isoform (SR-AI) on human embryonic kidney (HEK) 293T cells, which lack most PRRs including SR-A, and report that E. coli DH5stimulation of these transfected cells mediated NF-B activation and chemokine production i.e. interleukin (IL-8) and monocyte chemoattractant protein (MCP-1). Opsonization with complement C3 is required for vii E. coli DH5to stimulate SR-AI signaling as it was abolished by heat inactivation of sera, C3 depletion of the sera or anti-C3 antibodies. Selected point mutations in the scavenger receptor cysteine rich (SRCR) but not the collageneous domain abolish SRAI signaling response to the opsonized E. coli DH5. Purified SR-AI binds to iC3b but not to C3 or C3b which suggests SR-AI as a complement receptor for opsonic iC3b. In contrast to DH5, SR-AI cannot mediate NF-B activation in response to the SR-A ligands LPS and fucoidan. We have also established that the cytoplasmic tail of SR-AI is not required for DH5-induced NF-B activation, suggesting the possibility of one or more co-receptors involved in SR-AI signaling. The identity of the co-receptor is presently unknown but does not include Toll-like receptors (TLRs). The co-receptor appears to co-localize with SR-AI on lipid rafts of HEK293T cells and its signaling involves phosphatidylinositol-3-kinase (PI3K) and RhoGTPase cdc42. Complement C3 opsonizes microorganisms for enhanced phagocytosis via mainly CR3 and the related complement receptor (CR4). In addition, cross-linking of CR3 inhibits IL-12 production although the signaling mechanism(s) concerned is not known. In this study, we investigate CR3 and CR4 signaling after expression of these C3 receptors on HEK 293T cells. DH5 opsonized with normal serum (DH5C3+) activated CR3, but not CR4, culminating in NF-B activation and IL-8 production. CR3 activation was not elicited when DH5 was opsonized with C3-deficient sera (DH5C3-) or pre-incubated in normal serum with anti-C3 antibodies. CR3-mediated NF-B activation in response to DH5C3+ was inhibited by dominant negative Rac (N17Rac). DH5C3+ and DH5C3- were both ingested by dendritic cells (DCs), but DH5C3- induced 1.8 folds more IL-12 from DCs than DH5C3+. The Rac inhibitor NSC23766 and the PI3K inhibitor LY294002 both enhanced DH5C3+, but not viii DH5C3-, induction of IL-12 from DCs suggesting inhibition of IL-12 production by opsonic C3 involves Rac and PI3K. However, the two inhibitors exhibited no synergistic enhancement of DH5C3+-induced IL-12 production. IFN- abrogates all these inhibitory effects. These results revealed a potent inhibitory role for opsonic C3 on bacteria on IL-12 production, among other opsonins, and a role for Rac and PI3K in mediating the inhibition. ix complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158, 17851803. Sankala, M., Brannstrom, A., Schulthess, T., Bergmann, U., Morgunova, E., Engel, J., Tryggvason, K., and Pikkarainen, T. (2002). Characterization of recombinant soluble macrophage scavenger receptor MARCO. J Biol Chem 277, 33378-33385. Santiago-Garcia, J., Kodama, T., and Pitas, R. E. (2003). The class A scavenger receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix. J Biol Chem 278, 6942-6946. Santiago-Garcia, J., Mas-Oliva, J., Innerarity, T. L., and Pitas, R. E. (2001). Secreted forms of the amyloid-beta precursor protein are ligands for the class A scavenger receptor. J Biol Chem 276, 30655-30661. Santoso, S., Sachs, U. J., Kroll, H., Linder, M., Ruf, A., Preissner, K. T., and Chavakis, T. (2002). The junctional adhesion molecule (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 196, 679-691. Sarrias, M. R., Farnos, M., Mota, R., Sanchez-Barbero, F., Ibanez, A., Gimferrer, I., Vera, J., Fenutria, R., Casals, C., Yelamos, J., and Lozano, F. (2007). CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc Natl Acad Sci U S A 104, 11724-11729. Sarrias, M. R., Gronlund, J., Padilla, O., Madsen, J., Holmskov, U., and Lozano, F. (2004). The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 24, 1-37. Savill, J., Fadok, V., Henson, P., and Haslett, C. (1993). Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14, 131-136. Savill, J., Hogg, N., Ren, Y., and Haslett, C. (1992). Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90, 1513-1522. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., and Masaki, T. (1997). An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73-77. Schaller, M. D., and Parsons, J. T. (1994). Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6, 705-710. Scharton-Kersten, T., Afonso, L. C., Wysocka, M., Trinchieri, G., and Scott, P. (1995). IL-12 is required for natural killer cell activation and subsequent T helper cell development in experimental leishmaniasis. J Immunol 154, 5320-5330. Schlaepfer, D. D., Broome, M. A., and Hunter, T. (1997). Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol 17, 1702-1713. 241 Schlaepfer, D. D., Hanks, S. K., Hunter, T., and van der Geer, P. (1994). Integrinmediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791. Schober, J. M., Chen, N., Grzeszkiewicz, T. M., Jovanovic, I., Emeson, E. E., Ugarova, T. P., Ye, R. D., Lau, L. F., and Lam, S. C. (2002). Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99, 4457-4465. Schorey, J. S., Carroll, M. C., and Brown, E. J. (1997). A macrophage invasion mechanism of pathogenic mycobacteria. Science 277, 1091-1093. Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., Tobias, P. S., and Ulevitch, R. J. (1990). Structure and function of lipopolysaccharide binding protein. Science 249, 1429-1431. Schutt, C. (1999). Fighting infection: the role of lipopolysaccharide binding proteins CD14 and LBP. Pathobiology 67, 227-229. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C. J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274, 17406-17409. Seya, T., and Atkinson, J. P. (1989). Functional properties of membrane cofactor protein of complement. Biochem J 264, 581-588. Shappell, S. B., Toman, C., Anderson, D. C., Taylor, A. A., Entman, M. L., and Smith, C. W. (1990). Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol 144, 2702-2711. Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4, E131-136. Shaw, J. M., Al-Shamkhani, A., Boxer, L. A., Buckley, C. D., Dodds, A. W., Klein, N., Nolan, S. M., Roberts, I., Roos, D., Scarth, S. L., et al. (2001). Characterization of four CD18 mutants in leucocyte adhesion deficient (LAD) patients with differential capacities to support expression and function of the CD11/CD18 integrins LFA-1, Mac1 and p150,95. Clin Exp Immunol 126, 311-318. Shechter, I., Fogelman, A. M., Haberland, M. E., Seager, J., Hokom, M., and Edwards, P. A. (1981). The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages. J Lipid Res 22, 63-71. Shelley, C. S., Da Silva, N., Georgakis, A., Chomienne, C., and Arnaout, M. A. (1998). Mapping of the human CD11c (ITGAX) and CD11d (ITGAD) genes demonstrates that they are arranged in tandem separated by no more than 11.5 kb. Genomics 49, 334-336. Sheng, N., Fairbanks, M. B., Heinrikson, R. L., Canziani, G., Chaiken, I. M., Mosser, D. M., Zhang, H., and Colman, R. W. (2000). Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1. Blood 95, 3788-3795. 242 Shi, C., Zhang, X., Chen, Z., Robinson, M. K., and Simon, D. I. (2001). Leukocyte integrin Mac-1 recruits toll/interleukin-1 receptor superfamily signaling intermediates to modulate NF-kappaB activity. Circ Res 89, 859-865. Shimaoka, M., Takagi, J., and Springer, T. A. (2002). Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 31, 485-516. Shimaoka, T., Kume, N., Minami, M., Hayashida, K., Kataoka, H., Kita, T., and Yonehara, S. (2000). Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275, 40663-40666. Shimaoka, T., Kume, N., Minami, M., Hayashida, K., Sawamura, T., Kita, T., and Yonehara, S. (2001). LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol 166, 5108-5114. Shimaoka, T., Nakayama, T., Kume, N., Takahashi, S., Yamaguchi, J., Minami, M., Hayashida, K., Kita, T., Ohsumi, J., Yoshie, O., and Yonehara, S. (2003). Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J Immunol 171, 1647-1651. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Tolllike receptor 4. J Exp Med 189, 1777-1782. Shimizu, H., Mitomo, K., Watanabe, T., Okamoto, S., and Yamamoto, K. (1990). Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Mol Cell Biol 10, 561-568. Shiratsuchi, A., Kawasaki, Y., Ikemoto, M., Arai, H., and Nakanishi, Y. (1999). Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 274, 5901-5908. Simon, D. I., Chen, Z., Xu, H., Li, C. Q., Dong, J., McIntire, L. V., Ballantyne, C. M., Zhang, L., Furman, M. I., Berndt, M. C., and Lopez, J. A. (2000). Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192, 193-204. Sitrin, R. G., Todd, R. F., 3rd, Albrecht, E., and Gyetko, M. R. (1996). The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J Clin Invest 97, 1942-1951. Skoberne, M., Somersan, S., Almodovar, W., Truong, T., Petrova, K., Henson, P. M., and Bhardwaj, N. (2006). The apoptotic-cell receptor CR3, but not alphavbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood 108, 947-955. Skonier, J. E., Bodian, D. L., Emswiler, J., Bowen, M. A., Aruffo, A., and Bajorath, J. (1997). Mutational analysis of the CD6 ligand binding domain. Protein Eng 10, 943947. Snijders, A., Hilkens, C. M., van der Pouw Kraan, T. C., Engel, M., Aarden, L. A., and Kapsenberg, M. L. (1996). Regulation of bioactive IL-12 production in 243 lipopolysaccharide-stimulated human monocytes is determined by the expression of the p35 subunit. J Immunol 156, 1207-1212. So, E. Y., Kang, M. H., and Kim, B. S. (2006). Induction of chemokine and cytokine genes in astrocytes following infection with Theiler's murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53, 858-867. Sparrow, C. P., Parthasarathy, S., and Steinberg, D. (1989). A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem 264, 2599-2604. Spek, E. J., Bui, A. H., Lu, M., and Kallenbach, N. R. (1998). Surface salt bridges stabilize the GCN4 leucine zipper. Protein Sci 7, 2431-2437. Springer, T., Galfre, G., Secher, D. S., and Milstein, C. (1979). Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 9, 301-306. Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301-314. Springer, T. A. (1997). Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci U S A 94, 65-72. Stahl, P. D., and Ezekowitz, R. A. (1998). The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10, 50-55. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu Rev Biochem 67, 227-264. Steinman, R. M. (2003). Some interfaces of dendritic cell biology. Apmis 111, 675-697. Stockl, J., Majdic, O., Pickl, W. F., Rosenkranz, A., Prager, E., Gschwantler, E., and Knapp, W. (1995). Granulocyte activation via a binding site near the C-terminal region of complement receptor type alpha-chain (CD11b) potentially involved in intramembrane complex formation with glycosylphosphatidylinositol-anchored Fc gamma RIIIB (CD16) molecules. J Immunol 154, 5452-5463. Stuart, L. M., Deng, J., Silver, J. M., Takahashi, K., Tseng, A. A., Hennessy, E. J., Ezekowitz, R. A., and Moore, K. J. (2005). Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170, 477-485. Sutterwala, F. S., and Mosser, D. M. (1999). The taming of IL-12: suppressing the production of proinflammatory cytokines. J Leukoc Biol 65, 543-551. Sutterwala, F. S., Noel, G. J., Clynes, R., and Mosser, D. M. (1997). Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185, 1977-1985. Suzuki, H., Kurihara, Y., Takeya, M., Kamada, N., Kataoka, M., Jishage, K., Ueda, O., Sakaguchi, H., Higashi, T., Suzuki, T., et al. (1997a). A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292-296. 244 Suzuki, K., Doi, T., Imanishi, T., Kodama, T., and Tanaka, T. (1997b). The conformation of the alpha-helical coiled coil domain of macrophage scavenger receptor is pH dependent. Biochemistry 36, 15140-15146. Suzuki, K., Yamada, T., and Tanaka, T. (1999). Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor. Biochemistry 38, 1751-1756. Sypek, J. P., Chung, C. L., Mayor, S. E., Subramanyam, J. M., Goldman, S. J., Sieburth, D. S., Wolf, S. F., and Schaub, R. G. (1993). Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type immune response. J Exp Med 177, 1797-1802. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980). Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci U S A 77, 5764-5768. Takagi, J., Beglova, N., Yalamanchili, P., Blacklow, S. C., and Springer, T. A. (2001). Definition of EGF-like, closely interacting modules that bear activation epitopes in integrin beta subunits. Proc Natl Acad Sci U S A 98, 11175-11180. Takahashi, K., Ip, W. E., Michelow, I. C., and Ezekowitz, R. A. (2006). The mannosebinding lectin: a prototypic pattern recognition molecule. Curr Opin Immunol 18, 1623. Takahashi, N., Takahashi, Y., and Putnam, F. W. (1985). Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. Proc Natl Acad Sci U S A 82, 1906-1910. Takata, K., Horiuchi, S., and Morino, Y. (1989). Scavenger receptor-mediated recognition of maleylated albumin and its relation to subsequent endocytic degradation. Biochim Biophys Acta 984, 273-280. Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K., and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933-940. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., and Akira, S. (2002). Cutting edge: role of Toll-like receptor in mediating immune response to microbial lipoproteins. J Immunol 169, 10-14. Talamas-Rohana, P., Wright, S. D., Lennartz, M. R., and Russell, D. G. (1990). Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins. J Immunol 144, 4817-4824. Tamura, Y., Adachi, H., Osuga, J., Ohashi, K., Yahagi, N., Sekiya, M., Okazaki, H., Tomita, S., Iizuka, Y., Shimano, H., et al. (2003). FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 278, 12613-12617. Tanaka, T., Nishikawa, A., Tanaka, Y., Nakamura, H., Kodama, T., Imanishi, T., and Doi, T. (1996). Synthetic collagen-like domain derived from the macrophage scavenger receptor binds acetylated low-density lipoprotein in vitro. Protein Eng 9, 307-313. 245 Tanaka, T., Wada, Y., Nakamura, H., Doi, T., Imanishi, T., and Kodama, T. (1993). A synthetic model of collagen structure taken from bovine macrophage scavenger receptor. FEBS Lett 334, 272-276. Tandon, N. N., Kralisz, U., and Jamieson, G. A. (1989a). Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem 264, 75767583. Tandon, N. N., Lipsky, R. H., Burgess, W. H., and Jamieson, G. A. (1989b). Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 264, 7570-7575. Tattoli, I., Travassos, L. H., Carneiro, L. A., Magalhaes, J. G., and Girardin, S. E. (2007). The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 29, 289-301. te Velde, A. A., Keizer, G. D., and Figdor, C. G. (1987). Differential function of LFA-1 family molecules (CD11 and CD18) in adhesion of human monocytes to melanoma and endothelial cells. Immunology 61, 261-267. Teramoto, H., Coso, O. A., Miyata, H., Igishi, T., Miki, T., and Gutkind, J. S. (1996). Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 271, 27225-27228. Terpstra, V., Kondratenko, N., and Steinberg, D. (1997). Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc Natl Acad Sci U S A 94, 8127-8131. Thai, C. T., and Ogata, R. T. (2003). Expression and characterization of the C345C/NTR domains of complement components C3 and C5. J Immunol 171, 65656573. Thomas, C. A., Li, Y., Kodama, T., Suzuki, H., Silverstein, S. C., and El Khoury, J. (2000). Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191, 147-156. Tocci, A., Rezzoug, F., Aitouche, A., and Touraine, J. L. (1994). Comparison of fresh, cryopreserved and cultured haematopoietic stem cells from fetal liver. Bone Marrow Transplant 13, 641-648. Todd, R. F., 3rd, and Petty, H. R. (1997). Beta (CD11/CD18) integrins can serve as signaling partners for other leukocyte receptors. J Lab Clin Med 129, 492-498. Todt, J. C., Hu, B., and Curtis, J. L. (2008). The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages. J Leukoc Biol. Tomokiyo, R., Jinnouchi, K., Honda, M., Wada, Y., Hanada, N., Hiraoka, T., Suzuki, H., Kodama, T., Takahashi, K., and Takeya, M. (2002). Production, characterization, 246 and interspecies reactivities of monoclonal antibodies against human class A macrophage scavenger receptors. Atherosclerosis 161, 123-132. Travassos, L. H., Girardin, S. E., Philpott, D. J., Blanot, D., Nahori, M. A., Werts, C., and Boneca, I. G. (2004). Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5, 1000-1006. Triantafilou, M., Lepper, P. M., Briault, C. D., Ahmed, M. A., Dmochowski, J. M., Schumann, C., and Triantafilou, K. (2008). Chemokine receptor (CXCR4) is part of the lipopolysaccharide "sensing apparatus". Eur J Immunol 38, 192-203. Tridandapani, S., Wang, Y., Marsh, C. B., and Anderson, C. L. (2002). Src homology domain-containing inositol polyphosphate phosphatase regulates NF-kappa B-mediated gene transcription by phagocytic Fc gamma Rs in human myeloid cells. J Immunol 169, 4370-4378. Triglia, R. P., and Linscott, W. D. (1980). Titers of nine complement components, conglutinin and C3b-inactivator in adult and fetal bovine sera. Mol Immunol 17, 741748. Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3, 133-146. Trinchieri, G., and Gerosa, F. (1996). Immunoregulation by interleukin-12. J Leukoc Biol 59, 505-511. Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P., and Unanue, E. R. (1994). Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma. J Immunol 152, 1883-1887. Troelstra, A., de Graaf-Miltenburg, L. A., van Bommel, T., Verhoef, J., Van Kessel, K. P., and Van Strijp, J. A. (1999). Lipopolysaccharide-coated erythrocytes activate human neutrophils via CD14 while subsequent binding is through CD11b/CD18. J Immunol 162, 4220-4225. Tschopp, J., Martinon, F., and Burns, K. (2003). NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4, 95-104. Tsuji, S., Matsumoto, M., Takeuchi, O., Akira, S., Azuma, I., Hayashi, A., Toyoshima, K., and Seya, T. (2000). Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68, 6883-6890. Tuckwell, D. S., and Humphries, M. J. (1997). A structure prediction for the ligandbinding region of the integrin beta subunit: evidence for the presence of a von Willebrand factor A domain. FEBS Lett 400, 297-303. Ueda, A., Okuda, K., Ohno, S., Shirai, A., Igarashi, T., Matsunaga, K., Fukushima, J., Kawamoto, S., Ishigatsubo, Y., and Okubo, T. (1994a). NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153, 2052-2063. 247 Ueda, T., Rieu, P., Brayer, J., and Arnaout, M. A. (1994b). Identification of the complement iC3b binding site in the beta integrin CR3 (CD11b/CD18). Proc Natl Acad Sci U S A 91, 10680-10684. Underhill, D. M., and Ozinsky, A. (2002). Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20, 825-852. Underhill, D. M., Ozinsky, A., Smith, K. D., and Aderem, A. (1999). Toll-like receptor2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 96, 14459-14463. van Bruggen, R., Zweers, D., van Diepen, A., van Dissel, J. T., Roos, D., Verhoeven, A. J., and Kuijpers, T. W. (2007). Complement receptor and Toll-like receptor act sequentially in uptake and intracellular killing of unopsonized Salmonella enterica serovar Typhimurium by human neutrophils. Infect Immun 75, 2655-2660. van de Wetering, J. K., van Golde, L. M., and Batenburg, J. J. (2004). Collectins: players of the innate immune system. Eur J Biochem 271, 1229-1249. Van den Herik-Oudijk, I. E., Capel, P. J., van der Bruggen, T., and Van de Winkel, J. G. (1995). Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 85, 2202-2211. van der Laan, L. J., Dopp, E. A., Haworth, R., Pikkarainen, T., Kangas, M., Elomaa, O., Dijkstra, C. D., Gordon, S., Tryggvason, K., and Kraal, G. (1999). Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162, 939-947. Van Eck, M., De Winther, M. P., Herijgers, N., Havekes, L. M., Hofker, M. H., Groot, P. H., and Van Berkel, T. J. (2000). Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 20, 2600-2606. van Velzen, A. G., Suzuki, H., Kodama, T., and van Berkel, T. J. (1999). The role of scavenger receptor class A in the adhesion of cells is dependent on cell type and cellular activation state. Exp Cell Res 250, 264-271. Vanhaesebroeck, B., and Waterfield, M. D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253, 239-254. Vetvicka, V., Thornton, B. P., and Ross, G. D. (1996). Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest 98, 50-61. Virta, M., Karp, M., Ronnemaa, S., and Lilius, E. M. (1997). Kinetic measurement of the membranolytic activity of serum complement using bioluminescent bacteria. J Immunol Methods 201, 215-221. von Heijne, G. (1989). Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456-458. 248 Vorup-Jensen, T., Carman, C. V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T. A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2. Proc Natl Acad Sci U S A 102, 1614-1619. Vorup-Jensen, T., Chi, L., Gjelstrup, L. C., Jensen, U. B., Jewett, C. A., Xie, C., Shimaoka, M., Linhardt, R. J., and Springer, T. A. (2007). Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin. J Biol Chem 282, 30869-30877. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T. A. (2003). Structure and allosteric regulation of the alpha X beta integrin I domain. Proc Natl Acad Sci U S A 100, 1873-1878. Vuori, K., Hirai, H., Aizawa, S., and Ruoslahti, E. (1996). Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol Cell Biol 16, 2606-2613. Wagner, H. (2004). The immunobiology of the TLR9 subfamily. Trends Immunol 25, 381-386. Walker, E. H., Pacold, M. E., Perisic, O., Stephens, L., Hawkins, P. T., Wymann, M. P., and Williams, R. L. (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6, 909-919. Walport, M. J. (2001). Complement. First of two parts. N Engl J Med 344, 1058-1066. Walzog, B., Schuppan, D., Heimpel, C., Hafezi-Moghadam, A., Gaehtgens, P., and Ley, K. (1995). The leukocyte integrin Mac-1 (CD11b/CD18) contributes to binding of human granulocytes to collagen. Exp Cell Res 218, 28-38. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J., and Chen, Z. J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351. Wang, I. M., Contursi, C., Masumi, A., Ma, X., Trinchieri, G., and Ozato, K. (2000). An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J Immunol 165, 271-279. Wang, M., Shakhatreh, M. A., James, D., Liang, S., Nishiyama, S., Yoshimura, F., Demuth, D. R., and Hajishengallis, G. (2007). Fimbrial proteins of porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor to persist in macrophages. J Immunol 179, 2349-2358. Watford, W. T., Moriguchi, M., Morinobu, A., and O'Shea, J. J. (2003). The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 14, 361-368. Watters, T. M., Kenny, E. F., and O'Neill, L. A. (2007). Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85, 411-419. 249 Webb, N. R., de Villiers, W. J., Connell, P. M., de Beer, F. C., and van der Westhuyzen, D. R. (1997). Alternative forms of the scavenger receptor BI (SR-BI). J Lipid Res 38, 1490-1495. Wei, Y., Lukashev, M., Simon, D. I., Bodary, S. C., Rosenberg, S., Doyle, M. V., and Chapman, H. A. (1996). Regulation of integrin function by the urokinase receptor. Science 273, 1551-1555. Weineisen, M., Sjobring, U., Fallman, M., and Andersson, T. (2004). Streptococcal M5 protein prevents neutrophil phagocytosis by interfering with CD11b/CD18 receptormediated association and signaling. J Immunol 172, 3798-3807. Wells, J. A. (1991). Systematic mutational analyses of protein-protein interfaces. Methods Enzymol 202, 390-411. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S., and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-847. West, M. A., Prescott, A. R., Eskelinen, E. L., Ridley, A. J., and Watts, C. (2000). Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol 10, 839-848. Wetzel, A., Chavakis, T., Preissner, K. T., Sticherling, M., Haustein, U. F., Anderegg, U., and Saalbach, A. (2004). Human Thy-1 (CD90) on activated endothelial cells is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Immunol 172, 38503859. Whitney, G. S., Starling, G. C., Bowen, M. A., Modrell, B., Siadak, A. W., and Aruffo, A. (1995). The membrane-proximal scavenger receptor cysteine-rich domain of CD6 contains the activated leukocyte cell adhesion molecule binding site. J Biol Chem 270, 18187-18190. Wiedemann, A., Patel, J. C., Lim, J., Tsun, A., van Kooyk, Y., and Caron, E. (2006). Two distinct cytoplasmic regions of the beta2 integrin chain regulate RhoA function during phagocytosis. J Cell Biol 172, 1069-1079. Williams, L. M., Lali, F., Willetts, K., Balague, C., Godessart, N., Brennan, F., Feldmann, M., and Foxwell, B. M. (2008). Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. Mol Immunol 45, 2446-2454. Wittmann, M., Zwirner, J., Larsson, V. A., Kirchhoff, K., Begemann, G., Kapp, A., Gotze, O., and Werfel, T. (1999). C5a suppresses the production of IL-12 by IFNgamma-primed and lipopolysaccharide-challenged human monocytes. J Immunol 162, 6763-6769. Wolf, S. F., Temple, P. A., Kobayashi, M., Young, D., Dicig, M., Lowe, L., Dzialo, R., Fitz, L., Ferenz, C., Hewick, R. M., and et al. (1991). Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 146, 3074-3081. Worth, R. G., Mayo-Bond, L., van de Winkel, J. G., Todd, R. F., 3rd, and Petty, H. R. (1996). CR3 (alphaM beta2; CD11b/CD18) restores IgG-dependent phagocytosis in 250 transfectants expressing a phagocytosis-defective Fc gammaRIIA (CD32) tail-minus mutant. J Immunol 157, 5660-5665. Wright, S. D., and Jong, M. T. (1986). Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med 164, 1876-1888. Wright, S. D., Levin, S. M., Jong, M. T., Chad, Z., and Kabbash, L. G. (1989). CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 169, 175-183. Wright, S. D., and Silverstein, S. C. (1983). Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158, 2016-2023. Wright, S. D., Weitz, J. I., Huang, A. J., Levin, S. M., Silverstein, S. C., and Loike, J. D. (1988). Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A 85, 7734-7738. Xie, J., Li, R., Kotovuori, P., Vermot-Desroches, C., Wijdenes, J., Arnaout, M. A., Nortamo, P., and Gahmberg, C. G. (1995). Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J Immunol 155, 3619-3628. Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294, 339-345. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002a). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155. Xiong, Y. M., Haas, T. A., and Zhang, L. (2002b). Identification of functional segments within the beta2I-domain of integrin alphaMbeta2. J Biol Chem 277, 46639-46644. Xiong, Y. M., and Zhang, L. (2001). Structure-function of the putative I-domain within the integrin beta subunit. J Biol Chem 276, 19340-19349. Xue, W., Kindzelskii, A. L., Todd, R. F., 3rd, and Petty, H. R. (1994). Physical association of complement receptor type and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol 152, 4630-4640. Yakubenko, V. P., Lishko, V. K., Lam, S. C., and Ugarova, T. P. (2002). A molecular basis for integrin alphaMbeta ligand binding promiscuity. J Biol Chem 277, 4863548642. Yalamanchili, P., Lu, C., Oxvig, C., and Springer, T. A. (2000). Folding and function of I domain-deleted Mac-1 and lymphocyte function-associated antigen-1. J Biol Chem 275, 21877-21882. Yamamoto, K., and Johnston, R. B., Jr. (1984). Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159, 405-416. 251 Yamamoto, K., Nishimura, N., Doi, T., Imanishi, T., Kodama, T., Suzuki, K., and Tanaka, T. (1997). The lysine cluster in the collagen-like domain of the scavenger receptor provides for its ligand binding and ligand specificity. FEBS Lett 414, 182-186. Yan, B., Calderwood, D. A., Yaspan, B., and Ginsberg, M. H. (2001). Calpain cleavage promotes talin binding to the beta integrin cytoplasmic domain. J Biol Chem 276, 28164-28170. Yang, J. W., Yoon, S. Y., Oh, S. J., Kim, S. K., and Kang, K. W. (2006). Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem Biophys Res Commun 346, 345-350. Yoshida, H., Kondratenko, N., Green, S., Steinberg, D., and Quehenberger, O. (1998). Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J 334 ( Pt 1), 9-13. Zaffran, Y., Zhang, L., and Ellner, J. J. (1998). Role of CR4 in Mycobacterium tuberculosis-human macrophages binding and signal transduction in the absence of serum. Infect Immun 66, 4541-4544. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M., and Karin, M. (1997). The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91, 243-252. Zang, Q., and Springer, T. A. (2001). Amino acid residues in the PSI domain and cysteine-rich repeats of the integrin beta2 subunit that restrain activation of the integrin alpha(X)beta(2). J Biol Chem 276, 6922-6929. Zarewych, D. M., Kindzelskii, A. L., Todd, R. F., 3rd, and Petty, H. R. (1996). LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J Immunol 156, 430-433. Zhang, H., Tay, P. N., Cao, W., Li, W., and Lu, J. (2002). Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett 532, 171-176. Zhang, L., and Plow, E. F. (1996). Overlapping, but not identical, sites are involved in the recognition of C3bi, neutrophil inhibitory factor, and adhesive ligands by the alphaMbeta2 integrin. J Biol Chem 271, 18211-18216. Zhang, L., and Plow, E. F. (1999). Amino acid sequences within the alpha subunit of integrin alpha M beta (Mac-1) critical for specific recognition of C3bi. Biochemistry 38, 8064-8071. Zhang, Z., Louboutin, J. P., Weiner, D. J., Goldberg, J. B., and Wilson, J. M. (2005). Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 73, 7151-7160. Zheng, L., Sjolander, A., Eckerdal, J., and Andersson, T. (1996). Antibody-induced engagement of beta integrins on adherent human neutrophils triggers activation of p21ras through tyrosine phosphorylation of the protooncogene product Vav. Proc Natl Acad Sci U S A 93, 8431-8436. 252 Zhong, F., Cao, W., Chan, E., Tay, P. N., Cahya, F. F., Zhang, H., and Lu, J. (2005). Deviation from major codons in the Toll-like receptor genes is associated with low Tolllike receptor expression. Immunology 114, 83-93. Zhou, L., Lee, D. H., Plescia, J., Lau, C. Y., and Altieri, D. C. (1994). Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J Biol Chem 269, 17075-17079. Zhou, M., Todd, R. F., 3rd, van de Winkel, J. G., and Petty, H. R. (1993). Cocapping of the leukoadhesin molecules complement receptor type and lymphocyte functionassociated antigen-1 with Fc gamma receptor III on human neutrophils. Possible role of lectin-like interactions. J Immunol 150, 3030-3041. Zhou, M. J., and Brown, E. J. (1994). CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J Cell Biol 125, 1407-1416. Zhou, Z., Hartwieg, E., and Horvitz, H. R. (2001). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43-56. Ziccardi, R. J., and Cooper, N. R. (1976). Activation of C1r by proteolytic cleavage. J Immunol 116, 504-509. Ziccardi, R. J., and Cooper, N. R. (1977). The subunit composition and sedimentation properties of human C1. J Immunol 118, 2047-2052. Zimmerli, S., Edwards, S., and Ernst, J. D. (1996). Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol 15, 760-770. Zipfel, P. F., Jokiranta, T. S., Hellwage, J., Koistinen, V., and Meri, S. (1999). The factor H protein family. Immunopharmacology 42, 53-60. 253 APPENDIX: MEDIA and SOLUTIONS Molecular biology LB-broth (Luria-Bertani medium) Bacto-tryptone 1.0% Yeast extract 0.5% NaCl 0.5% Adjust pH to 7.5 with M NaOH prior to autoclaving. Media was sterilized by autoclaving at 15 LB/in2 for 15 min. Thermolabile antibiotics were filter-sterilized through 0.2 m filters and added to the autoclaved LBbroth. Final concentrations for ampicillin was 100 g/ml. LB agar plates LB-broth was prepared as above with 15 g/L of Bacto-agar added. Media was sterilized by autoclaving. 50 x TAE buffer (for DNA gel electrophoresis) Tris base Acetic acid EDTA pH 7.8 2M 1M 0.1 M 10 x DNA loading buffer Ficoll400 EDTA(pH 8.0) 0.1 M Bromophenol blue 20% (w/v) 0.25% (w/v) Ethidium bromide The stock solution was made at 10 mg/ml and stored in a light-tight bottle. Final working concentration was 0.5 μg/ml. 10X TNE buffer Tris base Sodium chloride EDTA pH 7.4 100mM 2M 10mM Cell Biology x Phosphate buffered saline (PBS) KH2PO4 Na2HPO4 NaCl KCl 1.76 mM 10.4 mM 137 mM 2.7 mM FACS Wash buffer x PBS BCS Sodium azide 2% (v/v) 0.05% (w/v) 254 Protein Chemistry Cell lysis buffer Tris-HCl, pH 7.5-8.0 NaCl EDTA EGTA KCl Triton-X 100 Leupeptin Protease Aprotinin inhibitors PMSF 50 mM 300 mM 2mM 2mM 20mM 1% (v/v) 100 g/ml 100 g/ml mM PMSF = phenylmethylsulphonyl fluoride 2x HBS buffer NaCl KCl Na2HPO4.2H2O KCl D-glucose (anhydrous) HEPES 280 mM 10 mM 1.5 mM 2.7 mM 12mM 50mM Wash buffer Tris-HCl, pH 8.0 20 mM NaCl 500 mM Imidazole 10 mM Elution Buffer Tris-HCl, pH 8.0 20 mM NaCl 500 mM Imidazole 250 mM SDS-PAGE gel electrophoresis and Western Blotting Stacking gel preparation (for mini SDS-PAGE gel) dH2O 0.5 M Tris-HCL, pH 6.8 10% (w/v) SDS 30% Acrylamide/Bisacrylamide solution 29:1 (3.3%C) 10% APS TEMED 3.05 ml 1.25 ml 50 l 0.65 ml 25 l l Separating gel preparation (for mini SDS-PAGE gel)-12.5% gel dH2O 1.5 M Tris-HCL, pH 8.8 10% (w/v) SDS 30% Acrylamide/Bisacrylamide solution 29:1 (3.3%C) 10% APS TEMED 3.17 ml 2.5 ml 100 l 4.16 ml 50 l l 255 10 x SDS-PAGE electrophoresis buffer Tris base Glycine SDS Adjust the pH to 8.3. 250 mM 2.5 M 1% (w/v) x Reducing sample loading buffer Tris-HCL, pH 6.8 Glycerol SDS Bromophenol Blue Dithiothreitol (DTT) 250 mM 50% (v/v) 10% (w/v) 1% (w/v) 0.5 M 10 x Western blot transfer buffer Tris base Glycine 250 mM 1.92 M TBS-T buffer Tris-HCL, pH 7.5 NaCl Tween-20 50 mM 150 mM 0.1% (v/v) Blocking Buffer Non-fat milk 5% (prepared in TBS-T buffer) 256 [...]... three activation pathways of complement: the Classical, Mannose-Binding Lectin, and Alternative Pathways The three pathways converge at the point of cleavage of C3 The classical pathway is initiated by the binding of the C1 complex to antibodies bound to the bacterial cell surface C1s first cleaves C4 and then cleaves C2, leading to the formation of a C4b 2a enzyme complex (classical pathway C3 convertase)... convertase) The mannosebinding lectin pathway is initiated by binding of the complex of MBL and MASP 1and MASP2 to arrays of mannose groups on the bacterial cell surface MASP2 acts as a protease like C1s, and facilitate classical pathway C3 convertase formation The alternative pathway is initiated by the covalent binding of a small amount of C3b to hydroxyl groups on cell-surface carbohydrates and proteins and. .. alternative pathway Although each pathway has a unique combination of initiating proteins, all three converge in the activation of the complement component C3 and a common lytic pathway involving the formation of the membrane attack complex (MAC) on the target cell surface The various complement pathways are schematically represented in Figure 1 .3 15 Figure 1 .3 Various pathways of complement activation The. .. like 3 lipoarabinomannan (LAM) and lipomannan (LM), and proteoglycans such as arabinogalactan A B C Figure 1.1 Bacterial cell surface PAMPs (A) Schematic representations of the general structure of the cell envelope of Gram-positive bacteria, Gram-negative bacteria, and Mycobacterium (B) Schematic representation of the chemical structure of lipopolysaccharide (LPS) The core is covalently bound to the. .. recruited to the cytoplasmic tail of activated TLR and associates via the TIR domain Subsequently, IRAKs and TRAF 6 are recruited and activated in a signaling complex The phosphorylation of TAK1 by IRAKs activates the former kinase which, in turn phosphorylate IKK complexes IKK then phosphorylates IB leading to ubiquitinylation and proteasome-mediated degradation of the latter, and the release of activated...List of Figures Page 1.1 Bacterial cell surface PAMPs 4 1.2 The MyD88-dependent signaling pathway 13 1 .3 Various pathways of complement activation .16 1.4 Ribbon diagrams of human component C3 and C3b 22 1.5 Activation and degradation of complement C3 23 1.6 Ribbon drawing of the extracellular segment of crystallized integrin v 3 illustrating various domains of the  and. .. (MKK4) and 6 (MKK6), which, in turn, can activate p38 and c-jun NH2-terminal kinase (JNK) MAPK signaling pathways (Johnson and Lapadat, 2002) These MAPKs can then activate the 12 transcription factor, activation protein 1 (AP-1) (Shaulian and Karin, 2002), which promotes the transcription of various pro-inflammatory genes PAMP Toll Like Receptor Cell membrane IRAK 1 IRAK 2 IRAK 4 TRAF6 TAB1 P TAB2 TAK1... target surfaces near the site of complement activation The surface-bound C3b can then recruit factor B and, following factor D mediated cleavage, form the alternative pathway C3 convertase C3bBb This convertase can recruit and cleave further C3 molecules, generating more C3 convertase in a self-sustaining cycle of C3 activation This positive amplification loop is the key 18 defining feature of the alternative... the alternative complement pathway (Muller-Eberhard and Gotze, 1972) C3bBb can also proceed to, like the classical pathway C3 convertase C4bC 2a, interact with a C3b molecule to form the C5 convertase, C3bBb3b (Daha et al., 1976; Medicus et al., 1976) and culminate in the formation of MAC The fact that the alternative pathway is initiated by a fluid phase convertase could potentially result in the indiscriminant... groups Activated C1s also splits C2 into C 2a and C2b The larger enzymatically active C 2a fragment associates with surface-bound C4b to form the classical pathway C3 convertase, C4b 2a (Muller-Eberhard et al., 1967), which can enzymatically generate large quantities of C 3a and C3b from native C3 Reminiscent of C4b, C3b can effectively bind target surfaces via its thiolester group In addition to cleaving C3, . complement receptor 3 (CR3) and non-opsonic scavenger receptor class A (SR -A) . We will attempt to investigate certain aspects of their ligand binding properties and delineate downstream signaling pathways. 1 13 3. 6 The SR -A ligands S. aureus and LTA does not induce SR-AI- mediated NF-B 114 3. 7 The potential SR -A ligand B. subtilis induce SR -A mediated NF-B activation 115 3. 8 The potential. INVESTIGATIONS OF THE SCAVENGER RECEPTOR CLASS A AND COMPLEMENT RECEPTOR 3 – TWO PATTERN RECOGNITION RECEPTORS BY GOH WEE KANG JASON B. Sc. (Hons), Murdoch University, Australia

Ngày đăng: 14/09/2015, 14:08

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan