1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Development of dielectrophoresis devices for cell manipulation

200 398 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 200
Dung lượng 4,03 MB

Nội dung

DEVELOPMENT OF DIELECTROPHORESIS DEVICES FOR CELL MANIPULATION YU LIMING NATIONAL UNIVERSITY OF SINGAPORE 2007 DEVELOPMENT OF DIELECTROPHORESIS DEVICES FOR CELL MANIPULATION YU LIMING (B.S., M.S.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2007 Acknowledgements I would like to thank Professor Francis Tay Eng Hock from National University of Singapore, my supervisor, for his valuable guidance throughout this research project and for being a great teacher and mentor. I am also thankful to Dr. Ciprian Iliescu from Institute of Bioengineering and nanotechnology (IBN), for his constant guidance and support during this research. I would also like to express my gratitude to National University of Singapore for providing full research scholarship during my Ph. D study. I wish to acknowledge the support of Institute of Bioengineering and nanotechnology for their assistance in the fabrication and testing of dielectrophoresis (DEP) devices. I am also grateful to Dr. Chen Bangtao, Dr. A.J. Pan, Mr. Xu Guolin and Mr. Ong Poh Lam from IBN for their many suggestions and technical assistance during my research. Finally, I wish to thank my family- my parents, and my parents-in-law for their encouragements; also to my devoted wife- Chang Shuling, and my lovely daughter – Yu Yazhu, with whom I will always share every bit of my success and happiness. Yu Liming Table of contents Summary……………………………………………… ……….………… ………6 List of Tables……………………………………….………………………… … 10 List of Figures…………………………………………….…… …………………11 Nomenclature…………………………………………….……………….…… …20 Chapter Introduction………………………………………….……… ……….23 1.1 Background…………………………………………………………………… 23 1.2 Brief review of dielectrophoresis (DEP)……………………………………… 24 1.3 Objective of this thesis………………………………………………………….27 1.4 Organization of this thesis…………………………………………………… 29 Chapter Literature review of dielectrophoresis …………….……………… .32 2.1 Introduction…………………………………………….……….……… …… 32 2.2 Basic theory of dielectrophoresis ……………… … ……… …….……… 32 2.3 Principles of operation……………… …………….…………………… ……34 2.3.1 Dielectric particles .34 2.3.2 Electrokinetic behaviors of Particles…………………… ………… … .35 2.3.2.1 Trapping……………………………… ……………….….…………36 2.3.2.2 Levitation…………………………………………….……………….37 2.3.2.3 Electrorotation…………………………………… … ……….…… 38 2.3.2.4 Linear motion (travelling-wave dielectrophoresis) ………… ……….39 2.3.3 Separation mechanism of particles for dielectrophoresis………… ………40 2.3.3.1 Flow separation………………….……………………………………42 2.3.3.2 Field flow fractionation……………………………………………….43 2.3.3.3 Travelling-Wave Dielectrophoresis (TWD)……………… ………….44 2.3.3.4 Other methods………………… …………………………………….45 2.3.3.5 Drawbacks of current methods……….……………………………….47 2.4 Methods for generation of the electric field gradient in DEP devices………….47 2.4.1 Modification of the dielectric media (isolating dielectrophoresis)……… 48 2.4.2 Modification of the phase of the applied electric field (Travel wave dielectrophoresis)………………………………………………………………….48 2.4.3 Modification of the electrodes shape………………… ……………………49 2.5 Conclusions……….…………………………………………………………… 52 Chapter Dielectrophoretic devices with 3D microchannel walls … 53 3.1. Introduction………………….……………………………………….…………53 3.2. Dielectrophoresis devices with planar electrode and 3D electrodes .……………………………………………………………… ………….54 3.2.1 Dielectrophoretic force…….……………………………….…….………… 55 3.2.2 Joule heating effect…………………………………….….………………….58 3.3 Dielectrophoresis devices with planar electrode and asymmetric electrodes…………………………………………………………………………… 62 3.3.1 Dielectrophoresis force……………………………………………………….62 3.3.2 Joule heating effect………………………………………………….……… 66 3.4 Theoretical analysis of dielectrophoresis chip with 3D electrodes……………………………………………………………….……………68 3.4.1 Electrostatic modeling and analysis of dielectrophoresis chip with 3D electrodes…………………………………………………………………………… 69 3.4.2 CFD modeling and analysis of dielectrophoresis chip with 3D electrodes 82 3.4.3 Electrothermal modeling and analysis of dielectrophoresis chip with 3D electrodes………………………………… ……………………………… ……….87 3.4.4 Cell separation methods using dielectrophoretic chip with 3D electrodes…………………………………………………… ………… …………89 3.4.4.1 Sequential field-flow cell separation method in a dielectrophoretic chip with 3D electrodes………………………………………………… ….…… 89 3.4.4.2 Bidirectional cell separation in a dielectrophoretic chip with 3D electrode array…… … …………….……………….………………………….………99 3.5 Conclusions……………… ………………….….………….………………….101 Chapter Design and fabrication of dielectrophoresis devices with 3D microchannel walls .104 4.1. Introduction………………….…………………………………………………104 4.2 DEP chip with top inlet/outlet………………………………………………… 105 4.2.1 Design……………………………………………………………………….105 4.2.2 Fabrication.………………………………………………………………….108 4.3 DEP chip with lateral inlet/outlet…………………………………….…………115 4.3.1 Design……………………………………………………………………….115 4.3.2 Fabrication.………………………………………………………………….116 4.4 DEP chip with two inlet/outlets….……………………….……………….…….121 4.4.1 Design……………………………………………………………………….121 4.4.2 Fabrication.………………………………………………………………….123 4.5 DEP chip with asymmetric electrodes………………………………….……….127 4.5.1 Design……………………………………………………………………….127 4.5.2 Fabrication.………………………………………………………………….128 4.6 Developed microfabrication technologies for fabrication of DEP chips….…….133 4.6.1 Optimization of spray coating of photoresist for high topography surfaces 133 4.6.1.1 Optimization method for spray coating of photoresist……………… 135 4.6.1.2. Wafer preparation…………………………………………………….136 4.6.1.3 Optimization of spraying systems…………………………………….138 4.6.1.4 Optimization of the photoresist/solvent ratio………….………………141 4.6.1.5 Spin coating versus spray coat……………………………………… 144 4.6.1.6 Effect of the geometries of 3D microstructure on the photoresist quality……………………….…………………………………………….… 147 4.6.1.7 Application of spray coating for 3D microstructures…………………149 4.6.2 SU-8 wafer-to-wafer bonding using contact imprinting…………………….151 4.6.2.1 Introduction………………… ……………………………………….151 4.6.2.2 Contact imprinting bonding ….………………………………………152 4.6.2.3 Characterization of the SU-8 layer and bonding technique ………… 157 4.6.2.4 Application for microfluidic devices……………….…………………158 4.7. Conclusions……………………………………………………….……………159 Chapter Testing and application of dielectrophoresis systems with 3D microchannel walls ……………………………………………………………… 162 5.1 Sample preparation …………………………………………………….……….162 5.2 Experiment setup……………………………………………………….……….163 5.3 Testing of DEP devices with 3D silicon microchannel wall ………… ……….163 5.4 Trapping efficiency of DEP devices with 3D silicon electrodes…………………168 5.5 Separation of viable yeast cells and non-viable yeast cells………….………….170 5.6 Conclusions……… …………………………………… ……….…………….174 Chapter Conclusions .176 6.1 Summary of the research work and contributions……………………………….176 6.2. Future work……………………………………………………………….…….180 Bibliography .182 Publications related to this work 196 Summary In recent years, the development of miniaturized devices for analysis and manipulation of micro- or nano-bioparticles, such as cells, viruses, and bacteria, is a fast growing field in microsystem technology. One of the greatest interests in this area is the development of microfabricated dielectrophoresis (DEP) chip which provides an effective way to manipulate and separate cells and particles automatically and quickly, making possible automatic sample collection, transportation, and preparation. Dielectrophoresis (DEP) presents many advantages such as low sample consumption, fast analysis time, miniaturization in size, portability, and non-invasive electric manipulation of particles. Meanwhile such devices have great potential for point-of-care diagnostics, surface-based biosensors, rapid cell and DNA analysis, etc. In this thesis, two novel configurations of DEP devices are proposed. The first configuration is a DEP system with three dimensional (3D) electrodes, where the electrodes formed by heavily-doped silicon also function as micro fluidic channel wall. A series of DEP chips with 3D silicon electrodes, including DEP chip with top inlet/outlet, DEP chip with lateral inlet/outlet, and DEP chip with two inlet/outlets, have been designed, and fabricated. Such devices present the characteristics of a device packaged at the wafer level: a silicon die bonded between two cover glass dies. One glass die assures the inlet/outlet access for biological sample loading and unloading while the other provides the mechanical and electrical connection to the electrodes through metallized via-holes. Compared to other devices, these devices eliminate the need for a separate channel wall material and minimize dead volumes. The use of silicon electrode eliminates the electrochemical effect that may arise from multi-layer electrodes. An important advantage compared to classical DEP devices is that a uniform force is generated in the vertical plane so that the particles suspended at any height across the same cross-section of channel experience strong DEP force. Numerical simulations also found that the temperature rise is 8-10 times lower in device with 3D electrodes as compared to those classical DEP devices with planar electrodes, which is critical for cell applications. Electrostatic modeling, Computational Fluid Dynamics (CFD) modeling, electrothermal modeling of the DEP chip with 3D electrodes have been built to explore the effects of different geometry parameters of different electrode configurations on the motion of particles. Based on the analysis of dielectrophoretic force and hydrodynamic force, a new sequential field-flow separation method in a DEP device with 3D electrodes and bidirectional cell separation method in a DEP device with 3D electrode array and two inlet/outlets have been proposed for separation of different population of cells. Moreover, a second new configuration, a DEP device with asymmetric electrodes where one electrode is a thin film, while the other one is extruded, functioning as a microchannel wall has been designed and fabricated. The asymmetry of the electrode in the vertical plane generates an asymmetric electric field that traps the particles –for positive DEP- near the thin electrode (where the gradient of the electric field is the strongest). This is a unique characteristic for a DEP device where Bibliography Bibliography C. L. Asbury and G. van den Engh, “Trapping of DNA in nonuniform oscillating electric fields,” Biophys. J. 74, 1024–1030, 1998. C. L. Asbury, A. H. Diercks, and G. van den Engh, “Trapping of DNA by dielectrophoresis,” Electrophoresis 23, 2658–2666, 2002. R. H. Austin, “Electrodeless dielectrophoresis of single- and double-stranded DNA”, Biophys. J. 83, 2170–2179, 2002. F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. Gascoyne, “Separation of human breast-cancer cells from blood by differential dielectric affinity,” Proc. Nat. Acad. Sci. USA, 92, 860–864, 1995. J. H. Calderwood, E. R. Mognaschi, “Selective separation of bioparticles by means of dielectrophoresis in a rotlin field”, Conf. IEEE. Ind. Applicat. 2, 807-812, 2000 A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, H. Morgan, “Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws”, J. Phys. D: Appl. Phys. 36, 2584-2597, 2003 E. G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski, K. V. I. S. Kaler, “A combined dielectrophoresis, travelling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells”, J. Microbiol. Methods 58, 387– 401, 2004 L. Chen, J. Miao, L. Guo, R. Lin, “Control of stress in highly doped polysilicon multi-layer diaphragm structure”, Surface and Coatings Technology 141, 96-102, 2001. 182 Bibliography C. F. Chou and F. Zenhausern, “Electrodeless Dielectrophoresis for Micro Total Analysis Systems,” IEEE engineering in medicine and biology magazine 22(6), 62-67, 2003 L. Cui, D. Holmes, H. Morgan , “The dielectrophoretic levitation and separation of latex beads in microchips”, Electrophoresis 22, 3893–3901, 2001 E. B. Cummings, A. K. Singh, “Dielectrophoretic trapping without embedded electrodes”, Proc. SPIE conf. Micromachining and Microfabrication 4177, 164-173, 2000. E. B. Cummings, “Streaming dielectrophoresis for continuous-flow microfluidic devices”, IEEE Engineering in Medicine and Biology Magazine 22/6, 75–84, 2003. P. Debye, B. H. Eckstein, W. A. Barber, and G. J. Arquette, “Experiments on polymer solution in inhomogeneous electrical fields”, J. Chem. Phys. 22, 152–153, 1954 A. Docoslis, N. Kalogerakis, L. A. Behie, K. V. I. S. Kaler, “A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media”, Biochem. Bioeng. 54, 239-250, 1997 A. Docoslis, P. Alexandridis, “One-, two-, and three-dimensional organization of colloidal particles using nonuniform alternating current electric fields”, Electrophoresis 23, 2174–2183, 2002 Il Doh, Y. H. Cho., “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process”, Sens. Actuators A 121, 59–65, 2005 M. Dürr , J. Kentsch , T. Müller, T. Schnelle , M. Stelzle , “Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis”, 183 Bibliography Electrophoresis 24, 722–731, 2003 S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, “Dielectrophoretic Sorting of Particles and Cells in a Microsystem”, Anal. Chem. 70, 1909-1915, 1998 M. Frénéa,, S. P. Faurea, B. Le Piouflea, Ph. Coqueta, H. Fujita, “Positioning living cells on a high-density electrode array by negative dielectrophoresis”, Materials Science and Engineering C 23, 597–603, 2003 G. Fuhr, S. Fiedler, T. Müller, T. Schnelle, H. Glasser, T. Lis, B. Wagner, “Particle micromanipulator consisting of two orthogonal channels with travelling-wave electrode structures”, Sens. Actuators A 41(1-3), 230-239, 1994. P. R. C. Gascoyne, Y. Huang, R. Pethig, J. Vykoukal, and F. F. Becker, “Dielectrophoretic separation of mammalian-cells studied by computerized image analysis,” Meas. Sci. Technol. 3, 439–445, 1992. P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis”, Electrophoresis 23, 1973–1983, 2002. J. Gimsa, P. Marszalek, U. Loewe, and T. Y. Tsong, “Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells,” Biophys. J. 60, 749–760, 1991. J. Gimsa and D. Wachner, “A Unified Resistor-Capacitor Model for Impedance, Dielectrophoresis, Electrorotation, and Induced Transmembrane Potential”, Biophys. J. 75, 1107–1116, 1998 A. D. Goater, J. P. H. Burt, and R. Pethig, “A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability 184 Bibliography determination of Cryptosporidium”, J. Phys. D: Appl. Phys. 30, 65–69, 1997. L. Gorre-Talini, J. P. Spatz and P. Silberzan, “Dielectrophoretic ratchets”, Chaos 8, 650-656, 1998 D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array”, Biosens. Bioelectron. 19, 1765–1774, 2004 N. G. Green and H. Morgan, “Dielectrophoretic investigations of sub-micrometre latex spheres”, J. Phys. D: Appl. Phys. 30, 2626–2633, 1997 N. G. Green and H. Morgan, “Dielectrophoretic separation of nano-particles”, J. Phys. D: Appl. Phys. 30, 41–84, 1997 N. G. Green, A. Ramosa, H. Morgan, “Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method”, J. Electrostatics 56, 235–254, 2002 R. Hagedorn, G. Fuhr, T. Muller, and J. Gimsa, “Travelling-wave dielectrophoresis of microparticles,” Electrophoresis 13, 49–54, 1992. T. Heida, P. Vulto, W. L. C. Rutten, E. Marani, “Viability of dielectrophoretically trapped neural cortical cells in Culture”, J. Neurosci. Meth. 110, 37–44, 2001 K. Hiller, “Application of low temperature direct bonding in optical devices and integrated systems”, Proc. of Microsystem Technology, Munich, Germany, October, 102-109 2003. Y. Huang and R. Pethig, “Electrode design for negative dielectrophoresis,” Meas. Sci. Technol. 2, 1142–1146, 1991. Y. Huang, R. Hölzel, R. Pethig, X. B. Wang, “Differences in the AC electrodynamics 185 Bibliography of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation, studies”, Phys. Med. Biol. 37(7), 1499-1518, 1992. Y. Huang, X. B. Wang, J. A. Tame and R. Pethig, “Electrokinetic behaviour of colloidal particles in travelling electric fields: I studies using yeast cells”, J. Phys. D Appl. Phys. 26, 1528-1535, 1993 Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, and X. Xu, “Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays”, Anal. Chem. 74, 3362-3371, 2002 Y. Hübner, K. F. Hoettges, and M. P. Hughes, “Water quality test based on dielectrophoretic measurements of fresh water algae Selenastrum capricornutum,” J. Env. Monitor. 5, 861-864, 2003. M. P. Hughes, R. Pethig and X. B. Wang, “Dielectrophoretic forces on particles in travelling electric fields”, J. Phys. D: Appl. Phys. 29, 474–482, 1996 M. P. Hughes and H. Morgan, “Dielectrophoretic trapping of single sub-micrometre scale bioparticles”, J. Phys. D: Appl. Phys. 31, 2205–2210, 1998 M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt, and R. Pethig, “Manipulation of herpes simplex virus type by dielectrophoresis” , Biochim. Biophys. Acta. 1425, 119–126, 1998. M. P. Hughes, “AC Electrokinetics: Applications for Nanotechnology,” Nanotechnology 11, 124-132, 2000 M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems”, Electrophoresis 23, 2569–2582, 2002 186 Bibliography M. Ichiki, L. Zhang, Z. Yang, T. Ikehara, R. Maeda, “Spray coating fabrication: thin film formation on non-planar surface”, Proc. Transducers, 825 – 828, 2003 C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, T. T. Sun, “Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution”, Surf. Coat. Technol. 198/ 1-3, 314-318, 2005. C. Iliescu, J. Miao, F. E. H. Tay, “Stress control in masking layers for deep wet micromachining of Pyrex glass,” Sens. Actuators A 117/2, 286-292, 2005. J. Ji, C. Iliescu, F. E. H. Tay, J. M. Miao and T. T. Sun, “Characterization of Masking Layers for Deep Wet Etching of Glass in an Improved HF/HCl Solution”, Thin Films 2004, Singapore. J. Johari, Y. Hübner, J. C. Hull, J. W. Dale, and M. P. Hughes, “Dielectrophoretic assay of bacterial resistance to antibiotics,” Phys. Med. Biol. 48, 193–196, 2003. T. B. Jones and J. P. Kraybill, “Active feedback-controlled dielectrophoretic levitation,” J. Appl. Phys. 60, 1247–1252, 1986. T. B. Jones, “Electromechanicas of particle”, Cambridge University Press, 1995 T. B. Jones, “Basic theory of dielectrophoresis and electrorotation”, IEEE engineering in medicine and biology magazine 22, 33-42, 2003 .J. Kadaksham, P. Singh, N. Aubry, “Dielectrophoresis of nanoparticles”, Electrophoresis 25, 3625–3632, 2004 J. Kadaksham, P. Singh, N. Aubry, “Manipulation of particles using dielectrophoresis,” Mechanics Research Communications 33, 108–122, 2006 K. V. I. S. Kaler and T. B. Jones, “Dielectrophoretic spectra of single cells determined 187 Bibliography by feedback-controlled levitation,” Biophys. J. 57, 173–182, 1990. F. H. Labeed, H. M. Coley, H. Thomas, and M. P. Hughes, “Assessment of multidrug resistance reversal using dielectrophoresis and flow cytometry,” Biophys. J. 85, 2028–2034, 2003. B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, Y. Fintschenko, “Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water”, Electrophoresis 25, 1695–1704, 2004 S. W. Lee, D. S. Shim, Y. K. Kim, “Determination of dielectric constant of dielectric particles using negative dielectrophoresis”, Proc. IEEE. CEIDP 1, 241-244, 1996 Y. Y. Lee, L. Yu, F. E. H. Tay, C. Iliescu, “Optimization of spray coating photoresist for high topography surfaces”, Proc. of Int. Semiconductor Conf. CAS. 1, 171 – 174, 2005. H. Li, R. Bashir, “Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes (Cr/Au),” Sens. Actuators B 86, 215-221, 2002 H. Li, Y. Zheng, D. Akin, and R. Bashir, “Characterization and Modeling of a Microfluidic Dielectrophoresis Filter for Biological Species”, J. Microelectromechanical systems 14, 103-112, 2005 L. Lin, Y. T. Cheng, K. Najafi,“Formation of silicon-gold eutectic bond using localized heating method, ” J. Appl. Phys. 37, 1412-1414, 1998. G. H. Markx , M. S. Talary, R. Pethig, “Separation of viable and non-viable yeast using dielectrophoresis”, J. Biotechnol. 32 , 29-37, 1994 G. H. Markx and R. Pethig, “Dielectrophoretic Separation of Cells: Continuous 188 Bibliography Separation”, Biotechnol. Bioeng. 45, 337-343 ,1995 G. H. Markx, P. A. Dyda, R. Pethig, “Dielectrophoretic separation of bacteria gradient using a conductivity”, J. Biotechnol. 51, 175-180, 1996 G. H. Markx, R. Pethig, J. Rousselet, “The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation”, J. Phys. D: Appl. Phys. 30, 2470–2477, 1997. P. Marszalek, J. J. Zielinski, and M. Fikus, “Experimental verification of a theoretical treatment of the mechanism of dielectrophoresis,” Bioelectrochem. Bioenerg. 22, 289–298, 1989. S. Masuda, M. Washizu, and M. Iwadare, “Separation of small particles by nonuniform travelling field,” IEEE Trans. Ind. Applicat. IA-23, 474–480, 1987. S. Masuda, M. Washizu, and T. Nanba, “Novel method of cell-fusion in field constriction area in fluid integrated-circuit,” IEEE Trans. Ind. Applicat. 25, 732–737, 1989. A. R. Minerick, R. Zhou, P. Takhistov, H. C. Chang, “Manipulation and characterization of red blood cells with alternating current fields in microdevices”, Electrophoresis 24, 3703–3717, 2003 E. R. Mognaschi and J. H. Calderwood, “Asynchronous dielectric induction motor,” Proc.IEE 137, 331-338, 1990 H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis”, Biophys. J. 77, 516–525, 1999. H. Morgan, A. G. Izquierdo, D. Bakewell, N. G. Green, A. Ramos, “The 189 Bibliography dielectrophoretic and travelling wave forces for interdigitated electrode arrays: analytical solution using Fourier series”, J.Phys.D: Appl. Phys. 34, 1553-1561, 2001 T. Müller, G. Gradl, S. Howitz, “A 3-D microelectrode system for handling and caging single cells and particles”, Biosens. Bioelectron. 14, 247–256, 1999 I. R. P. Nielsen, N. G. Green and A. Wolff, “Numerical simulation of travelling wave induced electrothermal fluid flow”,J. Phys. D: Appl. Phys. 37, 2323–2330, 2004 F. Niklaus, P. Enoksson, E. Kalvesten, G. Stemme, “Low-temperature full wafer adhesive bonding”, J. Micromech. Microeng. 11, 100-107, 2001 J. Oberhammer, F. Niklaus, G. Stemme, “Selective wafer-level adhesive bonding with bezocyclobutene for fabrication of cavities”, Sens. Actuators A 105/ 3, 297-304, 2003. B. Y. Park, M. J. Madou “3-D electrode designs for flow-through dielectrophoretic systems”, Electrophoresis 26, 3745–3757, 2005 R. Peter, C. Gascoyne, J. Vykoukal, “Particle separation by dielectrophoresis”, Electrophoresis 23, 1973–1983, 2002 R. Pethig, Y. Huang, X. B. Wang, “Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes”, J.Phys.D: Appl.Phys. 24, 881-888, 1992 R. Pethig, “Dielectrophoresis: Using inhomogeneous ac electrical fields to separate and manipulate cells”, Crit. Rev. Biotechnol. 16, 331–348, 1996. R. Pethig, J. P. H. Burt, A. Parton, N. Rizvi, M. S. Talary, J. A. Tame, “Development of biofactory-on-a-chip technology using excimer laser micromachining”, J. Micromech. Microeng. 8, 57-63, 1998. 190 Bibliography R. Pethig, V. Bressler, C. C. Crumpton, “Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system,” Electrophoresis 23, 2057–2063, 2002 R. Pethig, M. S. Talary, R. S. Lee, “Enhancing travelling-wave dielectrophoresis with signal superposition”, IEEE Engineering in Medicine and Biology Magazine 22/ 6, 4350, 2003. N. P. Pham, E. Boellard, J. N. Burghartz and P. M. Sarro, “Photoresist coating methods for the integration of novel 3-D Rf microstructures”, J. Microelectromechanical Systems 13/3, 491-499, 2004 N. P. Pham, J. N. Burghartz and P. M. Sarro, “Spray Coating of Photoresist for pattern transfer on high topography surfaces” J. Micromech. Microeng. 15, 691-697, 2005 H. A. Pohl and I. Hawk, “Separation of living and dead cells by dielectrophoresis,” Science, 152, 647-649, 1966. H. A. Pohl, “ Dielectrophoresis”, Cambridge University Press, 1978 L. Qian, M. Scott, K.V. I. S. Kaler, R. Paul, “Integrated planar concentric ring dielectrophoretic (DEP) levitator,” J. Electrostatics 55, 65–79, 2002 Q. Ramadana, V. Samper, D. Poenar, Z. Liang , C. Yu, T. M. Lim, “Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device”, Sens. Actuators B 113, 944-955, 2006 A. Ramos, H. Morgan, N. G. Green and A. Castellanos, “AC electrokinetics: a review of forces in microelectrode structures”, J. Phys. D: Appl. Phys. 31, 2338–2353, 1998 A. Ramos, H. Morgan, N. G. Green and A. Castellanos, “The role of 191 Bibliography electrohydrodynamic forces in the dielectrophoretic manipulation and separation of particles”, J. Electrostatics 47, 71-81, 1999 D. S. Reuter, G. Schwenzer, A. Bertz, T. Gessner, “Selective adhesive bonding with SU-8 for zero-level-packaging”, Proc. SPIE 5650, 163-171, 2004. N. F. Rodriguez and G. H. Markx, “Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules,” J. Phys. D: Appl. Phys. 37, 353–361, 2004 T. Rogers, J. Kowal, “Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors”, Sens. Actuators A 46-47, 113-120, 1995 J. Rousselet, L. Salome, A. Ajdari, J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential”, Nature 370, 446-447, 1994 Th. Schnelle, R. Hagedorn, G. Fuhr, “Three-dimensional electric field traps for manipulation of cells - calculation and experimental verification”, Biochim. Biophys. Acta. 1157, 127-140, 1993 Th. Schnelle, T. Müller, S. Fiedler, S. G. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages”, Naturwissenschaften 83, 172–176, 1996. Th. Schnelle, T. Müller, S. Fiedler, “The influence of higher moments on particle behaviour in dielectrophoretic field cages,” J. Electrostatics 46, 13–28, 1999 Th. Schnelle, T. Müller, G. Fuhr, “Trapping in AC octode field cages”, J. Electrostatics 50, 17-29, 2000 192 Bibliography J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, section 3.9, 1941 J. Suehiro and R. Pethig, “The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system”, J. Phys. D: Appl. Phys. 31, 3298–3305, 1998. J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, and M. Hara, “Selective detection of viable bacteria using dielectrophoretic impedance measurement method,” J. Electrostatics 57, 157–168, 2003. M. S. Talary, J. P. H. Burt, J. A. Tame and R. Pethig, “Electromanipulation and separation of cells using travelling electric fields”, J.Phys.D: Appl.Phys. 29, 2198–2203, 1996 Q. Y. Tong, U. Goesele, “Semiconductor wafer bonding”, John Wiley and Sons, 1999 R. Hagedorn, G. Fuhr, T. M¨uller, and J. Gimsa, “Travelling-wave dielectrophoresis of microparticles,” Electrophoresis 13, 49–54, 1992. J. Voldman, R. A. Braff, M. Toner, M. L. Gray, and M. A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps”, Biophys. J. 80, 531–541, 2001 J. Voldman, M. Tonerb, M. L. Graya, M. A. Schmidt,“Design and analysis of extruded quadrupolar dielectrophoretic traps”,J. Electrostatics 57, 69–90, 2003 Y. Wakizaka, M. Hakoda, N. Shiragami, “Effect of electrode geometry on dielectrophoretic separation of cells”, Biochem. Eng. J. 20, 13–19, 2004 X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, and R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential wells,” J. Phys. D: Appl. Phys. 26, 1278–1285, 1993. 193 Bibliography X. B. Wang, Y. Huang, X. Wang, F. F. Becker, and P. R. C. Gascoyne, “Dielectrophoretic manipulation of cells in spiral electrodes,” Biophys. J. 72, 1887–1899, 1997. X. B. Wang, J. Vykoukal, F. F. Becker, and P. R. C. Gascoyne, “Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation”, Biophys. J. 74, 2689–2701, 1998 M. Washizu and O. Kurosawa, “Electrostatic manipulation of DNA in microfabricated structures,” IEEE Trans. Ind. Applicat. 26, 1165–1172, 1990. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, “ Molecular dielectrophoresis of biopolymers”, IEEE Trans. Ind. Applicat. 30, 835-843, 1994 M. Wiemer, J. Frömel, C. Jia, T. Gessner, “Bonding and contacting of MEMS-structures on wafer level”, The Electrochemical Society-203rd Meeting, Paris, France, April -May, 58-60 2003. C. Xu, Y. Wang, M. Cao, Z. Lu, “Dielectrophoresis of human red cells in microchips”, Electrophoresis 20, 1829-1831, 1999 J. Yang, Y. Huang, X. Wang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion”, Biophys. J.76, 3307–3314, 1999 J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation,” Anal. Chem. 71, 911–918, 1999. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential 194 Bibliography Analysis of Human Leukocytes by Dielectrophoretic Field-Flow-Fractionation”, Biophys. J. 78, 2680–2689, 2000 J. Yang, Y. Huang, X. Wang, X. B. Wang, F. F. Becker, and P. R. J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, M. Hara, “Selective detection of viable bacteria using dielectrophoretic impedance measurement method”, J. Electrostatics 57, 157–168, 2003 C. Yi, C. W. Li, S. Ji, M. Yang, “Microfluidics technology for manipulation and analysis of biological cells”, Analytica Chimica Acta 560 1-13, 2006 P. R. Younger, “Hermetic glass sealing by electrostatic Bonding,” J. Non-Crystalline Solids 38/39, 909-915, 1980. 195 Publications relate to this work Publications related to this work Publications: 1. Liming Yu, Ciprian Iliescu, Guolin Xu, Francis E. H. Tay, “Sequential field-flow cell separation method in a dielectrophoretic chip with 3-D electrodes”, J. Microelectromechanical systems, accepted 2. Francis E. H. Tay, Liming Yu, A. J. Pang and Ciprian Iliescu, “Characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation” , Electrochimica Acta, in press 3. Ciprian Iliescu, Liming Yu, Guolin Xu, Francis E.H. Tay, “A Dielectrophoretic Microchip with an Increased 3D Electric Field Gradient”, J. Microelectromechanical systems 15(6), 1516-1513, 2006 4. Liming, Yu, Francis E.H.Tay, Guolin Xu, “Theoretical analysis and experiment research of a novel DEP chip with 3-D silicon electrodes”, Int. J. Softw. Eng. Know. 15, 231-236, 2005 5. Liming Yu, Francis E.H. Tay, Guolin Xu, Bangtao Chen, Marioara Avram and Ciprian Iliescu, “ Adhesive bonding with SU-8 at wafer level for microfluidic devices”, J. Phys. Conf. Ser. 34, 776-781, 2006 6. Liming Yu, Yong Yeow Lee, Francis E.H. Tay, Ciprian Iliescu, “Spray Coating of Photoresist for 3D Microstructures with Different Geometries”, J. Phys.: Conf. Ser. 34, 937-942, 2006 7. Y.Y. Lee, Liming Yu, F.E.H. Tay and C. Iliescu, “Characterization of Spray Coating Photoresist for MEMS Applications, Romanian Journal of Information Science and Technology (ROMJIST) 8, 383-391, 2005. 8. Ciprian Iliescu, Francis E. H. Tay, Guolin Xu, Liming Yu and Victor Samper, “A dielectrophoretic chip packaged at wafer level”, Microsystem Technologies 12, 987-992, 2006 9. Liming Yu, GuoLin Xu, Francis E.H. Tay, Victor Samper and Ciprian Iliescu, “A DEP Chip with 3D Electrodes and Lateral Inlet/Outlet”, J. Biomedical Microdevices, submitted Conference papers: 1. Liming Yu, Yong Yeow Lee, Jiasen Wei, Francis E.H.Tay, “Spray coated photoresist over via-holes etched in silicon”, ICMAT, Singapore, 2005 2. Y.Y. Lee, L. Yu, F.E.H. Tay, C. Iliescu, “Optimization of spray coating photoresist for high topography surfaces”, Proc. of Int. Semiconductor Conf. CAS 1, 171 – 174, 2005 3. Ciprian Iliescu, Francis E. Tay, Guolin Xu, Liming Yu, “Cell separation technique in dielectrophoretic chip with bulk electrode”, Proc. SPIE. 6036, . 95-106, 2005 196 Publications relate to this work 4. Liming Yu, Ciprian Iliescu, Francis E. Tay, Bangtao Chen, “ SU-8 adhesive bonding using contact imprinting”, Proc. of Int. Semiconductor Conf. CAS 1, 189-192, 2006 197 [...]... non-viable yeast cells in a suspending medium with a conductivity of 1 mS/m………………………….…… 94 3.52 Variation of hydrodynamic force and positive dielectrophoretic force for differentelectrode profiles between electrodes tips for 100 μm channel width.… …96 3.53 Typical cases for triangular shape of electrode……………………….… ……98 3.54 Directions of the resulted force for semicircular and square shape of electrode……………………………………………………………………….…….98... Organization of the thesis Chapter 1 introduces the background of dielectrophoresis device and gives a brief review of development of DEP devices, followed by the objective and significance of this work Chapter 2 gives a literature review of DEP, particularly on basic theory of DEP, electrokinetic behaviors of particles caused by DEP, separation methods of different population of particles and methods for generation... trapping efficiency of the DEP device with 3D silicon electrodes will be tested by experiment Separation of different populations of cells, for example, viable and non-viable yeast cells will be performed in a DEP chip with 3D electrodes and a DEP chip with 3D electrode array and two inlet/outlets These devices would provide a strong basis for practical manipulation of cells Most of the electrode configurations... gradient of the square of electric field ∇E2…………………………………………………………….……….80 3.5 The effect of the size of electrode concave on the electric field E ……….…… 81 3.6 The effect of the size of electrode concave on the gradient of the square of electric field ∇E2…………………………………………………………………………… 81 3.7 The effect of the size of electrode convex on the electric field E …… …….… 81 3.8 The effect of the size of electrode... 3.55 Variation of hydrodynamic force and positive dielectrophoretic force (different electrode profiles) for population that experience negative dielectrophoresis up to 100 μm distance for the channel wall……………………………………………….… 99 3.56 Vectorial simulation of the flowing in microfluidic channel……… ….…….99 3.57 Separation principle: a) ejection of the mixture of particles in the DEP chip, b) cells separation... electrode…………………………………………………………………… ……….72 3.27 The distribution of electric field E for square electrode………………… ……73 3.28 The distribution of gradient of the square of electric field (∇E2) for square electrode…………………………………………………………………………… 73 3.29 The distribution of electric field E for triangle electrode……………… ….… 73 3.30 The distribution of gradient of the square of electric field (∇E2) for triangle electrode……………………………………………... ……………………………….74 3.31 The distribution of electric field E for circle electrode array……………………74 3.32 The distribution of gradient of the square of electric field (∇E2) for circle electrode array………………………… ……………………………………………74 3.33 The distribution of electric field E for triangle electrode array………………….75 13 3.34 The distribution of gradient of the square of electric field (∇E2) for triangle electrode array………………………………………………………………………... not only for fabrication of our devices, but also for other MEMS applications Chapter 5 explores the applications of DEP chips with 3D silicon microchannel walls for cell manipulation The functions of a series of fabricated DEP chips with 3D silicon electrodes and a DEP device with asymmetric electrodes have been tested using 30 Chapter 1 Introduction yeast cells Then the trapping efficiency of DEP device... called positive and negative dielectrophoresis This chapter gives a literature review of DEP Theoretical analysis of the DEP force, electrokinetic behaviors of particles caused by DEP, separation mechanisms of different population of particles and solutions for generation of electric field gradient will be reviewed in this chapter 2.2 Basic theory of dielectrophoresis DEP force generated from electric... fabricated by microfabrication technology A detailed review of DEP has been described in Chapter 2 1.3 Objective of this thesis The objective of this thesis is to contribute to the design, fabrication and 26 Chapter 1 Introduction application of the DEP devices: (1) To explore design and microfabrication technologies of DEP devices with 3D silicon microchannel walls A series of DEP devices with 3D silicon . DEVELOPMENT OF DIELECTROPHORESIS DEVICES FOR CELL MANIPULATION YU LIMING NATIONAL UNIVERSITY OF SINGAPORE 2007 DEVELOPMENT OF DIELECTROPHORESIS DEVICES FOR CELL. Developed microfabrication technologies for fabrication of DEP chips….…….133 4.6.1 Optimization of spray coating of photoresist for high topography surfaces 133 4.6.1.1 Optimization method for spray. work 196 6 Summary In recent years, the development of miniaturized devices for analysis and manipulation of micro- or nano-bioparticles, such as cells, viruses, and bacteria, is a fast growing

Ngày đăng: 14/09/2015, 11:45

TỪ KHÓA LIÊN QUAN